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1.1 Order of Magnitude(OoM) reasoning in Phisics
Theworld is connected, and our “eye” to see such connections are orders ofmagnitude reasoning. Seem-
ingly unrelated observations could be in fact deeply constraining each other. To practice this “vision”,
we explore some calculations below, with contexts gradually shifting from the macroscopic world we
are more familiar with to the microscopic world of molecules and cells.

1.1.1 Hangzhou Exodus
To get a feeling for order of magnitude reasoning, let us start with an estimate for the following problem.
Imagine Hangzhou is in a sudden crisis, so we need to evacuate the population of Hangzhou, what
would be the best way to do it? By Car? Train? Airplane? Remember that Hangzhou has a population
of about 10 million.

We probably want to leave Hangzhou fast. So let us consider the transportation method that is fastest
for individuals.

1
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• By airplane:

– We have 1 airport in Hangzhou
Let’s say under emergency we need 2 min for an airplane to leave airport.
2 min/airplane =⇒ 60× 24 ≈ 103 min/day

=⇒≈ 500 airplane/day
102 people/airplane =⇒ 5× 104 people/day

=⇒ 200 days

200 days is too long for to escape from an apocalypse. Is there a method that can be faster than this? We
observe that the key bottleneck of the airplane method is that we only have one airport in Hangzhou.
The airplane itself is fast, but the number of runways is too low.

Given this, let us leave the estimate for trains as an exercise (we would guess it is too slow overall due to
the same reason of bottleneck as the airplane method), and directly jump to escape by cars. Cars have
many lanes on highways to travel, which may resolve the previous bottleneck.

Figure 1.1

Hangzhou

Highways

• By cars

– Let’s say totally we have 10 highways to leave Hangzhou (Roughly check the map, see Fig 1.1)
4 lanes/way =⇒ 8 lanes total/way (Emergency state: all lanes going out.)

=⇒≈ 102 lanes

– Properties of cars
Speed v ≈ 80 km/h ≈ 20 m/s
Distance between cars L ≈ 40 m/car (let’s say we need 2s to react)
Capacity N = 4 people/car
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FLuxPerLane =
N · v
L

=
4 people/car× 20 m/s

40 m/car
≈ 2 people/s

=⇒100 lanes× 2 people/(s · lane)× 3600 s/hour× 24 h/day ≈ 2× 107 people/day
So roughly 1 day all people are evacuated.

Roughly 1 day to evacuate all people in Hangzhou, which is very nice indeed! However, we assumed
the only bottleneck is the number of lanes and ignored other possible constraints. Could new limiting
factors come into play? For example, we assumed there are enough cars in Hangzhou, and every person
can get into a car. Could the actual number of cars be limiting? What if people drive slower or faster
than the speed we assumed?

To reason about these problems, let us investigate the real bottleneck of the cars method. We notice that
the flux of people per lane is dependent on both the speed of driving and the distance between cars, and
the latter is limited by our time to react, τ. But τ is the same due to fundamental human reflex, which
cannot be drastically reduced. So this is the actual bottleneck. Let us rewrite our calculation in terms of
τ.

• Could it be that number of Cars is not enough?
( A new bottom neck? Could be, but does it matter?)
Let τ be the time to react to guarantee safety.And τ is fixed as we are all human.

Flux =
Nv

L
=

N

τ

(
τ =

L

v

)
=⇒Car = Walking
e.g. we walk 1 m/s, need 2 m distance between people.
So, we could just WALK ON HIGHWAYS to evacuate.

The Hangzhou exodus example shows how the dimensions of key quantities dictate the solution to a
problem. Next, let us consider another problem that further demonstrates this dimensional reasoning,
and how it can be used to extend our intuition from themacroscopic world we are familiar with to other
scales.

1.1.2 Dimensional reasoning: jump height in animals
Many animals can jumpwhile across different sizes, we humans can jump, cats can jump, fleas can jump.
We may be wondering if there is some relationship between jump heights and animal sizes?

• Example: A student can jump:
30 cm for Karla; Maybe 60 cm for a professional athlete.
(There is no change of orders of magnitude within humans.)

• To infer the relationship, let’s analyze from the energy:
Eg = mgh = Em (Eg : gravitational potential energy)
m ∝ L3 (m ∝ Volume ∝ Length3)

Em ∝ L3fm (fm : volume fraction of muscle)
=⇒ h ∝ L0fm
Jump height is independent of mass/volume/size.

The above result is saying, the height an animal can jump has nothing to dowith itsmass, volume or size,
the only thing that matters is fm, the muscle fraction, as long as the animal still uses the same muscle
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mechanism to jump. And this is roughly true:

• Rat : 50 cm
Flea : 25 cm
Cats : 100 cm (Roughly same order of magnitude)

The next question is time, as we have the same h, we got the same speed leaving the ground.

1
2
mv2 = mgh =⇒ v is constant as h is constant

So humans, rats, fleas and cats all share roughly the same speed when leaving the ground. Imagine
fleas leaving the ground 3 meters per second! This is like thousands of body lengths per second, which
scales to human would be kilometers per second!

If we observeKarla’s jumping action carefully, we can find this jump takes her about 0.5 s from stretching
the leg to leaving the ground. This duration is reasonable formuscles since she has about 0.5 m to release
the muscle energy. But what about other animals?

• Time cost to release the energy in the muscle

The time τ is proportional to the height one can use to speed up. Thus

τ ∝ L

v
(τ : time to release energy)

Human: v ≈ 3 m/s =⇒ L
v
= 1 m

3 m/s ≈ 0.3 s
Cat: v ≈ 3 m/s =⇒ L

v
= 0.2 m

3 m/s ≈ 0.1 s
Flea: v ≈ 3 m/s =⇒ L

v
= 2 mm

3 m/s ≈ 1 ms !!

Even fast muscles need about 0.1 s to contract its half length, 1 ms is far too short. The truth is fleas
choose to store energy in the bending of their shells to go beyond this limitation on the the speed of
release due to muscle mechanisms.

From rough calculations, we could use scaling to go from numbers we are familiar with and scale up to
what is very different scales animals are doing.

For the next example, let’s heat up everything, to see what intuition that heating up potatoes can bring
us. If we know how long to heat up a potato, can we assume how long to cool down the moon?

1.1.3 Scaling: heating potatoes, and the moon
Firstly we need to link together the time and the heat change, to find how item’s size can involve this
process. For simplicity, let’s consider a rod 1.2, with a temperature gradient along its length, decreasing
from left to right.

• Heat diffusion on rod
From intuitive, heat flux should be proportional to the local gradient of temperature,this gives:

J = −K▽T (J : Flux of the heat)

▽T ≈ δT

δx
(▽T : Gradient of Temperature )
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Figure 1.2

{
δx

δT

Heat  �low

{x-1 x+1x

And also, the neat change of temperature is reflected by the stored energy.

∆E ≈ CVδT (CV : Heat capacity per Volume, with unit: Heat/T)
(Change in E per volume taken T change by δT )

To derive how temperature changes over time, we will apply the principle of energy conservation. Con-
sider a small segment of the rod with length δx, The net heat flux (the heat flowing in minus the heat
flowing out) results in a change in the segment’s internal energy. This energy balance leads to the fol-
lowing relationship:

• Temperature changing in time
From conservation of energy: at x change temperature by δT in δt time
then

δxCvδT = (Jx−1 − Jx+1)δt = K(▽Tx+1 − ▽Tx−1)δt

=⇒δT

δt
=

K

CV

·
▽Tx+1 − ▽Tx−1

δx

=⇒∂T

∂t
= κ▽2T (κ =

K

CV

is heat diffusivity)

Now we have the partial derivative equation to describe how T changed with time, that says the tem-
perature’s change rate on one site is proportional to the temperature’s Hessian on this site. The object’s
size’s effect on the temperature change time is embedded within this Hessian. To get the atypical scal-
ing, we can simply remove the partial derivatives. (We can derive the scaling just from variation in a
unit time/length/etc).

• Thus we have
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∂T

∂t
= κ

∂2T

∂xx

=⇒T

t
≈ κ

T

x2

=⇒t ≈ x2

κ

So the time grows with size’s square. To cool down the moon, now we need another parameter κ, we
don’t know yet but we can estimate from heating up potatoes.

• Hong long to heat up a potato?
From experience, about 10 min is need to heat up a potato of size10 cm
=⇒ κ ≈ x2

t
≈ 1×10−2 m2

600 s ≈ 1.5× 10−5 m2/s
Now we get the number of κ, finally we can turn our view to moon!

• Cool down the moon since its birth.
L = 2000 km = 2× 106 m

t ≈ x2

κ
=

4× 1012 m2

1.5× 10−5 m2/s
≈ 3× 1017s

(3600 s× 24 h× 365 day =⇒ 3× 107 s/year)
=⇒t ≈ 1× 1010years

The solar system is approximately: 4.6 billion years ≈ 5× 109 years. Our calculation suggests the Moon
is not yet fully cooled, but very close. In reality, the Moon is considered fully cooled. This is because,
early in its history, its molten core greatly accelerated the cooling process through convection, which is
a much more efficient method of heat transfer than conduction alone.

Through these examples, we’ve seen how order of magnitude reasoning reveals profound connections.
These cases demonstrate that by identifying the core physical constraints and understanding how they
scale, we can make powerful predictions across vastly different domains.

Now let’s dive into the biology world to see what surprise the order of magnitude reasoning can bring
us.

1.2 OoM in biology: molecules in cells
1.2.1 Order of Magnitude(OoM) reasoning in biology

• In biology world, OoM is often very helpful to give a ”Null hypothesis”,”Null model”, predicting
what should occur based only on fundamental physical or chemical principles, before we spend
much time doing literature reading, detailed simulations, or even experiments.

Like physics, in biology world,we often care about some quantities. At the single-item level, we care
about properties like length, volume, weight, speed, position... At the population level, quantities like
number and concentration etc. become important. Let’s start with some of these basic properties of
different molecules within cells.

1.2.2 Molecules in cells
• References: cell biology by the numbers. Also, “Snapshot: characteristic rates and timescales in

cell biology”. s



CHAPTER 1. ORDER OF MAGNITUDE (OOM) REASONING IN PHYSICS AND BIOLOGY 7

Atom Cell Human

1Å/0.1nm
10-10m 10-6m

1μm 1m

• Length scale of different cells
E.coli 1 µm
Yeast 5 µm
Mammalian 20 µm(10 µm roughly)

To make the following analysis more specific, let’s take E.coli as our standard reference for the micro-
scopic world.

• E.coli

– Volume of E.coli:
1 µm2 = 1× 10−18 m3 = 1× 10−15L = 1 fL ( f : femto)

1 µL (of bacteria) =⇒ 1× 109cells
As 1 mL of bacterial culture at saturation =⇒ pellet is 1 µL

So for 1 mL of culture media, the E.coli cells are actually takes only 10−3 of the volume which is
even less dense than our classroom.

– Mass (of proteins? metabolites?):
Glucose/Nucleotide: 3× 102 Da =⇒ Size : (3× 102)

1
3 ≈ 6 Å

Amino acid(a.a): 102 Da( a bit lighter (from about 60 ∼ 200 Da))

The a.a.’s average MW is 102 Da is because we calculate average in log,
√

60× 200 ≈ 100. Further
this is because the order of magnitude changes under log space.

Now we need how many a.a. in a protein to calculate the MW of proteins

– How many a.a. in a protein?{
lower bound 50 a.a.
upper bound 5× 103 a.a. =⇒

√
2× 105 ≈ 300 a.a.

=⇒ ≈ 300 a.a./protein =⇒MW = 30 kDa/mol

=⇒Num of protein per cell = 1 pg
30 kDa/mol

· 6× 1023 Da
mol

≈ 2× 107

The above result gives us a theoretical upper bound of the number of proteins within one e.coli,
as we assume all molecules within one e.coli is protein. While commonly, for one type of protein,
this number is from 103 ∼ 104

– Concentration:
What is the concentration of one molecule per cell?
1 molecule/cell =⇒ 1

1×10−15 L
mol

6×1023 ≈ 10−9 M = 1 nM
Metabolites 106 ∼ 107 /cell =⇒ 1 ∼ 10 mM
Protein 103 ∼ 104 /cell =⇒ 1 ∼ 10 µM
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– Volume of Genome, protein
Genome: E.coli got 5 Million base pairs
If we first calculate about length:

5× 106 bp× 0.3 nm/bp ≈ 1× 106 nm = 103 µm

This result indicate that the genome are so long that it needs to be folded at least 1, 000 times
to put into E.coli. But what about its volume?
Now we calculate its volume:

3× 102 Å3/bp · 5× 107 bp = 300 · (1× 10−4 µm)3 · 5× 107 ≈ 1.5× 10−2 µm2

So while long, Genome only take ∼ 1%of volume of a cell.
What about protein’s volume? Roughly one e.coli have about 107 proteins, thus:

300 a.a × 100 Å3 × 107 ≈ 0.3 µm3 =⇒ 20 − 40% of the cell

So unlike genome, proteins are crowded!

From above data and calculation we have built some sense of this micro-world, and static. But what
about dynamics?

1.2.3 Rates in cells — Diffusion(How molecules move in cells)

hours

mins

Let’s first get some sense of how diffusion happens for this microscopic world.
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From our calculations for the heat diffusion case, we know the diffusion behavior has the following
scaling relating τ, the duration, and x, the distance the diffusion behavior can reach.

• Diffusion scaling:
1
τ
= D

x2

The diffusion effect was first studied by Robert Brown, 1827. He put a pollen under water and observed
under a microscope, and found the pollen jiggling without any apparent force. And now we can make
his experiment as a reference to start up. Let’s estimate the diffusion coefficient for pollen first.

• Infer the parameter for pollen.

How big is a pollen particle? From our daily experience, while we can see the granules that con-
tains lots of pollen particles, we cannot observe individual pollen particles directly by naked eye.
However, Brown can observe a pollen particle under a microscope, a microscope in the 1800s so
not a very large magnification. So we could estimate that a pollen particle should be around the
size of an eukaryotic cell which can be easily observed under the microscope, so ∼ 10 µm.

Some observation is that: When pollen jiggles under microscope, we can see the jiggles in seconds,
so themovement should be roughly ∼ 1 µm on seconds timescale. Butmostmovements cancel out.

To move a significant distance, around one body length 10 µm, requires much longer, since we do
not see the pollen particles significantly move within minutes of observations. Therefore, 10 µm
movement requires about 1 h, so D can be estimated as
D = x2

τ
= (10 µm)2

3600 s ≈ 3× 10−3 µm−2/s.

Pollen provides a good beginning for us to scale down to proteins, so the key question is, how does D
change when the particle size decreases? From our intuition, the smaller the particle, the faster it shall
move. In other words, D is negatively correlated with L which denotes the particle size. We can guess
D ∝ L−1, and it turns out to be true.

Why? Diffusion is balance between thermal force (water hitting on pollen) and drag in viscous(low
Re,”skin friction drag”){

Force ∝ L2

Friction ∝ Lv
(two forces are balanced)

D = µKBT ∝ µ ∝ v

F
∝ v

Lv
∝ L−1

Now let’s go from pollen to proteins

• Diffusion rate of protein
Protein size: (300) 1

3 ≈ 1 nm
Dprotein

DPollen
∝ Lpollen

Lprotein
= 10 µm

1 nm = 1× 104 =⇒ Dprotein = 100 µm2/s
With the diffusion rate, nowwe can calculate how long it takes for a protein tomove across different
cells just by passive diffusion.

• Time for a protein to diffusion in different cell
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E.coli: 1 µm t ≈ x2

D
= (1 µm)2

100 µm2/s = 1× 10−2 s
Mammalian: 10 µm t ≈ x2

D
≈ (10 µm)2

100 µm2/s = 1 s
Eggs 100 µm t ≈ x2

D
≈ (100 µm)2

100 µm2/s = 100 s
Axon: 1 m t ≈ x2

D
≈ (1×106 µm)2

100 µm2/s = 1010 s ≈ 3× 102 years

Thus we see for long cells like neurons, transferring proteins by passive diffusion becomes inefficient as
t ∝ x2. This suggests that more efficient protein transport mechanisms must exist for these cells.
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2.1 Biochemical reactions in cells
Cellular changes occur through chemical reactions, which are fundamentally governed by diffusion ki-
netics. These reactions typically take place under the prevailing cellular conditions of temperature and
pressure. Whether and when a reaction proceeds is largely determined by the presence of enzymes,
which act as catalysts. From a thermodynamic perspective, many favorable reactions could take years
to complete on their own (e.g., spontaneous glucose degradation, peptide bond cleavage, or ATP hydrol-
ysis). However, enzymes accelerate such processes dramatically, often by factors of 1010 or more.

11
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2.1.1 notations of (Bio)chemical reactions
Table 2.1: Reaction Types and Notations

Elementary Straight
Arrows (→)

Implies reaction mechanism (all
key players included)

E+S⇔ C→ E+P;
Gene + RNAP⇔ C0→ C1→ ... →
Cn→ Gene + RNAP + mRNA

Composite Squiggly
Arrows (⇝)

May have hidden mechanism,
reaction

S⇝ P;
Gene⇝ Gene + mRNA;
(S,P)⇝ (S-1,P+1)

Reaction
Type Notation Meaning Examples

”Elementary” “→”, implies reaction mechanism, meaning it’s an irreducible reaction step, you CAN’T
break it down further, or it’s useless to do so for your concern

e.g. E+S −−⇀↽−− C −−→ E+P
Gene + RNAP ⇔ C0 → C1 → ... → Cn → Gene + RNAP + mRNA

”Composite” “⇝” it may have Hidden mechanism, meaning it only describes the net change of several
steps of reactions

e.g. S⇝ P
Gene⇝ Gene + mRNA;
(S,P)⇝ (S-1,P+1) (another notation for Composite, focused on change of molecular numbers)

Examples:

1. Cell replication, N becomes 2N: N⇝ 2N or N⇝ N+1

2. Photon doubles in a laser: photon + atom(activated)→ 2photon + atom(ground)

3. Diffusion into a cell through a passive channelon membrane: Aout→ Ain

4. ATPase pumping H+ and of the cell: H+
in⇝ H+

out

2.1.2 Estimates of enzymatic reaction rates
Enzymatic reactions occur when an enzyme and its substrate collide and then bind; the enzyme’s atoms
then orient the substrate in specific ways, ultimately transforming it into a product with atoms in differ-
ent positions. Thus, there’s a two-step process: binding and catalysis.

E+ S⇔ C⇝ E+ P

The fastest reaction rate is limited by association rate (react immediately after association), which is
governed by diffusion, so called ”diffusion limited on rate”.

Behavies just like heat diffusion:

flux at a point on E within a surface:

j(a) = D
∂C

∂R
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Roughly,

j(a) = D
∂C

∂R
|a ∽

C∞
a
⇒ j = D

C∞
a

More details: cons. of mass⇒ 4π R2j is constant, so

j ∝ 1
R2

∂C

∂R
= j ∝ 1

R2 ⇒ C(R) =
A

B
+ C

A,B is constant, Boundary condition: C(a)=0, C(∞)=C∞, so B=C∞, A=-aC∞
J = j · 4πa2 = 4πDa · C∞ ⇒ KonC∞ (2.1)

kon = 4πDa ∽ 10 · 102 µm2/s · 1nm · 6 · 1023

mol
· 1L

1015 µm3 ∽ 109 s−1 mol−1

So, if C ∽ 1 mM, then it’s about 106 reactions/s per enzyme.

However, most enzymes operate much more slowly, being bottlenecked by the catalysis step, typically
around 10−102 reactions/s.
Note that for elementary reactions, i.e., reactions that occur immediately upon collision, the flux of
E + S → C is given by KonES (where E and S denote the concentrations), since each enzyme reacts at
a rate of KonS. This relationship is called the law of mass action, and it describes how the flux scales
with reactant concentrations.
Detailed Derivation of Diffusion-Limited Flux
Based on the steady-state diffusion model, we consider an enzyme E as the center point, with substrate
molecules diffusing throughout the solution. Under steady-state conditions, the flux through any spher-
ical surface of radius R centered at the enzyme remains constant, i.e., 4πR2 · j = constant ̸= 0. This con-
servation relation indicates that the amount of substrate C consumed at the enzyme surface is exactly
balanced by the amount diffusing into the sphere from the external environment.
Derivation of the Spherically Symmetric Diffusion Equation The general diffusion equation (Fick’s
second law) in three dimensions is:

∂C

∂t
= D∇2C

where ∇2 is the Laplace operator.

In spherical coordinates (r, θ,φ), the Laplace operator is expressed as:

∇2C =
1
r2

∂

∂r

(
r2∂C

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)
+

1
r2 sin2 θ

∂2C

∂φ2

Due to the spherical symmetry of the problem (enzyme is spherical and substrate diffusion is isotropic),
the concentration C depends only on the radial distance r:

C = C(r), ∂C

∂θ
= 0, ∂2C

∂φ2 = 0
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Substituting these conditions into the Laplace operator gives:

∇2C =
1
r2

∂

∂r

(
r2∂C

∂r

)

Under steady-state conditions (∂C
∂t

= 0, i.e., 4πR2 · j = constant (non-zero)), the diffusion equation
simplifies to:

D · 1
r2

d

dr

(
r2dC

dr

)
= 0

Since D ̸= 0, we obtain the spherically symmetric steady-state diffusion equation:

1
r2

d

dr

(
r2dC

dr

)
= 0

Solving the Diffusion Equation Multiplying both sides by r2 and integrating once:

d

dr

(
r2dC

dr

)
= 0 ⇒ r2dC

dr
= A

where A is an integration constant.

Rearranging and integrating again:

dC

dr
=

A

r2 ⇒ C(r) = −
A

r
+ B

where B is another integration constant.
Applying Boundary Conditions Applying the boundary conditions:

• At the enzyme surface (r = a): C(a) = 0

• At infinity (r→∞): C(∞) = C∞
Substituting the boundary conditions to solve for the integration constants:{

0 = −A
a
+ B

C∞ = B
⇒ A = aC∞, B = C∞

Thus, the concentration distribution is:

C(r) = C∞
(

1 −
a

r

)
Calculating Flux and Reaction Rate Calculating the concentration gradient:

∂C

∂r
=

aC∞
r2

The gradient at the enzyme surface (r = a):

∂C

∂r

∣∣∣∣
r=a

=
C∞
a
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According to Fick’s first law, the flux is:

j = D · C∞
a

The total reaction rate is the flux multiplied by the enzyme surface area:

J = j · 4πa2 = 4πDaC∞
Defining the reaction rate constant km = 4πDa, we obtain J = kmC∞.

This derivation provides a rigorous mathematical foundation for understanding diffusion-limited reac-
tion kinetics, following the approach consistent with the file’s content.
How to understand j = D ∂c

∂R
?

From the perspective of dimensional analysis: j represents the number of molecules passing per unit
area per unit time.

• Dimension of j: molecules
area·time = N

L2·T

• Dimension of D: diffusion coefficient, length2

time = L2

T

• Dimension of ∂c
∂R

: concentration gradient, concentration
length = (N/L3)

L
= N

L4

Therefore, dimensional verification of j = D ∂c
∂R

:

[D] ·
[
∂c

∂R

]
=

L2

T
· N
L4 =

N

L2 · T
= [j]

The dimensions are consistent, validating the physical relationship.

2.1.3 Dynamics of chemical reaction networks(CRN)
A generic chemical reaction (Elementary or Composite)

α1X1+α2X2+ ...+αnXn → β1X1+β2X2+ ...+βnXnα1X1+α2X2+ ...+αnXn ⇝ β1X1+β2X2+ ...+βnXn

α stand for reaction stoichiometry, β stand for product stoichiometry
Reaction stoichiometry: γj = βj − αj(j = 1, 2, 3, ...,n)
Net change notation: (X1,X2, ...,Xn)→ (X1 + P1,X2 + P2, ...,Xn + Pn)
Every time this reaction happens, xj~ flux caused by this reaction is γj ∗ v

Several reactions form a network (GRN)

m stand for reactions, i = 1, 2, ...,m
n stand for species, j− 1, 2, 3, ...,n

αi1X1 + αi2X2 + · · ·+ αinXn → βi1X1 + βi2X2 + · · ·+ βinXn
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d

dt
xj =

∑
i

γijvi =
∑

i:γij>0

Vijvi −
∑

i:γij<0

Vijvi = f+j − f−j = fj

dx

dt
= Γv = f+ − f−

Note that this hold always, for both elementary and composite, Since all we’re done is ”accounting”,
for where molecules went. Only depends on γ, not α or β, so ”net change notation” is enough. We
can write this even if we don’t know the regulation mechanism. But to have a full description of the
dynamics.

Does v depend on x ? i.e. reaction kinetics
Kinetics: Law of mass actin Elementary reactions’ kinetics follow the law of mass action:

α1X1 + α2X2 + · · ·+ αnXn k (reaction rate constant)
−−−−−−−−−−−−−−−−−−−−→

β1X1 + β2X2 + · · ·+ βnXn

v(x) = reaction rate = flux = kXα1
1 Xα2

2 · · ·Xαn
n

e.g. E+ S K−→ C, rate = KonES(K = Kon)

Now with several reactions forming a network

αi1X1 + αi2X2 + · · ·+ αinXn ki−→ βi1X1 + βi2X2 + · · ·+ βinXn

vi = kiX
αi1
1 · · ·Xαin

n = kiX
αi

d

dt
xj =

∑
i:γij>0

γijvi −
∑

i:γij<0

|γij|vi = f+j (x) − f−j (x)

dx

dt
= Γv(x) = Γ ∧k xα = f(x) = f+(x) − f−(x)

2.1.4 Analysis of 1D and 2D dynamics by phase portrait
These are autonomous dynamical systems dx

dt
= f(x). How to understand their dynamics? We start

simple from low dimensions:

Exp1
dx

dt
= f(x) = −x

Fixed point: x∗ s.t. F(x∗) = 0
Feature of f(x) = −x

Fixed point: YouDON’T change if you start from a fixed point, if you start at a different initial condition,
you’ll go to x = 0 until you are stable at a fixed point.
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Exp2

dx

dt
= f(x) = x3

Fixed point: x∗ s.t. F(x∗) = 0
Feature of f(x) = x3 Fixed point: You DON’T change if you start from Fixed point, but you’ll go further
and further if you’re not

Exp3
dx

dt
= f(x) = x2 − r

Figure 2.1 Exp3 f(x) = x2 − r

1D can only define stable or unstable, ”go away” or ”coverage”, because trajectory is 1D as well, and the
point CAN’T go back

Exp4 Bio product minus degradation
ẋ = µ− x

Fixed point: x = µ Exp5: bistable
ẋ = f+(x) − x
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Figure 2.2 ẋ = µ− x

Figure 2.3 ẋ = f+(x) − x

How to create a 1D (Bio) bistable system?
2D system In 2D system trajectories can ”go back” along any axis, but trajectories can’t overlap itself
On top of fixed points: f1(X

∗) = f2(x
∗) = 0, also nullelines f1(X

∗) = 0|f2(x
∗) = 0, These are enough to

determined dynamics.
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Figure 2.4

2.1.5 Types of dynamics in 2D
Dynamics about a fixed point graph needed
New in 2D: center Exp1 Spring question

Figure 2.5 Spring

F = mẍF = −kx⇒ mẍ+ kx = 0⇒ x1 = x1, x2 = ẋ ,so mẋ2 + kx1 = 0 d

dt

[
x1
x2

]
=

[
0 1

−k/m 0

][
x1
x2

]
Trajectories neither spiral in or out, x = 0 is a center, not stable

Also, we can look at energy, which is conserved:

1
2
mx2

2 +
1
2
kx2

1 = E
dE

dt
= mx2ẋ2 +mx1ẋ1 ⇒

dE

dt
= −mx2

k

m
+ kx1x2 ⇒ −kx1x2 + kx1x2 = 0

If there’s friction:
mẍ+ kfẋ+ ksx = 0 (2.2)

Define the state variables x1 = x, x2 = ẋ. Then

d

dt

[
x1
x2

]
=

[
0 1

−ks/m −kf/m

][
x1
x2

]
. (2.3)
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The total mechanical energy is
E = 1

2mx2
2 +

1
2ksx

2
1. (2.4)

Taking the time derivative gives

dE

dt
= −mx2

(
ks

m
x1 +

kf

m
x2
)
+ ksx1x2 = −kfx

2
2 < 0. (2.5)

means the circle shrunks overtime.
3D and beyond
3d-system Trajectories can roam freely, no constraint anymore due to dimensions, e.g. graph needed
The best way to analyze is to stimulate and to look, lack of structure, Nothing very useful can be
said.
system beyond 3D To say something for >=3 dimensions, still by dimension reduction
⇒ Reduce to 0 dimension: fixed point
⇒ Reduce to 1 dimension: fixed point, limit cycles
⇒ Reduce to 2 dimensions: then analyze on 2D....

2.1.6 Local stability analysis
Local dynamics in general⇒ Local is always Linear
assuming d

dt
(xt∆x) = f(x)⇒ consider small perturbation∆x around x

d

dt
(xt∆x) =

d

dt
∆x = f(x+ ∆x) ≈ f(x) +

αf

αx
(x)∆x

Assuming at x = x∗, a fixed point, so f(x∗) = 0

d∆x

dt
= A∆x⇒ A =

αf

αx
(x∗)

dx

dt
= ax ⇒ x(t) = x(0)eat

Eigenvector (λ, v) s.t. Av = λv, let x(0) = y(0)v, then:

1
∆t

(
x(∆t) − x(0)

)
= Ax(0)

1
∆t

(
y(∆t) − y(0)

)
v = Avy(0) = λvy(0)

⇒ dy

dt
= λy ⇒ y(t) = y(0)eλt

⇒ x(t) = y(0)eλtv
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So, behaviors can be decomposed in terms of Eigenvector

When Re(λ) > 0, Eigenvector is unstable, When Re(λ) < 0, Eigenvector is stable
A is Hurwitz: When Re(λ) < 0, for all λ ∈ Eigenvector(A), this guarantees x = 0 is stable.
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3.1 The explanation of chemical reaction network equation
At first, let us review how we describe a system of chemical reaction network (CRN). According to our
lecture, we have equation below:

˙⃗x =
dx

dt
= ΓΛkx

α

But this equation looks confusing because it lacks an explanation of each character. Let us write this
equation in a more understandable form:

˙⃗x =
dx⃗

dt
= ΓΛkx⃗

α

Here, ˙⃗x means derivative of x with respect to t, so it is equal to dx / dt. And x is called by me the
concentration vector of biomolecules because it represents every concentration of biomolecules we
consider. It can be written as [x1, x2......xn]T . So ˙⃗xmeans the conception change of every biomolecule we
consider, it can be written as [dx1/dt,dx2/dt......dxn/dt]T .

22
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For Γ , it is the uuppercase form of gamma (γ), it is called the matrix of stoichiometric number change
by me. To understand this, we must first figure out the definition of ”stoichiometic number chnange”.
For a chemical reaction:

4x1 + x2 = 2x1 + 3x2

The coefficient in front of the variable x1 and x2 is called the stoichiometric number. Tomake a difference
of the coefficient in front of these reactants and products, let us use 1 to represent the coefficient ”4” in
front of reactant x1, use 2 to represent coefficient ”1” in front of reactant x2. Similarly, we can also use
1 and 2 to represent cofficient in front of products x1 and x2. We notice the x1 and X2 appear in both
reactants and products, so we can then definite another physical quantity γ, for γ1, it equals to α1 − β1,
for γ2, it equals to α2 − β2. The γ shown here is ”stoichiometic number chnange”. For every variable,
or biomolecules we consider, they have a unique γ. And when γ < 0, that means after this reaction
happens, the quantity of this biomolecule will decrease. For example, for biomolecule x1, after one
single reaction happens, it will consume 4x1 biomolecules and generates 2, so it consumes 2x1 in total.
And for γ > 0, that means after this reaction happens, the quantity of this biomolecule will increase.
Notably, for many biochemical reactions or even chemical reactions that occurred in tubes or reaction
kettles, the molecules will rarely appear on both both reactant side and the product side, because they
will be invited. One example is alkaline hydrogen oxygen fuel cell, the positive pole half reaction is:

2H2 − 4e− + 4OH− = 4H2O

and the negative pole half reaction is:

O2 + 4e− + 2H2O = 4OH−

whenwe consider thewhole reaction of this battery, we just simply combine this 2 half reactions together,
and it becomes:

2H2 +O2 + 2H2O = 4H2O

For water, it appears in both reactant side and product side, we can divide 2H2O from both side, so we
get:

2H2 +O2 = 2H2O

butwe can also save the divided 2watermolecules in both sides, because they have practical significance,
it means 2 water molecules is consumed in negative pole, and 4 water molecules generated in positive
pole. For water, its α equals to 4, its β equals 2, and its γ equals 4-2=2.

So, for ”the matrix of stoichiometric number change”, it is the matrix formed by γ, in other words, every
element in this matrix is γ.

So how do these γ arrange? We first need to definite the chemical reaction network (CRN). Now this
CRN can be written as:
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α11x1 + α12x2 + ...... + α1nxn = β11x1 + β12x2 + β1nxn

α21x1 + α22x2 + ...... + α2nxn = β21x1 + β22x2 + β2nxn

......

αm1x1 + αm2x2 + ...... + αmnxn = βm1x1 + βm2x2 + βmnxn

Here, M and N are positive integers.

For the first row of the matrix, it represents the first reaction of CRN written above, it is:

[γ11,γ12......γ1n]

The second row of the matrix is:

[γ21,γ22......γ2n]

The last row, which is the number m row, is:

[γm1,γm2......γmn]

For Λk, it is called diagonal matrix of reaction rate constant. In linear algebra, we often use Λ to repre-
sent a diagonal matrix. The diagonal matrix means every element don’t locate in diagonal line is zero.
In other words, for element aij in matrix Am×n, where 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, unless i=j, aij = 0. But
that doesn’t mean when i=j, aij ̸= 0. Another question is what is ”reaction rate constant”, that means
for a reaction 4x1 + x2 = 2x1 + 3x2, according to the Law of mass action the reaction rate equals to
v = k × x4

1 × x2, the k shown here is ”reaction rate constant”. So, for this diagonal matrix, it can be
written as k1, k2......kn located on the diagonal line.

The last one in this equation needed to explain is x⃗α, I call it mass action expression vector. For every
element in this vector, its form is:

x
αi1
i1 + x

αi2
i2 + ...... + x

αin

in

with 1 ⩽ i ⩽ m.

This so-called ”mass action expression vector” is formed by mass action expression of each reaction in
CRN. And the first reaction occupies the first row of this vector, the second reaction occupies the second
row of this vector...... In otherwords, if the reaction ”α11x1+α12x2+......+α1nxn = β11x1+β12x2+β1nxn”
is represented by ”reaction 1”, the mass action expression of reaction 1 is xα11

11 + xα12
12 + ......+ xα1n

1n . If the
mass action expression of reaction 1 is represented by ”M1”, the ”mass action expression vector” can be
written as:

[M1,M2......Mm]T
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That is all the characters participated in the equation describing the chemical reaction network (CRN).
And now I will briefly introduce how can we get this equation. Now we only consider there is one
reaction in the CRN, the CRN can be described by:

α1x1 + α2x2 = β1x1 + β2x2

What does dx⃗/dt mean here? It is [dx1/dt,dx2/dt]
T , so we solve these two elements of this vector sepa-

rately. For dx1/dt, it equals:

dx1/dt = γ1 × v1 = γ1 × k1 × xα1
2 × xα2

2

The first ”=” above comes from the relationship betweenmolecule changing rate and reaction rate. Con-
sidering in 1 second, the reaction happens N times, and the γ represents when there is 1 reaction hap-
pens, the molecules change (increase/decrease) is γ = α − β, the molecule changes is γ ×N. Notably,
the γ can indicate whether molecules increase or decrease, as we discussed above. The second ”=” is
the Law of mass action.

When the reaction number increases to m, the total molecule number increase to n, the equation of
chemical reaction network becomes:

ẋ =
dx⃗

dt
= ΓΛkx⃗

α

3.2 Time Scale Separation
What is themeaning of ”Time Scale Separation”? I think it is the thought to consider those ”fast reaction”
and ”slow reaction”. The meaning of ”fast reaction” is that it can become chemical equilibrium quickly.
For example, we consider the enzyme catalysis process:

E+S k1−−⇀↽−−
k−1

ES kcat−−→ E+P

Here we consider the first step (binding reaction). In this step, Enzyme (E) binds substance (S) and
becomes complex ES, and ES can dissociate into E and S. In other words, this step is reversible. For any
reversible chemical reaction, we can use reaction equilibrium constant K (uppercase) to describe how
thorough is the reaction, which is a thermodynamic parameter. And there is also reaction rate constant
k (lowercase) to describe how fast can the reaction go, which is a kinetic parameter and obey the Law of
Mass Action.

K =
k1

k−1
=

c(E)× c(S)

c(ES)

For the dissociation constant Kd, it describes how easy the complex ES can dissociate, which is the
reciprocal of K.

Kd =
1
K
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The second step (catalytic reaction) is the complex ES becomes E and product (P). This process is con-
sidered as irreversible, so there is only one reaction rate constant called Kcat representing the k of catal-
ysis.

When we use the principle of ”Time Scale Separation”, we consider the binding reaction as fast reac-
tion, and the catalytic reaction as slow reaction. That means we can consider the binding reaction has
reached chemical equilibrium. Notably, this opinion (fast reaction has reached chemical equilibrium) is
used by Michaelis and Menten in 1913 to explain enzyme kinetics. And in 1925, G.E.Briggs and James
B.S.Haldane use steady-state approximation (SSA) to explain enzyme kinetics, and SSA is considered as
a bettermodel in biochemistry textbook. In SSA, it no longer considers the binding reaction reaches equi-
librium, it considers the concentration of ES complex is not changed, in other words, it has dc(ES)

dt
= 0,

so it satisfies the following equation:

k1 × E× S = k−1 × ES+ kcat × ES

But in the following part, we use ”Time Scale Separation”, that means we should remember the binding
reaction is in equilibrium, and this equation is true in any case.

K =
E× S

ES

K =
E× S

C

Here, C and ES has the same meaning, they are the concentration of enzyme-substance complex. Here,
I am not sure why Fangzhou thinks here he uses Quasi-steady state assumption (QSSA), I think
QSSA means dc(ES)

dt
0, but it changes very slow, much slower than the changes of S, in other words,

dc(ES)
dt

≪ dc(S)
dt

.

With this background knowledge, let us start to understand Fangzhou’s regime thoery! Let us start
with a 2-dimension graph, the x-axis is Stot, which means it is the total substance concentration. For
an enzyme kinetics assay, it is the final substance concentration you add in the tube. The y-axis is the
Etot, whichmeans the total concentration of enzyme. The graph can be divided into three regimes, each
regime has distinct biological meaning.

Interestingly, the term ”regime” carries profound religious connotations, originally referring to the spe-
cific parishes overseen by missionaries from different churches during the Middle Ages. This is similar
to the word ”dogma” in the central dogma—which initially denoted doctrines in the Bible. Likewise,
”transcript” originally referred to the copying of religious scriptures; ”translation” initially meant trans-
lating religious texts, such as rendering written Latin religious works into spoken English; and ”canon-
ical” derives from the religious term ”canon,” meaning authoritative texts or norms.

So why this graph divides the whole space as three regimes? Fangzhou pointed out the restrictions of
every regime, that is like the version of the Bible used by missionaries in this parish (regime).

In regime 1, the restriction is Etot = E,Stot = S. The biological meaning of this regime is the binding
affinity of enzyme and substance is low, there is very little ES complex in the solution. Because Etot = E

and Etot = E + C, E represents free enzyme that doesn’t bind substance, C represents ES complex, as
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described above. So we can get E ≫ C and Etot ≫ C. Similarly, we can get S ≫ C and Stot ≫ C.
Now we focus on the equilibrium equation Kd = E×S

C
, we can get S

Kd
= C

E
. And because we have

Etot = E,Stot = S in regime 1, we can get Stot

Kd
= C

Etot
. And because we previously proved Etot ≫ C, we

have Stot

Kd
= C

Etot
≪ 1, that is Stot ≪ Kd. Similarly, we can also get Etot ≪ Kd. So, we know when we

set the restriction Etot = E,Stot = S, it equals to Stot ≪ Kd and Etot ≪ Kd, and it occupies the region
surrounded by x-axis, y-axis, x = Kd and y = Kd. In my figure, I set Kd as 1.

In regime 2, the restriction is Etot = E,Stot = C, we need to figure out where regime 2 located in 2D
graph, And the answer isEtot ≫ Kd andEtot ≫ Stot. Here Iwill get the proof process. BecauseEtot = E

and Etot = E + C, we have Etot ≫ C. And because Stot = C, we prove Etot ≫ Stot. Then is the other
border. Because Stot = S + C and Stot = C, we get C ≫ S. And because of the equilibrium equation
Kd = E×S

C
, we can get E

Kd
= C

S
. Because we get C≫ S before, we have E

Kd
≫ 1, that is E≫ Kd, and that

becomes Etot ≫ Kd. So we get two borders: Etot ≫ Kd and Etot ≫ Stot. That means the y-axis, y = Kd

and x = y is the border of regime 2, as my figure shows. The regime 2 shows there are many enzyme,
so almost all substance is binding with enzyme, and there is still many free enzyme left. In other words,
in this tube, the dominant component is free enzyme, then the less one is enzyme-substance complex,
and there is very little free substance here.

In regime 3, the restriction is Etot = C and Stot = S. This restriction equals Stot ≫ Kd and Stot ≫ Etot.
The proof process is the same as regime 2, just changes character E to character S. And in regime 3,
the biological meaning is there are many substance in the tube, and almost all enzyme is binding with
substance. The concentration of component is S≫ ES≫ E, and in regime 2 is E≫ ES≫ S.

So, we can draw the graph with 3 regimes now! It is as in Figure 1.
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Figure 3.1 Three Regimes
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3.3 “LEGO” of Bioregulation
After we analyzed the 3 regimes, we can try to find what behaviors will have in this enzyme kinetic
system. In our class, Fangzhou gives us 3 situations, or so-called ”LEGO”. They are saturation, bot-
tleneck and ultrasensitivity. Now let us discuss each of them!

For saturation and bottleneck, they appear in the 2D graph, whose x-axis is Stot and y-axis is Ctot, or
call it EStot.

Let us talk about saturation now: imagine a line crossing regime 1 and regime 2, that means we don’t
change the total enzyme concentration, and increase the concentration of total substance. That is like we
are doing a substance tritation assay to draw the Michaelis-Menten function. For this assay, the x-axis
is the concentration of substance, that is the same as our figure, the Stot. And the y-axis is the reaction
rate, which has the relationship v = kcat×C or v = kcat×c(ES), that is the same as our y-axis, too.

Figure 3.2

In regime 1, according to the equilibrium equation Kd = E×S
C

, we can get C = E×S
Kd

. Because in regime 1,
we have Etot = E,Stot = S, so we get the equation of C:

C =
Etot × Stot

Kd

Because Kd and Etot is constant now, because we just move along a line parallel to x-axis, the concentra-
tion of total enzyme is the same, and the Kd can’t change when we choose a pair of special enzyme and
substance. So the equation of C is at the same form of y = kx, which is positive proportional function,
and the slope of C is Etot

Kd
.

In regime 3, the restriction is Etot = C, so the equation of C is:
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C = Etot

Because Etot is a constant, C becomes constant now.

To link these two equation of C, we can use Hill function. The form of Hill function is as below.

θ =
E

E+ C

The θ here is called Hill coefficient, which is proposed by Archibald Vivian Hill. The Hill coefficient
is well-known by the explanation of the binding of oxygen and hemoglobin. For our enzyme catalysis
process, the concentration of ES complex can be described as below.

C = (E+ C)× C

E+ C
= Etot ×

C

E+ C
= Etot × (1 − θ)

Now we call 1 − θ as φ, and it can be written as below.

φ = 1 − θ =
C

E+ C
=

E×S
Kd

E+ E×S
Kd

=

S
Kd

1 + S
Kd

So, the C can be written as below.

C = Etot × (1 − θ) = Etot ×φ =

Etot×S
Kd

1 + S
Kd

Because in regime 1 and 3, we alaways have S = Stot, so the equation can be written as below.

C =

Etot×S
Kd

1 + S
Kd

=

Etot×Stot

Kd

1 + Stot

Kd

When in regime 1, we have Stot ≪ Kd, so we get Stot

Kd
≪ 1, we can ignore the Stot

Kd
in the denominator,

the equation changes to this form.

C =

Etot×Stot

Kd

1
=

Etot × Stot

Kd

When in regime 3, we have Stot ≫ Kd, so we get Stot

Kd
≫ 1, we can ignore the ”1” in the denominator,

the equation changes to this form.

C =

Etot×Stot

Kd

Stot

Kd

= Etot

So, this equation can link both regime 1 and regime 3, let us review the equation described C again.
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C = Etot ×φ =

Etot×Stot

Kd

1 + Stot

Kd

So when crossing regime 1 and regime 3, in other words, when the total concentration of substance
crossing Kd, the concentration of C is changing smoothly. In the language of mathematics, the left limit
of Stot = Kd is equal to the right limit.

Figure 3.3

Then let us talk about another behavior, or another ”LEGO”. It is called ”bottleneck”. Bottleneck ap-
pears when the concentration of total substance moves along a line parallel with x-axis and crosses
regime 2 and regime 3. That means the total concentration of enzyme is relatively high (higher than Kd).
And the concentration of total substance increases from relatively low (Stot ≪ Kd) to relatively high
(Stot ≫ Etot ≫ Kd). When in regime 2, the restriction is Etot = E and Stot = C. So, the concentration
of C is very obvious.

C = Stot

And in regime 3, the restriction is Etot = C, so the equation of C is:

C = Etot

To link these two situation, the concentration of C can be written as below.

C = min(Stot,Etot)

This form looks like the concentration of C is controlled by the smaller one of the total concentration of
enzyme or substance.
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Figure 3.4

Figure 3.5

The third behavior or ”LEGO” appears in the Etot − Stot graph, which means the x-axis is Stot and the
y-axis is Etot. The third behavior is called ”ultrasensitivity”. we continues to imagine a line parallel to
x-axis crossing regime 2 and 3, in regime 2, the restriction is Etot = E,Stot = C, so the concentration of
enzyme is as below.

E = Etot
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In regime 3, the restriction becomes S = Stot and Etot = C. So the concentration of enzyme is no longer
equals Etot. Considering the chemical equilibrium equation, the form can switch as below.

Kd =
E× S

C
=

E× Stot

Etot

Here, we use S = Stot and Etot = C to change the E and C in the equation. So the concentration of
enzyme is as below.

E =
Etot × Kd

Stot

So, if we consider the left limit and right limit when Stot = Etot, we will find they are different. Why
we consider the border is Stot = Etot here? That is because the border of regime 2 and 3 is no longer
Stot = Kd, but it is Stot = Etot.

For the left limit, it is as below.

lim
Stot→E+

tot

E = Etot

For the right limit, it is as below.

lim
Stot→E−

tot

E =
E2
tot

Kd

So, there is a gap when Stot is crossing the border of regime 2 and regime 3. And we can also notice
when Etot is bigger, the gap will become bigger. That is because the length of the gap equals to:

length =
E2
tot

Kd

− Etot = Etot(
Etot

Kd

− 1) = Etot ×
Etot − Kd

Kd

WhenEtot−Kd becomes bigger, the length of the gapwill become bigger, the ultrasensitivitywill become
much more obvious!
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Figure 3.6

For ultrasensitivity, there is an example given in our class: imagine the binding of a kind of ligand and
receptor is very tight (almost irreversible), that means when c(ligand) is bigger than c(receptor), there
is almost no free receptor, almost all receptor is binding with ligand. And now the free ligands start to
degrade, for example, they are ubiquitinated protein inhibitor. Sowhen the total concentration of ligand
crosses the border of Stot = Etot, here Stot means the total concentration of ligand and Etot means the
total concentration of receptor, the concentration of receptor will undergo a very shape increase from
almost zero to almost Etot (the total concentration of receptor). This is just like the substance or inhibitor
of enzyme with Hill coefficient larger than 1, for example, the figure shown below.

Figure 3.7
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3.4 Adaptation Biomachines
In the section, Fangzhou told us away to control the system, avoiding being disturbed. This well-known
and widely-used control method is Proportion Integration Differentiation (PID). We can describe PID
controller as the equation below.

u(t) = Kp × y(t) + KI ×
∫ t

0
y(t)dt+ KD ×

dy(t)

dt

Here, u(t) is the output of a PID controller, and y(t) is the disturbance. The PID controller contains three
parts: the present, the past, and the future.

Kp × y(t) represents the present, it is to give a force in the opposite direction.

And KI ×
∫t

0 y(t)dt presents the past, because it is the integral over all time in the past. It is used to
control the steady-state error. The steady-state error means the error is relatively small and will not
grow when time goes. But if we allow this small error to accumulate, the system will become far from
steady state over time.

And the KD × dy(t)
dt

represents the future, because it contains the derivative of y(t), it can reveal the
change of y(t). This item can prevent the system from falling into shock, or control the over regulation
caused by the first two items.
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4.1 Introduction: The Biomachine Perspective
4.1.1 Motivation and Principles
Biomachine is a perspective we can take on understanding biological systems. We treat them like ma-
chines.

Biological systems perform various functions just like engineered systems and machines. So principles
on how to design machines with these functions can be used to understand why biological systems are
designed the way they are.

However, biological systems implement the same principles using different physical components. So
there are comparisons and contrasts. Even new theories and principles from biology can flow back to
engineering.

Principles

FunctionEngineered
Methods Bio Mechanisms

Implementation

Figure 4.1 The relationship between principles, functions, and implementations in biological and engineered
systems

4.1.2 Adaptation: The Function We Started With
Adaptation is a hallmark for biological systems and autonomous machines we build.

In control theory, we model a system as:

ẋ = f(x,w) (4.1)
y = h(x,w) (4.2)

where w is a disturbance input and y is the output.

Perfect adaptation means: y→ y0 as t→∞ for all constant w.

4.1.3 Controller Design Problem
There are two main control architectures:

1. Feedforward Control:

w Plant

Controller

y
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2. Feedback Control:
w Plant

Controller

y

From a simple example we saw:

1. Feedforward requires perfect matching of parameters. Can’t do adaptation.

2. Feedback uses the power of time, observes the past, acts accordingly.

4.2 PID Control and Integral Feedback
4.2.1 PID Controller
e also saw, naturally, a PID controller emerge, which can achieve perfect adaptation:

u = kPy+ kI

∫
ydt+ kDẏ (4.3)

Question: Which part of PID is responsible for adaptation?

Answer: The Integral part.

4.2.2 Internal Model Principle
The Internal Model Principle states: Adapt to all w from Σw ⇔ Internal model of Σw.

o Σw Σ y
w

Perfect adaptation⇔ Integral Feedback (+ stable steady state).

4.2.3 Integral Feedback is Sufficient
Integral feedback is sufficient:

u = kI

∫
ydt ⇒ u̇ = kIy (4.4)

At steady state: y = 0.

But requires stability!

4.2.4 Power of Integral Feedback
This is powerful: Adaptation regardless of the plant! (as long as the system can reach steady state)

Pretty much independent of everything!

(Look back at the simple example with only integral feedback.) Oscillation prevents perfect adapta-
tion.
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4.3 Implementation of Adaptation in Engineered Systems
4.3.1 Goal
Recall our goal: Use machine control principles to understand biology.

Control theory tells us that Perfect adaptation⇔ integral feedback.

But how to implement integral feedback? i.e., physically make it happen.

4.3.2 Electrical Circuits
Electrical circuits: variables are voltages V , currents I.

1. Resistors: V = RI, I = V
R

This is proportional control.

2. Inductor:
V(t) = L

dI(t)

dt
(4.5)

I(t) = I(0) +
∫ t

0
V(τ)dτ (4.6)

Integral or Derivative.

3. Capacitor:

V(t) = V(0) +
∫ t

0
I(τ)dτ (4.7)

I(t) = C
dV(t)

dt
(4.8)

Integral or Derivative.

So, PID control is very natural in electrical circuits!

4.4 Implementation in Biological Reaction Networks (BRNs)
4.4.1 Constraints in Biology
But what about in biological reaction networks (BRNs)?

• Variables are concentrations, all positive. (Rule [P])
(in contrast to V , I or position, velocity)

• Dynamics are, by default, constrained polynomials. (Rule [CP])

dx

dt
= Γnxα (4.9)

4.4.2 Control Types in BRNs
Proportional Control
Proportional: e.g., u = kPy = kP(xr − x)

Often easy... ẋ = µ− px, where µ = kPxr, p = kP.
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Another example: y = x
xr

(more natural!)

In fact, any static regulation u(y) works as proportional feedback (upon linearization).
Derivative Control
Derivative: can often be done, but not often used.

Since biomolecular processes are noisy, and derivative control amplifies noise...

(not used much in highly noisy scenarios...)
Integral Control - The Challenge
Integral — important for perfect adaptation (if and only if).

But not naturally achieved! because of rule [CP].

z =

∫
ydt =

∫
(xr − x)dt (4.10)

⇒ ż = xr − x (4.11)

z can’t be a species due to rule [CP]!

4.4.3 Strategies to Achieve Integral Control in Biology
To achieve integral control in biology needs further sophistication!
Strategy 1: Virtual Variable (Antithetic Integral Controller)
This is called antithetic integral controller. (Cell Systems 2016, Nature 2019, Mustafa Khammash
group)

ż1 = µ− C (4.12)
ż2 = x− C (4.13)

where z1, z2
C−→ φ (annihilation reaction).

Let z = z1 − z2, then ż = µ− x.

(Recall: this is like the dual rail strategy in last lecture to circumvent rule [P].)

But the problem is that rule [PU] makes it hard to directly use z in other variable’s dynamics.

e.g., ẋ = kz− γx = kz1 − kz2 − γx

This requires kz1 and kz2 to have perfectly matching parameters, violating rule [PU]!

So, the best we can do is ẋ = kz1 − γx for example.

This doesn’t hurt Perfect Adaptation, since the integral variable still exists.
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Strategy 2: Constrain to Certain Regimes
e.g.,

ż = µ− C, x+ z
k−→ xf (4.14)

In regime C≪ x, we have ż ≈ µ− x.

xf + z

C→ xf

4.5 Incoherent Feedforward Loops (IFFL)
4.5.1 Nonlinear Structure Revealed by IFFL Motifs
Previously, we adopted a machine perspective on biological systems.

Since adaptation is a hallmark behavior in biology, we reasoned that an adaptation machinemust achieve
adaptation following similar design principles as engineered adaptation machines.

According to the internal model principle in control theory,

perfect adaptation ⇐⇒ integral feedback. (4.15)

Due to physical constraints on biomolecular reactions, it then seemed that biochemical reaction net-
works (BRNs) should achieve perfect adaptation by implementing integral feedback, perhaps via more
sophisticated strategies. However, this is not an accurate picture of what is happening in reality.

4.5.2 Empirical Evidence for Feedforward Network Prevalence
In 2002, Shen-Orr et al., Nature Genetics, examined all three-node network topologies formed by tran-
scription factors and operons in E. coli. The study catalogued 115 transcription factors and 424 operons
and analyzed the resulting interaction topologies.

They found that certain network motifs—subgraphs that occur far more frequently than in randomized
networks—tend to be feedforward. This is surprising from the engineered-systems viewpoint: in engi-
neered control systems, perfect adaptation cannot be achieved with purely feedforward architectures
because it requires perfect matching of the parameters of two processes.

Thus the questions arise:

• How come biology is different?

• What happened to the design rule “perfect adaptation⇔ integral feedback”?

Figure 4.2 shows a schematic three-node IFFL motif, representative of the structures overrepresented in
transcriptional networks.
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W

X1

X2

Figure 4.2 Incoherent feedforward loop (IFFL)motif: a three-node feedforward networkwhere the upstream
node W regulates both X1 and X2, and X1 also regulates X2.

4.5.3 The “Sniffer” as a Canonical IFFL Example
A concrete example of an incoherent feedforward loop is the so-called “Sniffer” circuit. The underlying
reactions are:

W
k1−→W + X1, (4.16)

W
k2−→W + X2, (4.17)

X1 + X2
δ−→ X2, (4.18)

X2
γ−→ ∅. (4.19)

The corresponding dynamics for the concentrations x1 and x2 of X1 and X2 are

dx1

dt
= k1W − δx1x2, (4.20)

dx2

dt
= k2W − γx2. (4.21)

W X1

X2 ∅

Figure 4.3 The “Sniffer” IFFL reaction network. The input W produces both X1 and X2; X1 promotes the
degradation of X2, and X2 is additionally degraded to a sink.

At steady state, from (4.21) we have

x∗2 =
k2

γ
W. (4.22)

Substituting into (4.20) and setting dx1
dt

= 0,

x∗1 =
k1W

δx∗2
=

k1W

δk2
γ
W

=
k1γ

k2δ
. (4.23)

Thus,
x∗1 is invariant with respect to W, (4.24)

which is precisely perfect adaptation. Crucially, this invariance is independent of the exact parame-
ter values in the sense of fine-tuned equality between gains; no perfect matching of parameters is re-
quired.
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4.5.4 Reaction Orders as the Source of Nonlinearity
The key to understanding this behavior lies in the exponents appearing in the rate laws, that is, the reaction
orders. For a generic reaction rate of the form

v = kxα, (4.25)

the exponent α is the mass–action order in simple reactions, but can be more complicated when there
are additional mechanisms or time-scale separation.

This structure—nonlinear dependence on concentration via reaction orders—is a feature that biological
systems can exploit. It is typically not present, or is not fully utilized, in engineered systems, which are
often modeled and analyzed after linearization.

4.5.5 Identifying the Implicit Integral Variable
Given the perfect adaptation property of the Sniffer circuit, it is natural to ask: Where is the integral
variable?

Define the composite variable
z = k2x1 − k1x2. (4.26)

Differentiating and substituting from (4.20)–(4.21) gives

ż = k2ẋ1 − k1ẋ2 (4.27)
= k2(k1W − δx1x2) − k1(k2W − γx2) (4.28)
= −k2δx1x2 + γk1x2 (4.29)
= x2

(
γk1 − δk2x1

)
. (4.30)

The dynamics of z integrate the mismatch between the term δk2x1 and the constant γk1, revealing how
an effective integral feedback is hidden in the nonlinear reaction structure of the IFFL. This provides a
mechanism for perfect adaptation in a purely feedforward network, reconciling biological observation
with control-theoretic principles.

4.5.6 Comparison: Feedforward vs. Feedback
Although both Integral Feedback and IFFL can achieve adaptation, their mechanisms and philosophies
differ significantly:

1. ”Cheating” vs. Robustness: Integral Feedback is robust to unknown disturbances. It monitors
the error and corrects it regardless of the source. In contrast, IFFL can be viewed as a form of
”cheating.” The system ”knows” the specific noise/input (because it measures w directly) and
calculates a precise cancellation via the parallel path. This requires the parameters (e.g., the ratio
of production/degradation rates) to be finely tuned. If the nature of the disturbance changes, IFFL
might fail, whereas Integral Feedback would still adapt.

2. Specific vs. General Components: In electrical engineering, Integral Feedback is often imple-
mented using general-purpose components (like Op-Amps) designed to handle all types of noise.
Biological systems, however, tend to evolve unique, specific feedback or feedforward loops for spe-
cific parts. There is no ”universal integrator” protein; instead, each pathway has its own specific
regulatory wiring tailored to its specific biological context.
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3. MathematicalRelationship: In linear systems, at steady state, IFFL and IFB both require d − cA−1b = 0,
but with different structure. IFFL can have d > 0 and cA−1b > 0, but IFB requires both d = 0 and
cA−1b = 0.

W

X1

X2
d

−A−1 b

c

Figure 4.4 Three Nodes Again: a three-node feedforward network where the upstream node W regulates
both X1 and X2, and X1 also regulates X2.

4.6 Noise in Biosystems
4.6.1 Introduction: The Biomachine Perspective
The biomachine perspective on biology we took was a systems engineering perspective.

It underlies the field of systems and synthetic biology that started in 2000.

With the completion of the human genome project, we had a glance at ”all components in a cell”, so we
could start to reason about it as a system, and engineer it like a machine (like an electrical circuit).

⇒ The phrase: biocircuit.

4.6.2 The Repressilator
Repressilator. Elowitz 2000 Science. Was one of first work pioneering this perspective. (reading in HW
1).

Three genes’ expression oscillates in E.coli:

R1

R2R3

Prediction: Smooth oscillations (single cell trajectory).

Reality: Not much of an oscillation.

Limitations of theory for design at the time... (ours based on regimes doesn’t make Hill-type limiting
assumptions).

But another big observation: Noise! between cells and within one cell.

GFP under the microscope.

4.6.3 Origin of Noise: Stochasticity
But where does noise come from, and when does it matter?

• E.coli cells from the same clone, so not genetic difference.
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• ⇒ Origin of noise is in stochasticity of cellular processes. Namely, chemical reactions.

Reaction events happen by molecules E+ S
k−→ products encountering each other.

What’s the distribution for the # of reaction events in a time interval ∆t?

• Reactions happen when E and S hits

• Reaction rate is constant a = kES, unless E, S changes

• The events are independent of each other; they only depend on E and S’s conc. and k

⇒ Poisson distribution with parameter λ = a∆t (average # events in this interval).

Chemical reaction rate: a = kES.

4.6.4 Poisson Distribution
X ∼ Poisson(λ):

P{X = k} =
λk

k!
e−λ (4.31)

E(X) = Var(X) = λ (4.32)

⇒ CV =
Var(X)
E(X)

=

√
λ

λ
=

1√
λ

(4.33)

Coefficient of Variation (CV):

• λ = 1: CV = 1

• λ = 100: CV = 1
10

• λ = 10000: CV = 1
100

4.6.5 When Does Process Noise Matter?
Process noise becomes important when # events is small!
Translation to Molecule Numbers
# events→ production events in balance with dilution by growth (i.e., no active degradation).

Then, if NX = number of molecule X in cell:

• ⇒ NX produced every generation

• If one molecule X produced every event⇒ NX events

Typical molecule numbers:

• NX ∼ 102 to 103 for proteins in E.coli: CV ∼ 0.1

• NX ∼ 105 to 106 for metabolites in E.coli: CV ∼ 10−3

So, noise typically doesn’t matter, even in E.coli.

• (Eukaryotes? Even less so...)



CHAPTER 4. FEEDBACK, FEEDFORWARD, AND NOISE IN BIOSYSTEMS 47

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

Number of events (k)

Pr
ob

ab
ili
ty

λ = 1 (High Noise)

0 5 10 15 20
0

5 · 10−2

0.1

Number of events (k)

λ = 10

60 80 100 120 140
0

1

2

3

4
·10−2

Number of events (k)

Pr
ob

ab
ili
ty

λ = 100

900 950 1,000 1,050 1,100
0

0.5

1

·10−2

Number of events (k)

λ = 1000 (Low Noise)

Figure 4.5 Poisson distributions for λ = 1, 10, 100, 1000. Note that as λ increases, the relative width (CV)
decreases, representing lower noise relative to the mean.
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• (Active degradation? More events, less noise.)
What’s Missing? Burstiness in Gene Expression
We do see a lot of heterogeneity in single cells under the microscope!

What’s missing? Burstiness in gene expression.

Several proteins produced per event, amplified by the TX-TL process (Transcription-Translation).

If 100 proteins per event:

Nevent ∼
NX

100
∼ 1 to 10 for proteins in E.coli

So, noise starts to matter.
“Critical Threshold” Concept
Typical burstiness ∼ # proteins in cells.

• Low expression→ noise dominates

• High expression→ noise doesn’t matter

Could be a strategy for bacteria:

• e.g., bet hedging... utilizing noise...

• Yet noise’s role/importance is tunable.
Despite Burstiness: Noise Doesn’t Play a Big Role in Most Biological Processes!
For noise to be important, need following factors (typically):

• Small cell size (e.g., not Eukaryotes)

• Low flux (not much degradation)

• Low concentration (e.g., genome)

• Large molecule size (e.g., not metabolites)

• Burstiness (e.g., not metabolic reactions)
CAUTION! Important Distinction
Comment: Noise ̸= Stochasticity (in processes) vs. Unknown (mechanisms)

Intrinsic randomness of underlying mechanisms vs. lack of information.

Weare talking about noise fromprocess stochasticityhere, not “awide spread in data” that also includes
unknown mechanisms.

Example: A deterministic process can look “noisy” in data just because we don’t know the mecha-
nism.

• Like whether you bring umbrella to school: if you don’t observe the weather.

Noise in data is a completely different topic because it’s more about inference of the unknown mech-
anisms, not about stochasticity.
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4.6.6 Chemical Master Equation (CME)
To formally describe this stochasticity, we use the CME.

Stochasticity in chemical reactions.

Now we have some confidence on the role noise plays in biological systems. We would like a way to
formally describe and analyze them.
Setup: A Simple Reaction System (Elementary)

Consider: ∅ µ−→ X
k−→ ∅

We could write this in net-change form:

X
v1−→ X+ 1 v1 = µ (4.34)

X
v2−→ X− 1 v2 = kX (4.35)

(Deterministic) rate equation:
dX

dt
= µ− kX

Stochastic case: NX is discrete. NX = 0, 1, 2, . . .

It’s a random variable that changes over time⇒ a stochastic process.

0 2 4 6 80
1
2
3
4
5

t

N
X

So its dynamics is described in terms of probabilities:

Pn(t) = P{NX(t) = n}

What’s the Dynamics of Pn(t)? How Do Reactions Change It?

Consider the degradation reaction: X v2−→ X− 1

This says: P{reaction happen in [t, t+ dt]} = v2(t)dt = kNX(t)dt

Deterministic: rate equation dX
dt

= µ− kX

Stochastic: NX is discrete, NX = 0, 1, 2, . . .
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State Transitions

n− 1 n n+ 1

µ µ

k(n+ 1)kn

Derivation for Degradation Only
So, just consider this one reaction. It’s:

Pn(t+ dt) = Pn(t) · P{no reaction in [t, t+ dt]} (4.36)
+ Pn+1(t) · P{reaction in [t, t+ dt]} (4.37)

(At t→ 0: either one reaction or no reaction.)

Pn(t+ dt) = Pn(t)(1 − kndt) + Pn+1(t) · k(n+ 1)dt (4.38)
= Pn(t) + k(n+ 1)Pn+1(t)dt− knPn(t)dt (4.39)

⇒ Pn(t+ dt) − Pn(t)

dt
= k(n+ 1)Pn+1(t) − knPn(t)

⇒ as dt→ 0, dPn

dt
= k(n+ 1)Pn+1 − knPn (n = 0, 1, 2, . . .)

Now Add Production: ∅ µ−→ X

dPn(t)

dt
= k(n+ 1)Pn+1(t) − knPn(t) + µPn−1(t) − µPn(t)

Chemical Master Equation:

dPn

dt
= µPn−1 − µPn + k(n+ 1)Pn+1 − knPn

for n = 0, 1, 2, 3, . . . (Assume P−1 = 0 always.)
Interpretation
This is the Chemical Master Equation, about distributions.

Viewed as a dynamical system, this is infinite dimensional.

But it has strong structure. So we can simulate/analyze accordingly.
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5.1 Course Overview and Review
CCBS Lecture 06 Noise in Bio & Equilibrium Physics of Bioregulation.

5.1.1 Review from Last Time
• Noise: Intro.

• Chemical master equation.

5.1.2 This Time’s Content
• Gillespie algorithm.

• Noise analysis (simple, at steady state).

• Some stochastic phenomena.

References: Kardar’s book; Erban, Chapman, Maini (2007), “Practical guide to stoch. sim of reaction
diffusion processes”; Phillips, PBOC, etc.; Molecular Switch.

5.2 Equilibrium Physics of Bioregulation
5.2.1 Energy and Equilibrium: A Physics Perspective
Systems tend towards equilibrium.

• Equilibrium in physics – entropy, etc.

• Microscopic world – Boltzmann distr.

• Detailed balance.

This is the fundamental idea of equilibrium.

5.2.2 Applied to Enzymatic and Gene Regulation
Focus on single molecule’s states.

• Michaelis-Menten.

• Allostery (MWC).

• Lac operon.

5.2.3 Beyond Equilibrium: Markov Chains
For molecular state transitions.

• e.g. Metabolism, phosphorylation cascades.

5.2.4 Steady State Distr. and Hitting Times
Steady state distr. and hitting times.

5.3 Gillespie Algorithm (or SSA – Stochastic Simulation Algorithm)
5.3.1 Simulation First, Because...

1. Deterministic already hard to analyze for general case. This is much harder for stochastic case.
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2. Distribution vs Trajectory. Exact analysis, even when doable, is often only possible for steady state
distribution, or distribution dynamics. But that’s different from trajectory dynamics.

3. e.g.

[Sketch: Smooth distribution over time vs fluctuating trajectory]

4. Usually analysis can be done after approximation, such as linearization. Analysis can give the full
picture, but approximate. So, always helpful to check with simulations.

5.3.2 Distribution vs Trajectory
Can’t directly simulate the distribution→ inf. dim ODE. Pn(t). We can simulate trajectories, then distr.
can be obtained from averages over lots of traj.

5.3.3 Simplest Idea: Just Like ODE Sim.
dx
dt

= f(x) (Euler integration)→ X(t+ dt) = X(t) + f(X(t))dt.

For X v=kX−−−→ X− 1,

NX(t+ dt) =

{
NX(t) − 1 w/ prob adt = kNX(t)dt

NX(t) w/ prob 1 − adt

5.3.4 But Need dt Small to Have a Good Approx...
Could be very costly. Couldwe simulateNX(t) exactly? Yes, by transforming randomness fromwhether
an event happens in an interval to when does an event happen.

5.3.5 Start at t, Want τ. s.t. t+ τ is Next Reaction.
Let f(NX(t), s)ds← an infinitesimal pdf for τ.

pdf for τ:

f(NX(t), s)ds = P{NX(t) molecules at time t, and the next reaction occurs in time interval [t+s, t+s+ds)}
(5.1)

g(NX(t), s) = P{No reaction in interval [t, t+ s)}

Denote reaction with rate v(NX). (e.g. v = kNX)

⇒ f(NX(t), s)ds = g(NX(t), s) · v(NX(t+ s))ds = g(NX(t), s) · v(NX(t))ds.

(Since no reaction→ NX(t+ s) = NX(t)).

5.3.6 Let’s Solve for g(NX(t), s).
(Memoryless or independent)

g(NX(t), s+ ds) = g(NX(t), s)[1 − v(NX(t))ds] (5.2)

dg

ds
= −vg ⇒ g = e−vs (5.3)

⇒
f(NX(t), s)ds = ve−vsds (5.4)

⇐ pdf (prob density function) for exponential distr. τ ∼ Exp(v). pdf: ve−vτ. cdf: 1 − e−vτ.
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We want τ s.t. t + τ is time for next reaction. For a reaction with rate v. Then τ ∈ [0,∞) is a random
number τ ∼ Exp(v).

This is exact! e.g. X v=kX−−−→ X− 1 At t: draw τ ∼ Exp(kNX(t)). Then NX(t+ τ) = NX(t) − 1.

5.3.7 What if Multiple Reactions?
The reactions are independent, each with rate v1, . . . , vm.

Let τ0 be time til’ any reaction happens. ⇒ τ0 ∼ Exp(v1 + · · ·+ vm).

Which reaction? P{it’s reaction j} =
vj

v1+···+vm
.

This completes the Gillespie algorithm, or SSA. Exact simulation of stochastic trajectories by sampling
event times.

5.4 Analysis of Steady State Distributions
5.4.1 Simulations Can’t Give the Full Picture, Over All Parameters
⇒ Analysis via moments, from CME. Mean, Var.

5.4.2 Exact Analysis. Example. of Moments.
X

µ−→ X+ 1 X
kx−→ X− 1

dPn

dt
= k(n+ 1)Pn+1 + µPn−1 − (kn+ µ)Pn

Mean: M(t) =
∑∞

n=0 nPn

Variance: V(t) =
∑∞

n=0(n−M)2Pn =
∑

n2Pn −M2

dM

dt
=

d

dt

∞∑
n=0

nPn

= k

∞∑
n=0

n(n+ 1)Pn+1 + µ

∞∑
n=0

nPn−1 − k

∞∑
n=0

n2Pn − µ

∞∑
n=0

nPn

= k

∞∑
n=1

(n− 1)nPn + µ

∞∑
n=1

n(n− 1)Pn−1 − k
∑

n2Pn − µ
∑

nPn (reindex)

After calculation: = µ−kM. (This is just like deterministic rate eqn. dx
dt

= µ−kx. Warning: Not always
so.)
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Similarly, observe
∑∞

n=0 n
2Pn = V +M2

d

dt
(V +M2) =

d

dt

∑
n2Pn

= k
∑

n2(n+ 1)Pn+1 + µ
∑

n2Pn−1 − k
∑

n3Pn − µ
∑

n2Pn

= k
∑

(n− 1)2nPn + µ
∑

(n+ 1)2Pn+1 − k
∑

n3Pn − µ
∑

n2Pn

=
∑

[k((n2 − 2n+ 1)n)Pn + µ(n2 + 2n+ 1)Pn − kn3Pn − µn2Pn] (reindex for sums)

=
∑

[k(n3 − 2n2 + n)Pn + µ(n2 + 2n+ 1)Pn − kn3Pn − µn2Pn]

=
∑

[kn3 − 2kn2 + kn+ µn2 + 2µn+ µ− kn3 − µn2]Pn

=
∑

[−2kn2 + kn+ 2µn+ µ]Pn

= −2k
∑

n2Pn + (k+ 2µ)
∑

nPn + µ

= −2k(V +M2) + (k+ 2µ)M+ µ

Then
d(V +M2)

dt
= −2k(V +M2) + (k+ 2µ)M+ µ

dV

dt
+ 2MdM

dt
= −2kV − 2kM2 + kM+ 2µM+ µ

But dM
dt

= µ− kM, so 2MdM
dt

= 2M(µ− kM) = 2µM− 2kM2

⇒ dV

dt
= −2kV − 2kM2 + kM+ 2µM+ µ− 2µM+ 2kM2

= −2kV + kM+ µ

= µ+ kM− 2kV

dM
dt

= µ− kM

At s.s. M = µ

k
, from µ+ kM− 2kV = 0⇒ V = µ+kM

2k , and with M = µ

k
, V = µ+µ

2k = 2µ
2k = µ

k
= M.

So. Mean = Variance. (Poisson! In fact, it is...) You can solve Pn at s.s. explicitly...

5.4.3 But This Doesn’t Always Work.
That the moments form a finite number of equations is called Moment Closure. Not closed if, e.g. E(X)
depends on E(X2) depends on E(X3)... this happens when X

v=x2
−−−→ X− 1

5.4.4 For Example.

Write reactions in net change form x
v(x)−−→ x + ν. x is a vector of species, molecular counts. x = (xj)mj=1.

x = (xj). j = 1, . . . ,m.

Example: X f+(x)−−−→ X+ 1 X
f−(x)−−−→ X− 1

⇒ dp(x, t)
dt

= f+(x− 1)p(x− 1, t) − f+(x)p(x, t) + f−(x+ 1)p(x+ 1, t) − f−(x)p(x, t)
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⟨X⟩ = E(X).

Just another notation
d⟨X⟩
dt

= ⟨f+(x)⟩− ⟨f−(x)⟩

e.g. f+(x) = µ, f−(x) = x2. then d⟨x⟩
dt

= µ− ⟨x2⟩.

5.4.5 Cases with Moment Closure
– Linear, i.e. 1st order or 0th order reactions. vj are all degree 1 polynomials of x. e.g. C, c + x1, x2, but
not x1x2.

– Feedforward structure ẋ1 = µ− x1, ẋ2 = x2
1 − x2, ẋ3 = x1x2 − x3.

This excludes many interesting cases though...

5.4.6 More Generally, How to Analyze Steady State Moments?
⇒ Linear noise approximation (LNA).

– Just like using linearization to analyze nonlinear dynamical systems. We can also do linearization for
stochastic processes.

– approximate, vi(x) ≈ vi(x
∗) +

∑
j
∂vi

∂xj (x− x∗).

– For the example, but with x∗ = ⟨x⟩.

d⟨x⟩
dt

= ⟨f+(x)⟩− ⟨f−(x)⟩

≈ f+(⟨x⟩) + ∂f+

∂x
⟨x− ⟨x⟩⟩− f−(⟨x⟩) − ∂f−

∂x
⟨x− ⟨x⟩⟩

= f+(⟨x⟩) − f−(⟨x⟩)

– General solution and application of LNA, see homework.

5.5 Stochasticity in Biological Systems
How biological noise arises from molecular mechanisms and impacts cellular processes like gene ex-
pression and cell fate decisions.

5.5.1 Gene Expression Noise & Burstiness
Gene expression is often ”bursty” or ”noisy,” meaning protein/mRNA levels fluctuate significantly
over time in identical cells. This noise is largely attributed to transcriptional bursting—genes switch-
ing between active (ON) and inactive (OFF) states, producing a ”burst” of mRNA molecules when ON.
Understanding this noise is crucial for explaining phenotypic variability in genetically identical cell
populations.

5.5.2 Modeling Transcriptional Bursting
Attempt 1: Simple Burst Model
Reaction:

G
k−→ G+ bP (5.5)

(where b is the average burst size, i.e., number of proteins produced per activation event).
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Limitations:
Assumes a constant, fixed burst size b.
Attempt 2: Random Burst Size:
Improvement:
Model burst size b itself as a random variable (e.g., drawn from a geometric distribution).
Limitation:
Still a phenomenological model; doesn’t explain the origin of the variability in b.
Attempt 3: Mechanistic Two-State (ON/OFF) Model
Mechanism:
Explicitly models the gene’s promoter switching.

Goff ⇌ Gon (5.6)

(stochastic switching between states)
Gon

K+x−−→ Gon + P (5.7)

(protein production only in the ON state)

The observed ”burst size” emerges naturally from the time the gene spends in the ON state and the
rate of transcription. Different genes have different switching kinetics, explaining gene-specific noise
profiles.

This model illustrates how the structure of a mechanism (ON/OFF switching) directly organizes the
features of observed variation (burstiness).

5.5.3 From Multistability to Multimodality: The Role of Noise in Dynamical Sys-
tems

In dynamical systems theory, particularly in biological and chemical contexts, the relationship between
deterministic structure and stochastic behavior is fundamental. This document formalizes the connec-
tion: multistability combined with noise yields multimodal probability distributions.

Deterministic Model
dx

dt
= f(x), where f(x) has a cubic (N-shaped) form (5.8)

This model has the following behavior:

• Two stable fixed points: ”ON” (xon) and ”OFF” (xoff)

• One unstable saddle point (xsaddle) in between

• Basins of attraction partition the state space

Interpretation: Initial condition determines final state ⇒ perfect bistability. Cells are permanently in
one fate or the other.
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Adding Stochasticity (Noise)
The equation becomes:

dX = f(X)dt+ σdW (Stochastic Differential Equation) (5.9)

where W is a Wiener process (Brownian motion) and σ quantifies noise intensity. Noise enables transi-
tions between basins⇒ stochastic switching between ON and OFF states.

Steady-state distribution (SSD): At t→∞, probability distribution Pss(x) becomes bimodal, with peaks
at the two stable states.

Population view: A heterogeneous population emerges, with fractions in each state corresponding to
the peaks of Pss(x).

5.5.4 Extinction and Zero
Autocatalysis in Biological Growth
Many biological processes involve autocatalysis:

X
K−→ X+ X or X

f(X)−−→ X+ 1 (5.10)

Key feature: You need X to make more X.

The Extinction Problem:

• If X = 0, the system cannot produce more X

• This creates an absorbing state at X = 0

• Once the system reaches X = 0, it remains there forever

Deterministic Model
For a simple autocatalytic system:

dx

dt
= kx− rx = (k− r)x (5.11)

Fixed points:

• x∗ = 0 (unstable if k > r)

• Growth occurs for any x(0) > 0

With External Disturbances
Adding external mortality/removal:

dx

dt
=

kx

K+ x
− (r+ µ)x (5.12)

• Can create a stable extinction state if µ is large enough

• But still deterministic: either always extinct or never extinct
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5.5.5 Ergodicity
Definition: A system is ergodic if, starting from any point, over time it can visit every point in the state
space.

For a Markov process, ergodicity requires:

1. Irreducible: For any states i and j, there exists t > 0 such that:

P(X(t) = j | X(0) = i) > 0 (5.13)

2. Positive recurrent: The expected return time to any state is finite

A stochastic process {X(t)}t⩾0 is ergodic if:

lim
T→∞

1
T

∫T

0
1{X(s)∈A} ds = π(A) (5.14)

where π is the stationary distribution.

Obtaining Distributions from Trajectories
Ensemble Approach (Many Trajectories)
Take N independent trajectories {Xi(t)}

N
i=1:

p̂t(x) =
1
N

N∑
i=1

1{Xi(t)=x} (5.15)

As N→∞:
p̂t(x)→ P(X(t) = x) (5.16)

Steady-State Distribution
If the system has a stationary distribution π:

π(x) = lim
t→∞P(X(t) = x) = lim

t→∞ lim
N→∞

1
N

N∑
i=1

1{Xi(t)=x} (5.17)

Time-Average Approach (Single Trajectory)
For an ergodic system, follow one trajectory X(t):

π(x) = lim
T→∞

1
T

∫T

0
1{X(t)=x} dt (5.18)

5.6 Equilibrium physics of bioregulation
Theworld is connected, and our “eye” to see such connections are orders ofmagnitude reasoning. Seem-
ingly unrelated observations could be in fact deeply constraining each other. To practice this “vision”,
we explore some calculations below, with contexts gradually shifting from the macroscopic world we
are more familiar with to the microscopie world of molecules and cells.
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5.6.1 Energy and Equilibrium in statistical physics
Energy is a concept from physics that a closed system (i.e without energy input) would dissipate energy
and

• Energy is a concept from physics that a closed system (i.e without energy input) would dissipate
energy and

• Side note: But Bio is not closed, so not in equilibrium!

• Answer:

• But energy In other words, equilibrium is ”easier to implement”.

• Also, driven processes can still have several behaviors that “look like” equilibrium, i.e., they bal-
ance just like an equilibrium system due to other constraints. e.g. network topology (no cycles).

• How to use equilibrium?

– Statistical Mechanics. A system consists of lots of particles, so we only need to care about
statistics of particles.

Microstate
(
all particle states

) Multiplicity−−−−−−−→ Macrostate
(
statistical states

)
x E(x) (energy)

weight w(x) energy E(x) distribution P(x)

⟨X⟩ (observation)

• Equilibrium: a distribution over microstates with expected property. equilibrium distribution.
Namely, the following are equivalent characterizations:

1. Boltzmann distribution

Every (micro) state has an energy E(x), and the equilibrium distribution is

p(x) ∝ e−βE(x), β =
1
kT

.

where β = 1
kBT

, that we often omit it.

2. Detailed balance

For every transition between two microstates,

pAkA→B ⇌ pBkB→A.

Detailed balance says forward flux = reverse flux, for every state transition.

k1PA = JA→B = JB→A = k2PB
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⇒ pA

PB

=
k2

k1

So we can define EA, EB, s.t. pA ∝ e−EA , pB ∝ e−EB , then pA

pB
= e−(EA−EB) =

k2
k1

• Transition rates and energies are related.

3. No cyclic flux

Detailed balance:

k12p1 = k21p2

⇒ J⟳ = (k12p1 + k23p2 + k31p3) − (k21p2 + k13p1 + k32p3) = 0

Equilibrium constrains transition rates:

p1 =
k21

k12
p2 =

k21

k12

k32

k23
p3 =

k21

k12

k32

k23

k13

k31
p1

In a system with states X1 ↔ X2 ↔ X3, the absence of cyclic flux implies

k1→2 k2→3 k3→1

k2→1 k3→2 k1→3
= 1.

i.e
k1→2 k2→3 k3→1 = k2→1 k3→2 k1→3 (5.19)

which is called ”Cycle condition”.
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5.6.2 Equilibrium in bioregulation
• Equilibrium is very powerful

– Distribution directly obtained. Only need to know the states, no need to know reactionmech-
anisms!

Example 1 (Enzymatic reaction). S
v⇝ P, catalyzed by enzyme E. Consider the reversible reaction

E+ S ⇌ ES.

We focus on a single enzyme molecule. Here S denotes the substrate. Assume the enzyme has two possible
macrostates:

• free state: E

• bound state: ES
Energy.

E(E) = 1, E(ES) = ∆Gb.

Multiplicity (number of microstates). Multiplicity is the number ofmicrostates corresponding to each
macrostate:

ΩE = 1, ΩES =
Stot

C0
,

where Stot/C0 is the dimensionless concentration factor.
Statistical weight.

wE = 1, wES =
Stot

C0
e−∆Gb .

Probability of being in a bound state. From equilibrium statistical mechanics:

pbound =
wES

wE +wES

=
(Stot/C0) e

−∆Gb

1 + (Stot/C0) e−∆Gb
.

This matches the Michaelis–Menten occupancy formula. If Stot = Etot, one may define

C =
Stot

Etot
, K = Ce−∆Gb .

Note that. This simplified derivation considers only one enzyme molecule. Therefore, the system only
has 2 macro states while a full system with many enzymes has many possible microstates.

Then, this can be applied to several enzyme molecules by assuming each enzyme is i.i.d(independent
and identically distribution), so E = pbEtot = Etot

Stote
−∆Gb

Stote
−∆Gb+1

For example, if
NE, NS, NES

denote molecular counts, then they satisfy the constraint

NE +NS +NES = NE,tot,

and the number of microstates can become very large.

△
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Example 2 (MWC Model: The Second Secret of Life — Allostery). Enzyme activities can be regulated
by ligands or substrates. The MWC (Monod–Wyman–Changeux) model describes allostery: enzymes
have multiple conformations and binding states.

• Allostery: an enzyme may have multiple conformations.

• Multiple conformations + binding: an enzyme can bind ligands in different conformational
states.

• Independent contributions: conformational state and ligand-binding state contribute multiplica-
tively to statistical weight.

We consider two conformations:

active (A) and inactive (I).

Each conformation can be either ligand-free or ligand-bound.
State Energies and Weights The four macrostates are:

A, A+ bound, I, I+ bound.

Their energies and statistical weights are:

State Energy Weight Bio Notation
Active EA e−EA

Active + bound EA + EA,b e−(EA+EA,b)
Stot

C0
e−ϵA Stot

KA

Inactive EI e−EI

Inactive + bound EI + EI,b e−(EI+EI,b)
Stot

C0
e−ϵI Stot

KI

Here Stot/C0 is the multiplicity factor (number of accessible microstates of ligand binding).
Microstate Counting When the “Single-enzyme” Assumption is Removed If the assumption of a
single enzyme molecule is removed, the number of microstates can become very large or even infinite.

For example, the system may include:
NE, NS, NES,

with the constraint
NE +NS +NES = NE,tot.

The combinatorial number of microstates grows rapidly with molecule counts. This is why equilib-
rium statistical mechanics is useful — it allows us to compute distributions without enumerating all
microstates.

Interpretation TheMWCmodel explains how enzymes can switch activity states depending on ligand
concentration, through changes in relative statistical weights of conformational states.

△
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Activation Probability in the MWC Model From the statistical weights of the four states (A, A+bound,
I, I+bound), the probability of being in the active conformation is

Pactive =

e−EA

(
1 +

Stot

KA

)
e−EA

(
1 +

Stot

KA

)
+ e−EI

(
1 +

Stot

KI

) .

Limit as Stot → 0.
Pactive(0) =

e−EA

e−EA + e−EI
=

1
1 + eEA−EI

.

If the inactive state is lower in energy (e.g. EI < EA by 2–3kBT , about a hydrogen bond), then

Pactive(0) ≈ 1
10 .

Limit as Stot →∞.

Pactive(∞) =
e−EA

Stot

KA

e−EA
Stot

KA

+ e−EI
Stot

KI

=
e−EA/KA

e−EA/KA + e−EI/KI

=
1

1 + eEA−EI
KA

KI

.

If KA < KI, the ligand binds tighter in the active state. For example, if KI/KA ≈ 100, then

Pactive(∞) ≈ 1
1 + 10−2 ≈ 0.9.

Cooperativity: Example of a Dimer
Consider a dimeric enzyme where each binding site becomes active/inactive independently and can
bind/free ligand independently.

In this case, the active-state weight is squared:

Pactive =

e−EA

(
1 +

Stot

KA

)2

e−EA

(
1 +

Stot

KA

)2

+ e−EI

(
1 +

Stot

KI

)2 .

High-ligand limit.

Pactive(∞) =

e−EA

(
Stot

KA

)2

e−EA

(
Stot

KA

)2

+ e−EI

(
Stot

KI

)2 =
1

1 + eEA−EI

(
KA

KI

)2 .

This yields a sharper transition in Pactive as a function of ligand concentration, characteristic of coopera-
tivity.
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Figure 5.1 PactivevsStot

Figure 5.2 Caption
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Example 3 (Gene Expression). Consider the states pf the gene under repression: We enumerate the
possible promoter states, their energies, and statistical weights.

State Energy Weight
Promoter free 0 1

RNA polymerase (RNAP) bound ∆εp e−∆εp
P

NNS

Repressor bound ∆εr e−∆εr
R

NNS

Where:

- P: number of RNA polymerase molecules - R: number of repressor molecules - NNS: number of non-
specific DNA binding sites - ∆εp: RNAP binding energy - ∆εr: repressor binding energy

These statistical weights can be used to compute promoter occupancy and the probability of transcrip-
tion initiation.

△

5.6.3 Beyond Equilibrium – Markov chains
• Equilibrium has the powerful property that we don’t need to know the detailed kinetic mecha-

nisms, just the thermodynamics (i.e. interacting energies...).

• But what if I encounter a behavior?

– my behavior of interest can only be achieved out of equilibrium...

– e.g. Kinetics proofreading... (super precise)

How to analyze that?

• For the special case of finite number of states, if we know the state transition rates, this is aMarkov
Chain. (A special case of chemical master equation where we can get the full distribution.)
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6.1 What is Ergodicity
Ergodicity is crucial for equilibrium. Ergodicity means that, given sufficient time, a system can evolve
into any possible state. In a closed system with ergodicity, after evolving for a sufficiently long time, it
will inevitably reach an equilibrium state, which unifies temporal equilibrium and spatial equilibrium.
Here, temporal equilibrium refers to the average value of the trajectory of a single point in the system
after evolving for a sufficiently long time, while spatial equilibrium refers to the average value formed by
the superposition of all states of all points in the system at a specific moment. In an ergodic system, the
equilibrium state ensures that the temporal equilibrium equals the spatial equilibrium. Such ergodic
systems provide us with a simplified method for solving their equilibrium states. We only need to
simulate a single point, starting from a certain initial state, and let this point evolve for a sufficiently
long time. The temporal average obtained from its trajectory will then equal the equilibrium state of the
system. For example, consider the velocity distribution of ideal gas molecules at a certain temperature.
We only need to simulate one molecule, let it evolve under the system’s conditions for a sufficiently long
time, and the distribution of the velocities it has assumed will correspond to the velocity distribution of
all the ideal gas molecules in the system—that is, the equilibrium state of the system.

Furthermore, if a system is not ergodic, then its equilibrium state is neither unique nor determinate,
which means we cannot discuss its equilibrium in a definitive manner. For example, a system loses
ergodicity if one of its state variables can go extinct. By ”extinct,” we mean that once this state variable
reaches zero, it becomes trapped at zero forever. Consider a state variable x, where dx/dt depends
only on x, and when x equals zero, dx/dt = 0. In this case, once the system reaches x = 0, x will
be permanently trapped at that point. Therefore, even if the system possesses several stable points (or
equilibrium states) where x ̸= 0, once x reaches zero, it can never access those non-zero stable points,
even over an infinite amount of time. This system thus loses ergodicity. Consequently, the equilibrium
of such a system is indeterminate. Depending on the initial conditions (i.e., the value of x at t = 0), the
system might sometimes reach a non-zero stable point, and other times become trapped at x = 0. In
this scenario, the stable points and equilibrium states are not uniquely determined.

6.2 Similarities and differences between Steady State and Equilib-
rium

Next, we will discuss the similarities and differences between steady state and equilibrium. First, we
need to clarify how steady state and equilibrium are described mathematically.

6.2.1 Mathematical Definitions
Steady state refers to a situation where all state variables in a system do not change with time, i.e.,

dxi

dt
= 0 for all state variables xi. (6.1)

Equilibrium (specifically, detailed balance) refers to a condition where the transitions between differ-
ent state variables are balanced. That is, for any state xi, the total rate of transitions into xi from all
directly connected states xj equals the total rate of transitions out of xi to all directly connected states
xk. Mathematically, ∑

j

vji =
∑
k

vik, (6.2)
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where vji denotes the rate from state xj to xi, and vik denotes the rate from state xi to xk. This condition
is known as detailed balance.

6.2.2 Are Steady State and Equilibrium Equivalent?
Now, is steady state equivalent to equilibrium? For linear (chain) networks, yes; but for cyclic (ring)
networks, not necessarily. We will discuss two examples separately.
Example 1: Linear Network x1 ↔ x2 ↔ x3

In a linear network, the endpoints are x1 and x3. If the system is in a steady state, then for the endpoints,
we have:

For x1:
dx1

dt
= v21 − v12 = 0 ⇒ v21 = v12. (6.3)

For x2:
dx2

dt
= (v12 + v32) − (v21 + v23) = (v12 − v21) + (v32 − v23) = 0. (6.4)

Since v12−v21 = 0 from the steady state condition of x1, it follows that v32−v23 = 0. Thus, the steady state
condition propagates along the chain, ensuring that detailed balance holds at every node. Therefore, in
a linear network, steady state implies equilibrium.
Example 2: Cyclic Network x1 ↔ x2 ↔ x3 ↔ x1

In a cyclic network, there are no endpoints. Consider the steady state condition for x1:

dx1

dt
= (v21 + v31) − (v12 + v13) = (v21 − v12) + (v31 − v13) = 0. (6.5)

This equation can be satisfiedwithout requiring v21−v12 = 0 and v31−v13 = 0 individually. For example,
if v21 − v12 < 0 and v31 − v13 > 0, their sum can still be zero. This corresponds to a net flow in the cycle:
for instance, x1 → x2 → x3 → x1, with more flow from x3 to x1 than from x1 to x3, and more flow
from x1 to x2 than from x2 to x1. Thus, steady state does not necessarily imply equilibrium in a cyclic
network.

6.2.3 Energy Consumption and Biological Implications
Achieving a steady state without equilibrium in a cyclic network requires energy input. This is due to
the second law of thermodynamics: in a closed system, a net flow would increase entropy, so main-
taining a non-equilibrium steady state requires external energy. Biological systems often exploit such
non-equilibrium steady states in cyclic networks to perform functions.

Two classic examples are the Citric Acid Cycle (Krebs cycle) and the Calvin-Benson Cycle:

• In the Citric Acid Cycle, metabolites remain at approximately constant concentrations under sta-
ble conditions (steady state), but the cycle is not at equilibrium. It continuously consumes acetyl-
CoA and produces CO2, NADH, and FADH2. If it were at equilibrium, no net production of these
energy carriers would occur, preventing aerobic respiration and ATP synthesis.

• In the Calvin-Benson Cycle, metabolites are also in steady state, but the cycle consumes CO2 and
produces organic carbon for biomass synthesis. Equilibriumwould halt carbon fixation. This cycle
is driven by energy from light reactions, via NADPH.
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The ability of these cycles to maintain steady-state concentrations despite external perturbations reflects
their robustness.

6.3 Consider Equilibrium under Macro and Micro View
In the macroscopic perspective, equilibrium is described using equilibrium constants. In the micro-
scopic perspective, equilibrium is described using statistical mechanics. We will now consider how to
connect these two approaches.

We begin by outlining the tools we will use. In the macroscopic perspective, we will use the van’t Hoff
equation, which relates the Gibbs free energy change to the equilibrium constant. Its mathematical form
is:

∆G = −kT lnKeq (6.6)
where ∆G is the Gibbs free energy change, k is the Boltzmann constant, T is the temperature, and Keq is
the equilibrium constant for the reaction.

In the microscopic perspective, statistical mechanics uses the Boltzmann distribution as a fundamental
postulate. The Boltzmann distribution is suitable for describing any non-quantum (or classical) system
in thermodynamic equilibrium. The Boltzmann distribution states that the probability Pi of a system
being in state i is:

Pi =
1
Z
e−Ei/kT (6.7)

where k is the Boltzmann constant, T is the temperature, and Z is the partition function. Here, the
partition function serves primarily as a normalization factor to ensure that the probabilities sum to one.
In my view, the Boltzmann distribution essentially tells us that as the energy of a state increases, its
likelihood of existence decreases exponentially.

Macroscopic Thermodynamic Starting Point
Thermodynamics provides the relationship between the standard Gibbs free energy change ∆G◦ and
the equilibrium constant Keq (van ’t Hoff isotherm):

∆G◦ = −RT lnKeq (6.8)

For the reaction A⇌ B, the equilibrium constant is defined as:

Keq =
[B]

[A]
(6.9)

Statistical Mechanics Interpretation
In the framework of statistical mechanics, the concentration ratio can be interpreted as the probability
ratio of the system being in different macroscopic states. For a randomly selected molecule:

[B]

[A]
=

PB

PA

(6.10)

where PA and PB represent the probabilities of the molecule being in state A and B, respectively.

According to the Boltzmann distribution, the probability of the system being in a particularmacroscopic
state is proportional to its partition function:

PA ∝ ZA, PB ∝ ZB (6.11)
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Therefore, the probability ratio equals the partition function ratio:

PB

PA

=
ZB

ZA

(6.12)

Microscopic Nature of the Partition Function
The microscopic definition of the partition function Z is the sum of Boltzmann factors over all possible
microstates. For macroscopic state B:

ZB =
∑

all microstates i belonging to B

e−EB
i /kT (6.13)

We can group microstates by energy. Assuming that at energy EB,j, state B has ΩB(EB,j) degenerate
microstates, then:

ZB =
∑
j

ΩB(EB,j) · e−EB,j/kT (6.14)

Similarly, for state A:
ZA =

∑
j

ΩA(EA,j) · e−EA,j/kT (6.15)

Complete Derivation Chain
Combining equations (6.8) through (6.15), we obtain the complete derivation:

∆G◦ = −RT lnKeq (Macroscopic thermodynamic relation)

= −RT ln
(
[B]

[A]

)
(Equilibrium constant definition)

= −RT ln
(
PB

PA

)
(Statistical interpretation)

= −RT ln
(
ZB

ZA

)
(Boltzmann distribution)

= −RT ln

(∑
j ΩB(EB,j) · e−EB,j/kT∑
jΩA(EA,j) · e−EA,j/kT

)
(Microscopic nature of partition functions)

Final Conclusion
We thus arrive at the microscopic statistical expression for the equilibrium constant:

Keq =
ZB

ZA

=

∑
j ΩB(EB,j) · e−EB,j/kT∑
jΩA(EA,j) · e−EA,j/kT

(6.16)

This result reveals the microscopic nature of the macroscopic equilibrium constant Keq: it is determined
by the ratio of statistical weights of competing states A and B, which in turn depend on their respective
energy level structures (E) and state degeneracies (Ω).
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6.4 Biological Examples: Enzyme Allosteric Regulation, Gene Regu-
lation

Based on lecture notes (pages 7-14), this section applies equilibrium physical theory from previous parts
to specific biological processes, demonstrating how to analyze single molecule states and directly calcu-
late probability distributions using energies and weights.

6.4.1 Enzyme Catalytic Reaction: Michaelis-Menten Model
Model Framework
Consider enzyme E catalyzing substrate S to product P:

E + S⇌ ES (6.17)

Using a lattice model with one enzyme and multiple substrate sites.
States and Weights

• Free state (E + S): weight wfree ∝ Nse
−Ef

• Bound state (ES): weight wbound ∝ e−Eb

where Ns is the number of substrate molecules, Ef and Eb are energies of free and bound states.
Binding Probability Derivation
Binding probability:

pbound =
wbound

wfree +wbound
=

Nse
−∆E

1 +Nse−∆E
(6.18)

where ∆E = Ef − Eb.
Concentration Parameters
Define:

• Solution volume V , site volume Ω

• Substrate concentration Cs = Ns/V

• Dissociation constant Kd = C0e
∆E (C0 is standard concentration, 1M)

Rewriting binding probability:

pbound =
Cs/Kd

1 + Cs/Kd

(6.19)

Reaction Rate
Reaction rate is given by:

v = kEtotpbound =
kEtotCs

Km + Cs

(6.20)

where Km ≈ Kd, yielding the classical Michaelis-Menten equation.



CHAPTER 6. EQUILIBRIUM PHYSCIS OF BIOREGULATION 75

Physical Interpretation
• Energy difference ∆E < 0 indicates favorable binding

• Multiplicity Ns represents entropy contribution

• Chemical potential: µ ≈ Ef + kT ln(Ns/Ω)

• Free energy change: ∆G = ∆E− T∆S

6.4.2 Allosteric Regulation: MWC Model
Model Framework
MWC (Monod-Wyman-Changeux) model describes enzyme allosteric regulation:

• Two conformations: Active (A) and Inactive (I)

• Each conformation can bind substrate
States and Weights

Table 6.1 MWC Model State Weights

State Energy Weight
Active free (EA) EA e−EA

Active bound (EA·S) EA + Eab e−(EA+Eab)

Inactive free (EI) EI e−EI

Inactive bound (EI·S) EI + Eib e−(EI+Eib)

Considering substrate concentration Cs, bound state weights are multiplied by factor Cs/C0.
Active Probability
Probability of active conformation:

pactive =
e−EA

(
1 + Cs

KA

)
e−EA

(
1 + Cs

KA

)
+ e−EI

(
1 + Cs

KI

) (6.21)

where KA = C0e
EA−Eab , KI = C0e

EI−Eib .
Cooperativity Effects
When KA ≪ KI (tighter binding in active state), pactive changes significantly with Cs.

Introducing intersite interaction energy Eint < 0, binding probability for dimer system:

p2 ∝
(
Cs

K

)2

e−Eint (6.22)

producing steeper transition curves (Hill coefficient n > 1).
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Biological Significance
• Allostery enables enzymes to respond to substrate concentration changes

• Implements biological switching behavior

• Example: Hemoglobin oxygen binding curve

6.4.3 Gene Regulation: Lac Operon Model
Model Framework
Consider Lac operon transcriptional regulation with repressor and RNA polymerase competing for pro-
moter binding.
States and Weights

• No repressor state (RNA polymerase bound):

wpol ∝ e−∆Ep
P

NNS
(6.23)

• With repressor state (repressor bound):

wrep ∝ e−∆Er
R

NNS
(6.24)

where:

• ∆Ep, ∆Er: binding energy differences

• P, R: RNA polymerase and repressor numbers

• NNS: number of non-specific sites (multiplicity)
Transcription Probability
Transcription probability (RNA polymerase bound):

pbound =
e−∆EpP/NNS

e−∆EpP/NNS + e−∆ErR/NNS + · · ·
(6.25)

Allosteric Extension
In homework problem 1, LacI repressor has active/inactive forms:

• Active form binds DNA, preventing transcription

• Inactive form does not bind DNA

• Inducer concentration c affects active form probability pactive(c)

Deriving fold-change formula:

fold-change =
1

1 + pactive(c)
R

NNS
e−∆Er

(6.26)
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Model Advantages
• Parameters (∆Ep, ∆Er) can be measured from independent experiments

• No need for detailed kinetic mechanisms

• Provides quantitative predictive power

6.5 Beyond Equilibrium: Markov Chain
6.5.1 Motivation and Overall Logic
While equilibrium statistical mechanics provides powerful tools for analyzing biological systems at
steady state, many crucial biological processes operate beyond equilibrium due to continuous energy
input and driving forces. Biological systems are not closed–they exchange energy and matter with their
environment, leading to behaviors that cannot be captured by equilibrium descriptions alone.

• Key insight: Biological systems utilize equilibrium in most components but are sparsely driven
at critical control points

• Examples: Protein degradation with precise timing, phosphorylation cascades, metabolic net-
works with sustained fluxes

• Challenge: When detailed balance is broken, we need new tools to analyze steady states and
dynamics

TheMarkov chain frameworkprovides themathematical foundation for analyzing these non-equilibrium
systems, bridging the gap between equilibrium statistics and non-equilibrium dynamics.

6.5.2 Markov Chain Fundamentals
Definition and Derivation from Chemical Master Equation
For a continuous-time Markov chain describing molecular state transitions:

dP
dt

= QP (6.27)

Qij = transition rate from state j to state i (i ̸= j) (6.28)

Qjj = −
∑
i̸=j

Qij (conservation of probability) (6.29)

Properties:

• Probability conservation: 1TP = 1

• Column sum zero: 1TQ = 0

• Steady state: QΠ = 0 (find null space of Q)

• Ergodicity: Irreducible chain⇒ unique steady state Π

Detailed Balance Condition:

QijΠj = QjiΠi iff no cyclic fluxes (equilibrium) (6.30)
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Biological Example: Phosphorylation Cascades
Consider kinase-phosphatase cycles with states representing phosphorylation levels (0, 1, 2, . . . ). The
Markov chain captures stochastic phosphorylation/dephosphorylation events:

Process Transition Rate
Phosphorylation Sn → Sn+1 kn[K]

Dephosphorylation Sn → Sn−1 γn[P]

6.5.3 Handling Non-Markovian Systems
Many biological processes exhibit memory effects, violating the Markov assumption. We can embed
these systems into Markov chains by extending the state space:

X(t)→ (X(t),X(t− ∆t),X(t− 2∆t), . . . ) (6.31)

Application: Protein degradation with precise timing control, where current degradation probability
depends on previous states.

6.5.4 Dynamic Analysis: Hitting Times
Definition and Computation
The hitting time τji represents the expected time to first reach state i starting from state j:

τji =
1

|qjj|
+
∑
k̸=i

qjk

|qjj|
τki (6.32)

Matrix formulation: Remove row/column i from Q to obtain Q(i), then solve:

Q(i)τ(i) = −1 (6.33)

where τ(i) is the vector of hitting times to state i from all other states.
Biological Application
In phosphorylation cascades, hitting times quantify:

• Signal propagation speed from unphosphorylated to fully phosphorylated state

• Response time to external stimuli

• Temporal precision of signaling pathways

6.5.5 Steady State Distribution and Finite State Projection
Steady State Calculation
For finite-state systems, solve QΠ = 0 subject to

∑
iΠi = 1.

Homework Example: Binding reaction E+ S⇌ C yields steady state:

Π ∝ K
−NC

d

NE!NS!NC!
(Poisson-like distribution) (6.34)

At high molecular numbers, the most probable state approaches the deterministic equilibrium.
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Finite State Projection
For systemswith large or infinite state spaces, project theChemicalMaster Equation onto a finiteMarkov
chain:

Infinite CME→ Finite Markov Chain→ Approximate Π and dynamics (6.35)

Application: Metabolic cascades with non-equilibrium fluxes that cannot be captured by equilibrium
thermodynamics.

6.5.6 Why We Use Markov Chains for Simulation and Analysis
1. Unified Framework: Markov chains provide a consistent mathematical structure for analyzing

both equilibrium and non-equilibrium systems

2. Computational Tractability: The matrix Q enables efficient numerical computation of steady
states and dynamic properties

3. Connection to Physical Laws: Markov chains naturally emerge from the Chemical Master Equa-
tion, which derives from fundamental stochastic reaction kinetics

4. Bridge Between Scales: Captures molecular stochasticity while connecting to macroscopic ob-
servables through ergodicity

5. Experimental Validation: Hitting times and steady state distributions provide testable predic-
tions for single-molecule and bulk experiments

6.5.7 Key Takeaways
• Markov chains extend equilibrium statistical mechanics to driven biological systems

• The framework captures essential non-equilibrium features: cyclic fluxes, broken detailed balance,
and energy dissipation

• Both steady-state properties (distributions) and dynamic properties (hitting times) are accessible

• Finite state projection makes experimentally relevant computations feasible

• Biological implementation requires careful consideration ofMarkovian assumptions and potential
state space extensions

Final Insight: ”It takes a lot of driving to not look like equilibrium” – weak driving forces often yield
behaviors indistinguishable from equilibrium, but biological systems exploit strong, sparse driving at
critical control points.
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7.1 Equilibrium Physics of Bio-regulation
7.1.1 The Measurement Problem
The most practical motivation for equilibrium physics is the difficulty of measuring kinetic rates com-
pared to thermodynamic energies.
1.The Kinetic Challenge
Consider a standard biological binding reaction, such as a gene (D) binding to a transcription factor (P),
or an enzyme (E) binding to a substrate (S).

The dynamic model is described by the Law of Mass Action:

E+ S
k+−⇀↽−
k−

ES (7.1)

To model this dynamically, we need two parameters:

• k+: The association rate constant.

• k−: The dissociation rate constant.

Why is this hard to measure? To find k+ and k−, you must measure the concentrations of the free
components (E,S) and the complex (ES) in real-time. However, the biological bond between E and S is
usually non-covalent (e.g., hydrogen bonds, Van der Waals forces). These are weak associations.
The ”Shattering” Effect (Mass Spectrometry) Commonmeasurement tools, likeMass Spectrometry,
require imparting energy to the molecules to detect them.

• When you apply energy to measure the system, the weak non-covalent bond breaks.

• You cannot distinguish whether the detected molecules were originally a complex (ES) or two
separate molecules (E+ S).

• The act of measurement destroys the structure you are trying to observe.

E S

Complex (ES)

Measurement Energy

E S
”Shattering”

Free E Free S

2.The Equilibrium Solution: Thermodynamics
Instead of trying to measure k+ and k− individually, we look at the system in equilibrium. Here, we
care about the ratio, the Dissociation Constant (Kd):

The Equilibrium Relation

Kd =
[E][S]

[ES]
=

k−

k+

(7.2)
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Crucially, statistical physics relates this ratio to Energy. The probability of a state is proportional to the
Boltzmann factor:

P ∝ e−Estate/kBT (7.3)

Therefore, Kd is directly related to the Binding Free Energy (∆G):

Energy-Measurement Link

Kd ∝ e∆G/kBT (7.4)

Why is this easier?

• Energy changes (∆G) correspond to the release or absorption of Heat.

• We can measure heat changes very accurately (e.g., Isothermal Titration Calorimetry) without
needing to count individual molecules or preserve fragile bonds during detection.

• Conclusion: Equilibrium is a ”Measurement Science.” It transforms a hard counting problem into
an easier calorimetry problem.

7.1.2 The Bio-Design Perspective
If you are an engineer or synthetic biologist trying to build a biological function (e.g., a genetic switch),
equilibrium mechanisms are often superior.
1.Low Energy Cost

• Non-Equilibrium: Requires constant energy input (flux) to maintain a steady state (like keeping
a lightbulb on).

• Equilibrium: Once the system settles, it stays there forever without consuming fuel (ATP). It is
thermodynamically stable.

2.Low Mechanistic Complexity
• Designing a cycle that forces a reaction in one direction (Non-equilibrium) requires complexmolec-

ular machinery to couple with energy sources.

• Designing for equilibrium just requires mixing components that have the right binding affinity
(∆G). They will naturally find their way to the desired state.

7.1.3 The Analytical Perspective
From the perspective of system analysis (Mathematical Modeling), equilibrium provides powerful con-
straints that make unsolvable problems solvable.
1.Dynamics are Hard

• Deterministic: Systems of coupled differential equations are often non-linear and hard to solve
analytically.

• Stochastic: If we treat it as a random process, the Master Equation is usually infinite-dimensional
and impossible to solve exactly.
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2.Equilibrium is Easy
If we assume the system is at equilibrium, we don’t need to solve the dynamics. We know the answer
immediately because of the Boltzmann Law:

P(Statei) =
1
Z
e−Ei/kBT (7.5)

Where Z is the partition function.
Key Constraints Equilibrium imposes strict physical rules that simplify the math:

1. Detailed Balance: The flux between any two states is zero.

PA · kA→B = PB · kB→A (7.6)

2. No Cycle Fluxes: There is no net rotation around reaction loops.

Summary of Section 1

Even though biology is dynamic, we use equilibrium physics because:
1. We can measure ”Energies” (Heat) much easier than ”Rates”.
2. Equilibrium systems are energy-efficient and simpler to design.
3. Equilibrium math is solvable via the Boltzmann distribution.
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7.2 Markov Chains: Stochastic Kinetics and non-equilibrium
Traditional thermodynamics often focuses on equilibrium—the state of a system after an infinite amount
of time. However, in biological systems (like cells), we are often interested in kinetics (how fast things
happen) and non-equilibrium behaviors (energy consumption).

The Kinetics Problem

Even if we know the final state of a cell, we often ask: ”If a signal changes in the environment, how
long does it take for the cell to switch states?”

• This is known as the First Passage Time problem.
• Simply adding up the inverse rates of steps (1/k1 + 1/k2 . . . ) is incorrect because stochastic

systems can transition backward.

7.2.1 Non-Equilibrium Systems
Energy vs. Non-Equilibrium
A common misconception is that if a system consumes energy (e.g., ATP hydrolysis), it is automatically
”non-equilibrium.”

• Correction: Many energy-consuming systems still exhibit behaviors that fit equilibrium models
perfectly.

• True Indicator: A system requires a non-equilibrium model only when it exhibits behaviors im-
possible in equilibrium, such as non-monotonicity or net cyclic fluxes .

Example: The Enzymatic Cycle
Consider an enzyme E that converts Substrate S to Product P.

E

ESEP

+S (Binding)

Catalysis

−P (Release)

Net Flux J > 0

• Equilibrium: Forward and backward rates balance perfectly. No net rotation.

• Non-Equilibrium: High concentration of S drives the cycle continuously in a clockwise direction
(Flux). This is a ”current” in the state space.

7.2.2 Finite Markov Chains & The Master Equation
Tomodel these kinetics, we use Finite StateMarkovChains . This is a specific application of theChemical
Master Equation (CME).
From Concentrations to Probabilities
The lecture demonstrates that for 1st-order reactions , the macroscopic rate equation is mathematically
identical to the single-molecule probability equation.
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Consider a simple reversible transition:
A

k2⇌
k1

B (7.7)

*(Note: Notation assumes k2 creates A, k1 consumes A)*.
1. Macroscopic View (Rate Equation) Let A(t) and B(t) be the number of molecules. The total
number Ntot = A+ B is constant. The rate of change of A is:

dA

dt
= k2B− k1A (7.8)

Variable Definitions:

• dA/dt: Change in number of molecules of A per unit time.

• k1: Rate constant for A→ B (units: time−1).

• k2: Rate constant for B→ A (units: time−1).
2. Microscopic View (Probability) We define the probability (or fraction) of being in state A as:

PA =
A

Ntot

, PB =
B

Ntot

(7.9)

Since the system is linear, we can divide the rate equation by the constant Ntot:

1
Ntot

dA

dt
= k2

B

Ntot

− k1
A

Ntot

(7.10)

Substituting the probability definitions:

dPA

dt
= k2PB − k1PA (7.11)

Conclusion on Linearity

Because the reaction is linear (1st order), the math governing billions of molecules (concentration)
is the exact samemath governing onemolecule’s probability . We can simplymodel one molecule
hopping between states.

7.2.3 Mathematical Formalism: The Q-Matrix
We generalize the system to n states using Linear Algebra.
The Probability Vector
Let p(t) be a column vector representing the probability distribution at time t:

p(t) =


P1(t)
P2(t)

...
Pn(t)

 (7.12)

where
∑n

i=1 Pi(t) = 1.
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The Transition Rate Matrix (Q)
The evolution of probability is given by the differential equation:

dp

dt
= Qp (7.13)

The matrix Q is constructed as follows:

• Off-diagonal terms (qij where i ̸= j): The rate of transitioning FROM state j TO state i.

• Diagonal terms (qii): The negative sum of all outgoing rates from state i.

Mathematical Detail: Conservation of Probability

Since probability cannot be created or destroyed, the columns of Q must sum to zero.

n∑
i=1

qij = 0 (7.14)

This implies the diagonal term is:
qjj = −

∑
i̸=j

qij (7.15)

Physical meaning: The rate of leaving state j (qjj) is exactly the sum of rates going to all other states.

7.2.4 Steady States and Ergodicity
Steady State Distribution (π)
At steady state, the probability distribution does not change with time.

dp

dt
= 0 =⇒ Qπ = 0 (7.16)

Here, π is the Steady State Distribution . Mathematically, it is the Right Eigenvector of matrix Q corre-
sponding to the eigenvalue λ = 0.
Ergodicity

Definition: Strong Connectivity

A graph is strongly connected if there is a path from every state to every other state.

If the state transition graph is strongly connected (Irreducible):

1. The steady state π is Unique .

2. The system is Ergodic .

Implication for Simulation: Due to ergodicity, the Time Average equals the Ensemble Average .

Time Average of 1 trajectory = Average over infinite populations

You only need to simulate one single molecule trajectory for a long time to calculate the distribution of
the entire population.
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7.2.5 Detailed Balance (Equilibrium vs. Steady State)
Asystem can be in a steady state (constant concentrations)without being in thermodynamic equilibrium
(e.g., a battery powering a circuit).
Detailed Balance Condition
For a system to be in true Equilibrium , the flux between any two specific states must balance out to
zero.

Fluxj→i = Fluxi→j (7.17)
πjqij = πiqji (7.18)

Cycle Condition (Kolmogorov Criterion)
An easier way to check for equilibrium is to look at loops in the graph. For any closed cycle (e.g., 1 →
2→ 3→ 1):

Product of Clockwise Rates = Product of Counter-Clockwise Rates (7.19)

1

23

k12

k21

k23

k32

k31

k13

Equilibrium Requirement:
k12 · k23 · k31 = k13 · k32 · k21 (7.20)

If this equation does not hold, there is a net flux, and the system is ”Non-Equilibrium”.

7.2.6 The Philosophy of ”State”: Markovian vs. Non-Markovian
There is a debate in biology that biological systems depend on history (memory) and are therefore ”Non-
Markovian.”
The Lecturer’s Counter-Argument
The lecturer argues that all dynamical systems are Markovian if you define the ”State” correctly.

Definition: State

A State is a collection of variables that summarizes all necessary information from the past to
predict the future evolution of the system.

Example: Hidden Variables
If a system appears to depend on history (xt depends on xt−1 and xt−2), it is only because we defined
the state too narrowly.

• Narrow View (Non-Markovian): State = [xt]. The future depends on the past history.

• Expanded View (Markovian): State =
[
xt
xt−1

]
. Now, the current vector contains all the information

needed for the next step.
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Analogy: InNewtonianmechanics, position x alone is not a state (need velocity). But (x, v) is a state.

Conclusion: Whenmodeling cell biology, assuming aMarkov chain is not a restrictive assumption about
”lack of memory.” It is simply an assumption that the variables we chose (e.g., gene expression levels)
are sufficient to define the system’s future.

7.2.7 First-Passage Time to an Active State
Consider a CTMC with discrete states. One state is designated as active (state A). We want to compute:
How long does it take to reach A starting from some initial state i?
Notation:

• X(t): state of the system at time t

• Q = (qij): generator matrix

– qij ⩾ 0 for i ̸= j (transition rate i→ j)

– qii = −
∑

j ̸=i qij (total exit rate from i)

• First-passage time: Ti = inf{t ⩾ 0 : X(t) = A | X(0) = i}

• Mean first-passage time: mi = E[Ti]

• CDF: Fi(t) = P(Ti ⩽ t)

Mean First-Passage Time Calculation
Intuitive Derivation: Starting from state i ̸= A:

1. Wait in state i for exponentially distributed time with rate −qii. Mean waiting time = 1/(−qii).

2. Jump to state j ̸= i with probability qij

−qii
.

3. After arriving at j:

• If j = A: done (extra time = 0)

• If j ̸= A: need additional mean time mj

Thus:
mi =

1
−qii

+
∑
j ̸=i

qij

−qii

mj (7.21)

Multiply by −qii:
−qiimi = 1 +

∑
j ̸=i

qijmj (7.22)

Since mA = 0, we separate terms:
−qiimi = 1 +

∑
j ̸=i
j ̸=A

qijmj (7.23)

This is a system of linear equations for mi (i ̸= A).
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Matrix Formulation: Make state A absorbing: set qAj = 0 for all j.

Partition states: transient states T and absorbing state A. Reorder so transient states come first:

Q =

(
Q̃ r
0 0

)
• Q̃: nT × nT matrix for transient states

• r: exit rates from transient to absorbing state

• 0: row for A

Let m = vector of mi for i ∈ T , and 1 = column vector of ones.

Then:
m = (−Q̃)−11 (7.24)

Proof: From −qiimi = 1 +
∑

j∈T ,j ̸=i qijmj, rewrite as:

(−qii)mi −
∑

j∈T ,j ̸=i

qijmj = 1

This is the i-th row of (−Q̃)m = 1.

7.2.8 Distribution and Example
Distribution of First-Passage Time
Let Fi(t) = P(Ti ⩽ t).
Backward Equation: Condition on first jump:

Fi(t) =

∫ t

0
(−qii)e

qiis

[∑
j

qij

−qii

Fj(t− s)

]
ds

=

∫ t

0
eqiis

[∑
j ̸=i

qijFj(t− s)

]
ds

Differentiate with respect to t:
dFi

dt
= qiiFi(t) +

∑
j ̸=i

qijFj(t) (7.25)

Boundary Conditions:

• FA(t) = 1 for t ⩾ 0

• Fi(0) = 0 for i ̸= A



CHAPTER 7. STOCHASTIC KINETICS OF MARKOV CHAIN AND COMPUTATION BIOMACHINES90

Matrix Form: Let F(t) = vector of Fi(t) for i ∈ T . Then:

dF
dt

= Q̃F(t) + r (7.26)

with F(0) = 0.

Solution using matrix exponential:

F(t) =
∫ t

0
eQ̃srds (7.27)

If Q̃ is invertible:
F(t) =

(
eQ̃t − I

)
Q̃−1r (7.28)

Example: Three-State System
System Description: States: 1 (initial), 2, A (active).

Transition rates:

1 k1−→ 2

2 k2−→ A

2 kb−→ 1

1 kf−→ A

Generator Matrix:

Q =

−(k1 + kf) k1 kf

kb −(kb + k2) k2
0 0 0


Mean First-Passage Times: Transient states: {1, 2}.

Q̃ =

(
−(k1 + kf) k1

kb −(kb + k2)

)

−Q̃ =

(
k1 + kf −k1
−kb kb + k2

)

m = (−Q̃)−1
(

1
1

)
The explicit solution:

det(−Q̃) = (k1 + kf)(kb + k2) − k1kb

= k1k2 + kfkb + kfk2
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m =
1

det(−Q̃)

(
kb + k2 + k1
kb + k1 + kf

)
So:

m1 =
kb + k2 + k1

k1k2 + kfkb + kfk2

m2 =
kb + k1 + kf

k1k2 + kfkb + kfk2



CHAPTER 7. STOCHASTIC KINETICS OF MARKOV CHAIN AND COMPUTATION BIOMACHINES92

7.3 Computation Biomachine
Again like in adaptation biomachine, when we consider biological systems, we often consider they have
distinct functions, like computation. To achieve such functions, we have built engineered machines,
eg, computer. Since biological systems also need to achieve the same tasks, the structures and design
principles of engineered machines could be used to better understand why biological systems are built
in that way.

7.3.1 Today’s Computation biomachine
Biological systems need to process information to respond to environments.

• Example:
– activate a gene expression
– to take up new nutrient
– start a stringent response when harsh conditions hit
– become a new cell type when growth factors say “differentiate”

So cells for sure need to do computation, but how is it done? How complex a computation does the cell
achieve in that way? In ENgineered machines, we built computational units, and then linked them up
for the larger and larger computation.

And now let us search for the existing biological computational unit.
logic gates
Webuilt computers consisting of binary logic gates to perform computation. Maybe cells do the same?

• Example:
– AND Gate
– OR gate
– NOT gate

Cells have chemical reactions inside, maybe implement gates via chemical reactions (catalysis)? Input
and output turn out to be the concentration of species.

• ’0’ corresponds to low conc relative to the total conc
• ’1’ corresponds to high conc relative to the total conc

• Example:
– The variable Y is represented in two forms, Y0 and Y1. (e.g., like phosphorylation and de-

phosphoorylation)
Y0⇔ Y1

– Then ’transition’ of a signal can be done by catalysis of production and degradation.

How to build an universal turing machine out of logic gate? Namely, we can do whatever computation
we want. The answer is NAND gate.

• NAND gate
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X0 + Y0 + Z0 → X0 + Y0 + Z1

X0 + Y1 + Z0 → X0 + Y1 + Z1

X1 + Y0 + Z0 → X1 + Y0 + Z1

X1 + Y1 + Z1 → X1 + Y1 + Z0

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

So Chemical reaction (catalysis) networks are Turing universal!

Cells can perform logic gate computations via catalytic chemical reactions. In fact, they can perform
arbitrarily complex computations!

• Points to worry:

– Signal may get corrupted in a cascade (repeat / restore).

– Such reactions may be hard to implement (e.g. not trimolecular; need to make them first- or
second-order).

– Reactions are stochastic / discrete / noisy (in fact that’s even better …).

– Maybe reactions are more powerful:

∗ Use mass–action catalytic reactions themselves as computational units (similar, maybe a
bit better).

• WAIT! But how complex can a cell be in this way?

– Number of catalytic reactions ≈ number of enzyme types.

– This is about 103 (e.g. ∼ 5×103 reactions in databases for all known enzymes, ∼ 103 in a human
cell).

– If we need about 2–8 reactions per gate, that gives ∼ 3× 102 logic gates.

• Compare:

– 1972: first pocket calculators, ∼ 3× 103 transistors, with about 2–8 transistors per gate (e.g. 4
for a NAND gate)⇒ roughly 4-bit data bandwidth (one decimal digit at a time).

– Moon landing computers (1970s): ∼ 5× 103 gates (∼ 20×more than a cell in this estimate).

– Nowadays: microcontroller chips have ∼ 106 gates.

– Intel laptop chips typically have ∼ 109 gates (∼ 103×more than a cell).

Maybe cells do computations in smarter ways? More efficient computing than logic gates?
Neural networks
In recent years (2010 on wards), artificial neural networks (ANNs) have taken over in the complexity of
certain computational tasks, e.g. computer vision (image recognition), languagemodels and translation,
robotics, etc.

ANNs are made more powerful by their depth. Instead of just linking computational units in simple
cascades, we put them into layers, so that the network can achieve an exponential-in-layers growth in
representational complexity. The idea is to use layers to build a very complex input–output map that
represents the solutions of a computational task, and then let the ANN learn/represent this map.
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• The computational units of ANNs are linear threshold units (LTUs, perceptrons). For an input vector
x = (x1, . . . , xn) and a weight vector w = (w1, . . . ,wn), the output y is

y =

{
1, w⊤x =

∑
i wixi > θ,

0, w⊤x =
∑

i wixi ⩽ θ,

where θ is the threshold.

• Example: an LTU network can implement the XOR function z = XOR(x,y)with two binary inputs
x,y ∈ {0, 1}. Its truth table is

x y z

0 0 0
1 0 1
0 1 1
1 1 0

• How to implement an LTU in cells? We need many inputs to be combined and weighted. A
natural candidate mechanism is gene regulation: multiple activators and repressors bind to DNA
and jointly control the expression level of a gene.

Gene regulatory networks (GRNs) as an implementation:

• Transcription
Gi

ktx,i−−→ Gi + Ti,

where Gi is gene i and Ti is its transcript.

• Translation
Ti

ktl,i−−→ Ti + Ri,

where Ri is the regulatory species (e.g. a transcription factor).

• Degradation
Ti

krd,i−−→ ∅, Ri

kpd,i−−−→ ∅.

• Typical rates
ktx,i, ktl,i ∼ 10−3 s−1 (per molecule),

krd,i, kpd,i ∼ 10−3 s−1 (e.g. ∼ 20 min timescale).

• Regulation of transcription by regulator Rj:

Rj +G0
i

k+
ji⇌

k−
ji

Gij,

where G0
i is the unbound promoter state and Gij the promoter bound by regulator j. Typically

k+
ji ∼

1
nM · s

, k−
ji = KM k+

ji,

with binding constant (dissociation constant) KM in the range 0.1–105 nM.
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• Regulation among transcription factors:

Ri + Lj

k+
ij⇌

k−
ij

Dij,

Dij

k
pd
ij−−→ ∅,

Dij +Gk

k+
ijk⇌

k−
ijk

Gijk.

These reactions allow transcription factors to form dimers Dij and regulate different genes Gk,
effectively changing their transcription rates.

• LTU in titration GRN:

Represent inputs by normalized variables

xj =
Ij

Īj
,

where Ij is the concentration of input j and Īj is a reference value.

Assumptions:

– Ij act as repressors, so they only affect transcription rates through binding (no extra produc-
tion term, kj

tx = 0).

– Tight binding between transcription factors Ri and Ri ′ , i.e. Kii ′

M → 0.

– Dimers Dii ′ do not bind promoters Gi or Gi ′ , so promoter states with dimers (e.g. Gii ′ , Gi ′i)
can be ignored.

Idea: competitive binding among transcription factors Ri, Ri ′ forms a decision unit that behaves
like a linear threshold unit.

• Binding equilibrium with inputs:

For repressor Ij binding to promoter Gi, let

Gc
ji = promoter i bound by input j.

At equilibrium,

Gc
ji =

IjGi

K
ji
M

.

The total amount of promoter for gene i is

Gtot
i = Gc

i +
∑
j

Gc
ji = Gi +

∑
j

IjGi

K
ji
M

= Gi

(
1 +

∑
j

Ij

K
ji
M

)
.
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Hence
Gi =

Gtot
i

1 +
∑

j Ij/K
ji
M

.

• Gene expression of regulator Ri:

Let
Ri,tot = Ri +Dii ′

be the total amount of Ri (free plus dimer). Its production–degradation dynamics are

Ṙi,tot = ktlTi − krdRi,tot.

At steady state,

Ri,tot =
ktl

krd
Ti.

For the transcript Ti,

Ṫi = giktxGi − kpdTi ⇒ Ti =
ktx

kpd
giGi

at steady state. Combining the two expressions gives

Ri,tot =
ktxktl

kpdkrd
giGi ≡ giGi,

where the prefactor is absorbed into an effective gain gi (typically of order 1 per copy of Gtot
i ).

Using the expression for Gi,

Ri,tot = gi

Gtot
i

1 +
∑

j Ij/K
ji
M

.

• Competitive binding / titration between Ri and Ri ′ :

For very tight binding between Ri and Ri ′ , the dimer concentration and the remaining free Ri can
be approximated by

Dii ′ = min{Ri,tot,Ri ′,tot},
and

Ri =

{
0, Ri,tot < Ri ′,tot,

Ri,tot − Ri ′,tot, otherwise.

This titration mechanism implements a nonlinear, threshold-like dependence of the free regulator
Ri on the inputs, which is what allows the GRN to behave like an LTU.

• Decision boundary.

There are regulators R ′
i that can bind to the output gene G0. If R ′

i,tot > Ri,tot (and binding is tight),
R ′
i represses G0 and the output is 0. In this case we require

g ′
i

1 +
∑

j Ij/K
ji ′

M

>
gi

1 +
∑

j Ij/K
ji
M

as the condition for output = 0.
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Rearranging gives

g ′
i

(
1 +

∑
j

Ij

K
ji ′

M

)
> gi

(
1 +

∑
j

Ij

K
ji
M

)
(g ′

i − gi) >
∑
j

Ij

( g ′
i

K
ji ′

M

−
gi

K
ji
M

)
.

Introducing normalized inputs

xj =
Ij

m
,

we obtain
g ′
i − gi

m︸ ︷︷ ︸
θi

>
∑
j

xj

( g ′
i

K
ji ′

M

−
gi

K
ji
M

)
︸ ︷︷ ︸

wj

.

Thus, for output 0, ∑
j

wjxj < θi,

which is exactly the decision rule of a linear threshold unit (LTU).

• That’s great: we can build an LTU out of just three genes. Cells can in principle achieve much
more efficient computation using neural networks built from such genetic units.

• But wait — the complexity of an ANN scales with the number of weights.

For a gene regulatory network (GRN), the effective number of weights is roughly

#connections in GRN ≈ #TFs per gene×#genes.

A rough comparison:

E. coli Yeast Human
# TFs ∼ 300 (7%) ∼ 200 (3%) ∼ 1800
# TFs per gene 1–2 (0–10) 1–2 (0–20) 10–12 (0–100)
Estimated #weights ∼ 102 ∼ 103 ∼ 104

For ANNs, the number of weights has grown dramatically:

1990s 2010s 2020s

Example models
LeNet,

MLP on MNIST

AlexNet,
VGG-16,

ResNet on ImageNet
Transformers
(GPT-1–4)

#weights ∼ 103 ∼ 104–106 ∼ 107–1010

So even human cells, with only O(104) effective weights, would correspond to just a small fraction
of a classic CNN such as LeNet doing handwritten digit recognition.

Something seems off: cells must be processing information much more efficiently than a naive
weight-count comparison with ANNs would suggest.
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Side note: binding is much more efficient Binding can implement a rectified–linear (ReLU)–type
operation much more efficiently than catalysis or gene expression.

Define

ReLU(x) =

{
x, x > 0,
0, otherwise.

Consider tight binding between two species X and Y:
X+ Y ⇌ D.

Let Xtot and Ytot be their total amounts. Under strong binding, the free X concentration satisfies

Xfree =

{
Xtot − Ytot, Xtot > Ytot,
0, otherwise,

so
Xfree = f(Xtot, Ytot) = ReLU(Xtot − Ytot).

Composition of such functions f can achieve arbitrarily complex behaviour, e.g.

• any piecewise–linear function,

• any logic gate,

• any LTU, etc.

The number of binding reactions in cells is huge. Very roughly:

E. coli Yeast Mammalian
protein–protein 104 105–106 106–107

enzyme–substrate / cofactor 105

protein–DNA 104–105

protein–RNA
protein–lipid / ion . . .
Total 105–106 106–107 107–108

Computational tasks in Bio vs Engineered
• Logic gates in computers.

– Task: logical deduction / symbolic computation.

– Question: do cells need to do logical deduction?

• LTUs in ANNs.

– Task: represent / fit / learn complex input–output maps.

– Question: do cells need to do this kind of generic function approximation?

• One task we clearly see cells doing:

– In response to changing environments, cells perform different actions, often via changes in
gene expression.

– So at least, a cell needs to encode one complex input–output map (though not an arbitrary
one) that maps environmental conditions to appropriate actions.
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Again, like what we discussed in adaptation biomachine, when we consider biological systems, we of-
ten consider they have distinct functions. e.g. computation. To achieve such functions, we have built
engineered machines. e.g. computers. Since biological systems also need to achieve the same tasks, the
structures and design principles of engineered machines could be used to better understand why bio-
logical systems are built in this way. Although the functions of engineered machines and biomachines
are the same (hopefully), their implementations can be different.
Biological systems need to process information to respond to environments. e.g. activate a gene expres-
sion to take up new nutrient, start a stringent response when harsh conditions hit because a new cell
type when growth factors say ”differentials”...
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Cell/Biocircuitenvironment action

Figure 8.1

How are the computations done? How complex a computation the cell achieve in this way? In engi-
neered machines, we build computational units, then link them up for larger and larger computations.
In the following sections, we will search for biological computational units.

8.1 Logic gate computation in cells
8.1.1 Basic logic gate
Webuilt computers consisting of binary logic gates to perform computation. Both the inputs and the out-
puts of logic gates are binary, either true(1) or false(0). There are three basic logic gates: AND, OR, NOT.

ANDA
B Output

ORA
B Output

NOTA Output

A B A·B
0 0 0
0 1 0
1 0 0
1 1 1

A B A+B

0 0 0
0 1 1
1 0 1
1 1 1

A −A

0 1
1 0

Figure 8.2 Diagrams of AND(top), OR(middle and NOT(down) gates and their corresponding truth tables

8.1.2 Logic gate implementation with catalysis reactions
Maybe cells can do the same thing. Let’s assume that cells encode 0/1 as low/high concentration, X0,X1.
And cells may implement logic gates via catalysis reactions. The following equations show a series of
catalysis reactions that achieves a NAND gate. We should note that NAND gate itself is enough to build
universal Turing machines.

8.1.3 Comparison of complexity with engineered machines
But let us slowdownhere. Ifwe assume that three substrates and four reactions are needed to implement
a single NAND gate, then a cell—with roughly 103 types of enzymes—could effectively generate only
about (3×102) logic gates, even if all enzymeswere devoted to computation. Whenwe compare this level



CHAPTER 8. COMPUTATION BIOMACHINE 101

X
Y

Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X0 + Y0 + Z0 → X0 + Y0 + Z1

X0 + Y1 + Z0 → X0 + Y1 + Z1

X1 + Y0 + Z0 → X1 + Y0 + Z1

X1 + Y1 + Z1 → X1 + Y1 + Z0

Figure 8.3 Diagrams of NAND gate, truth table and catalysis reactions implementation of NAND

of complexitywith engineeredmachines, early electronics such as a 1972 pocket calculator (about 3×103

transistors) and the Apollo Guidance Computer used for the moon landing (around 5× 103 logic gates)
exceeded cellular computational complexity onlymodestly. As technology progressed,microcontrollers
with limited functionality reached about 106 gates, and modern laptop processors now contain on the
order of 109 gates. At the very least, we should recognize that cells operate in a far more complex and
dynamic environment than a microcontroller does—yet there remains a vast gap in raw computational
complexity between a cell and a modern microcontroller. Thus, we conclude that if cells only use logic
gates for computation, the complexity of logic gates is not enough. Maybe cells do computations in
smarter ways to achieve more efficient computing than logic gates.

Machine Complexity

cell (all the enzymes process information with gates) 3× 102 gates

pocket calculator in 1972 3× 103 transistors

moonlanding in 1970s 5× 103 gates

microcontroller 106 gates

intel laptop chip 109 gates

Table 8.1 Complexity gap between cell and real engineered machines when assuming cells process informa-
tion with logic gates only.

8.2 Neural networks
Recent years (2010 onwards). Artificial neural networks (ANN) have taken over in complexity of certain
computational tasks, e.g. computer vision, language models/translation, image recognition, robotics…
ANNs are more powerful by “depth”. Instead of just linking computational units as cascades,

put them in layers, so they have exponential–in–layer power of representational complexity.
Idea: use layers to build a very complex input–output map that represents the solution of a computa-
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Unit 1 Unit 2 Unit 3 Unit 4
Input Output

Figure 8.4 Diagrams linking computational units as cascades

tional task. Then learn/represent this map by ANN. (Perceptron.) Computational units of ANN are
linear threshold units (LTU).

Input Output

Figure 8.5 Diagrams linking computational units in layers

w⊤x =
∑
i

wixi > θ : y = 1

w⊤x =
∑
i

wixi < θ : y = 0

Gi
ktx−−→ Gi + Ti Transcription

Ti
ktl−→ Ti + Ri Translation

Ti
krd−−→ ∅ Transcript degradation

Ri

kpd−−→ ∅ Regulatory species degradation

Rj +Gi

k+
ji−⇀↽−

k−
ji

Gij Regulation of transcription

Ri + Rj

k+
ij−⇀↽−

k−
ij

Dij Regulation among transcription factors

Dij +Gk

k+
k−⇀↽−

k−
k

Gijk Binding of TF complex to gene

Gij

ktx
ji−−→ Gij + Ti Result of regulation (Rate change)

Gijk

ktx
ijk−−→ Gijk + Tk Result of regulation (Rate change)

8.2.1 LTU: Titration GRN Implementation
After given the definitions of the GRN, in this section we try to make it clear that why it represents a
LTU(or a neuron element) for further construction of an Artificial Neural Network.
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Figure 8.6 LTU implementation with gene regulatory network
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We begin by analyzing the two important species: a specific gene (Gi) and a specific regulator (Ri). (In
this case we assume the regulator is an repressor of gene). To make the intuition clear, we denote the
input repressor as I (which is the resulting output of the previous layer), and the regulators in current
layer would be the output variable, which we denote R.
Single Gene Gi We denote the total amount of gene as Gtot,i, consisting the free state Gi and reg-
ulated state Gji. We can first solve the regulated state quantity using the equilibrium of the binding
reaction:

Ii +Gj → Gij, K
ij
M :=

IiGj

Gij

.

Thus the regulated (bound) state is

Gij =
IiGj

K
ij
M

.

So the total amount of gene i would be:

Gtot,i = Gi +
∑
j

Gij

= Gi +
∑
j

Ij Gi

K
ij
M

= Gi

(
1 +

∑
j

1
K

ij
M

Ij

)
, (8.1)

hence
Gi =

Gtot,i

1 +
∑

j
1

K
ij
M

Ij
.

Notice that the mathematical form of this sum
∑

j
1

K
ij
M

Ij is analogous to the ANN, with the form of
a weighted linear combination. (i is the current node, and the j sums up all the inputs). This is the
exact result of design that we use the multiple regulator inputs to assemble the input signals of a single
LTU.
Single Regulator Ri Similarly the regulator would have free state (Ri) and the muted dimer (Dii ′ ,
formed by its complementary regulator R ′

i). At steady state, the total regulator produced from gene Gi

can be written as
Rtot,i = gi Gi

k+lk+x

kpdkrd

.

Substituting the expression of Gi above,

Rtot,i = gi

k+lk+x

kpdkrd

· Gtot,i

1 +
∑

j
1

K
ij
M

Ij
.

Note that in the last equation we assumed

gi

k+lk+x

kpdkrd

≈ 1
Gtot

,
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it’s more like a choice of simplification and this whole term represents certain “gain of protein Ri from
gene Gi copy number.”

This is the output of our GRN version LTU.We anticipate this to be capable of performing the “decision”
function of an LTU. Recall that we would have a firing output of the neuron if the linear combination
of input signals is higher than a threshold, and on the contrary the neuron would be silent if the linear
combination of input signals can’t achieve the threshold. This gives the graphical intuition of a “decision
boundary.”

In our molecular design, this exact decision boundary would be implemented by the result of a “cruel
competition” between Ri and R ′

i: since the binding of two regulators is so tight, we can almost say that
Ri occurs only if Rtot,i > Rtot,i ′ , since otherwise it would all show up in the binding form Dii ′ .

In the previous paragraphs we already analyzed the computation essence (Gi and Ri) of our GRN im-
plementation, and we can now connect the whole body of this one LTU, starting from the decision goal
Rtot,i > Rtot,i ′ :

Rtot,i > Rtot,i ′

αi

1 +
∑

j
1

K
ij
M

Ij
>

αi ′

1 +
∑

j
1

K
i ′j
M

Ij

(
αi := gi

k+lk+x

kpdkrd

Gtot,i

)

αi

(
1 +

∑
j

1
K

i ′j
M

Ij

)
> αi ′

(
1 +

∑
j

1
K

ij
M

Ij

)
∑
j

(
αi

K
i ′j
M

−
αi ′

K
ij
M

)
Ij > αi ′ − αi. (8.2)

This has the LTU form “weighted sum > threshold.”

By comparing the last equation with the LTU definition, we can see that we successfully built a LTU
element with 3 genes. So theoretically, if we want, we can now build up an ANN in biology.

8.2.2 Practical Considerations
The computational complexity (or specifically, the functional expression capability) of ANN scales with
the number of weights, or the number of connections between neuron units. For one GRN-version
LTU that we just created, this number of connection is roughly the number of transcription regulatory
binding to the genes (likeGi andG ′

i). So the number of connection in this network would be the typical
number of gene transcription binding times the total number of genes involved.

Biological knowledge would give us a rough taste of this number of connections:

E. coli Yeast Human
# TFs 300 (7%) 200 (3%) 1800
# TFs on a gene (ChIP-seq etc.) 1 ∼ 2 (0 to 10) 5–12 (0 to 20) 10–12 (0 to 100)
# weights 102 103 104

The number of connections of network is at most the extend of 104. We can also take a look at the
history of ANN, the success of deep learning and machine learning areas enables amazing ai products
and changed the human society. How many connection do we need there?
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Era Representative models/tasks # weights (order)
1990s LeNet (LeCun); MLP on MNIST; etc. ∼ 105

2010s Deep nets: AlexNet (2012), VGG-16 (2014), ResNet (2015) on ImageNet 107–108

2020s Transformers: GPT-1, GPT-2, GPT-3, GPT-4 108, 109, 1011, 1012

So with our reasoning and estimation, even human cells achieves 1/10 of LeNet, which is just for simple
tasks like hand-written digit recognitions……This is somewhat unsatisfactory and disappointed: we be-
lieve that cells are definitelymore powerful and efficient, andwe are eager to achieve better computation
with biology-implemented circuits. But I think it’s no suprise that we face this challenge. We just made
a hard, superficial analogy to make a molecular network exactly the same as ANN to implement the
computation, and this is fairly impossible that cell happens to choose this very strategy. The success of
human world ANN, what problems we meet, what we can do, how ANN address computation tasks…
would be quite different with the situations for a cell, a biological entity.

8.3 Side Note: Binding is much more efficient!
When we attempt to build bio-computation machines, binding reaction network may be more powerful
than the gene regulation network(GRN).

We first show that a simple tight binding would implement a ReLU function. If two species A and B

bind very tightly to form complex C, then in the tight-binding limit the free amount of A is approxi-
mately

A ≈ max(0,Atot − Btot) = ReLU(Atot − Btot).

The number of binding reactions in cells would be much larger:

Type of binding reaction E. coli Yeast Mammalian
protein–protein 104–105 105–106 106–107

enzyme–substrate / cofactor 105 — —
protein–DNA — — —
protein–RNA — 104–105 —
protein–lipid / ion … — — —
Total 105–106 106–107 107–108

But it still don’t scales to contribute to the computation complexity. What’s more, not all bindings are
tight. And we should not assume all of these binding reactions serve for just “computation.” After all,
cells need to do a whole bunch of other tasks.

8.4 Computational Tasks in Biology vs Engineered Systems
8.4.1 Logic Gates, LTUs, and Cellular Computation
In engineered systems such as digital computers, the fundamental computational elements are logic
gates (e.g. AND, OR, NOT, NAND), which implement Boolean operations and logical deduction. In
deep artificial neural networks (ANNs), the basic units are linear threshold units (LTUs); large networks
of LTUs can approximate arbitrary complex input–output maps.

A natural question is: what are the analogous computational tasks in biological systems? Do cells
need to perform logical deduction, or fit arbitrary input–output functions the way engineered ANNs
do?
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One ubiquitous task is the following: in response to different combinations of environmental signals
(nutrients, antibiotics, hormones, morphogens, and so on), a cell switches into different internal states,
often realized as distinct gene-expressionprograms. Thus the cellmust implement at least one nontrivial
map.

environmental inputs −→ cellular states / behaviors.

A convenient abstraction is shown in Fig8.7.

Input Cell Output

environmental / external signals internal gene regulatory network stable cellular state / response

Figure 8.7 Abstract view of cellular computation: environmental inputs are processed by the cell into distinct
output states.

8.4.2 Real Example: Multi-fate Differentiation
A concrete biological example is multi-fate differentiation (e.g. Zhu Ronghui, Elowitz lab, Science 2022).
The computational task is to generate on the order of 102–103 distinct cell types using on the order of 10
transcription factors (TFs), rather than 102–103 distinct TFs.

This is achieved by combinational encoding. For example, if three genes A,B,C can each be high or low,
there are 23 = 8 possible expression patterns. More generally, N genes provide 2N combinatorial pat-
terns.

The implementation is throughmultistability in gene-expression space: each stable cell type corresponds
to a distinct stable fixed point (attractor) of the underlying dynamical system. Figure 8.8 shows a simple
schematic with three stable fixed points in the plane spanned by gene A and gene B.

gene A

gene B

Figure 8.8 Multistability in the gene A–gene B plane. Filled dots are stable fixed points; surrounding arrows
indicate flow of cell states toward these attractors.

Another Example of Multistability: Toggle Switch
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A canonical synthetic example is the toggle switch with mutual repression (Gardner & Collins 2000).
Two genes A and B repress each other’s expression via their protein products.

At the gene level, the proteins bind the opposite promoter and inhibit transcription; at the protein level,
A and B form a mutually repressive pair. This is summarized schematically in Fig. 8.9.

Figure 8.9 Mutual repression between two genes A and B and between their protein products.

Mutual Repression: Dynamics and Nullclines

We write the binding reactions

GA + B⇌ GB
A, GB +A⇌ GA

B ,

and the dynamics for the total protein concentrations Atot and Btot as

dAtot

dt
= ν+ β

GA

Gtot
− δAtot, (8.3)

dBtot

dt
= ν+ β

GB

Gtot
− δBtot. (8.4)

Assuming Gtot ≪ KA,KB,

GA ≈
Gtot

1 + Btot/KA

, (8.5)

GB ≈
Gtot

1 +Atot/KB

. (8.6)

From dBtot/dt = 0 we obtain the nullcline

Btot =
1
δ

(
ν+ β

1
1 +Atot/KA

)
.

A schematic of the Atot and Btot nullclines is shown in Fig. 8.10; there is only one intersection, so the
system is monostable in this simple parameter regime.

To increase nonlinearity, we can let repressors be dimers (or multimers):

GA + 2B⇒ GB
A, GA ≈

Gtot

1 + (Btot/KA)2 .

However, even then we may obtain only two stable states, with a middle unstable fixed point.
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Figure 8.10 Nullclines for the mutual repression toggle in a simple parameter regime with a single intersec-
tion. More curvature is needed to obtain multiple fixed points.

8.4.3 Developmental Motifs and SAMI
Motifs from developmental biology often combine self-activation with mutual inhibition (sometimes re-
ferred to as SAMI). It is easy in such motifs to make one gene high and the other low, yielding two
alternative stable states.

However, competitive binding for inhibition and higher-order binding such as dimerization can further
sharpen response curves and introduce ultrasensitivity. This raises the question: can two genes produce
more than two stable states (e.g. three stable states)?

Binding Reactions and Nullcline Analysis

We enrich the model by introducing explicit binding between A and B:

GA +A⇌ G∗
A, (8.7)

GB + B⇌ G∗
B, (8.8)

A+ B⇌ CAB. (8.9)

The dynamics become

dAtot

dt
= α+ β

G∗
A

Gtot
− δAtot, (8.10)

dBtot

dt
= α+ β

G∗
B

Gtot
− δBtot. (8.11)
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Figure 8.11 With stronger nonlinearity, the nullclines can intersect three times; typically the middle fixed
point is unstable and the outer ones are stable, giving bistability.

Using a quasi–steady-state approximation,

G∗
A ≈

GtotA

A+ KA

, (8.12)

G∗
B ≈

GtotB

B+ KB

, (8.13)

and assuming CAB ≪ KA,KB so that

Atot ≈ A+ CAB, Btot ≈ B+ CAB.

For the Atot nullcline,
α+ β

A

A+ KA

= δAtot.

We consider different regimes:

1. Atot very low:

α≫ β
A

A+ KA

⇒ Atot ≈
α

δ
.

2. Atot very large:

α≪ β
A

A+ KA

⇒ β
A

A+ KA

= δAtot.
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(a) If Btot is small, then A ≈ Atot and
Atot ∼

β

δ
.

(b) If Btot is comparable with Atot, then

A ≈ Atot − Btot ≪ KA,

giving
β

KA

(Atot − Btot) = δAtot,

hence
Btot =

(
1 −

δKA

β

)
Atot.

Figure 8.12 Schematic nullcline of Atot in the presence of A–B binding; in the relevant region the slope can
be tuned to be less than 1.

Despite the additional binding, the system may still be only bistable unless we introduce stronger ultra-
sensitivity in the activation step.

Homodimer Activation, Heterodimer Inhibition and Scaling

We now consider homodimer activation together with heterodimer inhibition. Dimers A2 and B2 acti-
vate their own promoters, whereas the heterodimer CAB is inactive:

A+A⇌ A2, (8.14)
B+ B⇌ B2, (8.15)
A+ B⇌ CAB, (8.16)

A2 +GA ⇌ G∗
A, (8.17)

B2 +GB ⇌ G∗
B. (8.18)

Atot = A+ 2A2 + CAB, Btot = B+ 2B2 + CAB.

AssumingGtot ≪ KGA,KGB and thatA2,B2 never dominate, one can show that in the regime where Btot
is comparable to Atot,

A ≈ Atot − Btot, A2 ≈
(Atot − Btot)

2

KA

,
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Figure 8.13 A2-like activation bends the nullcline upward, allowing three intersections and thus three stable
states for two genes.

and setting dAtot/dt = 0 yields

β
(Atot − Btot)

2

KAKGA

= δAtot.

This corresponds to an effective A2-type activation that can bend the nullcline upward and produce
three intersections (three stable states) for two genes.

Figure 8.14 Homodimer activation (A2,B2) and heterodimer inhibition via CAB.

Ultrasensitivity from binding and dimerization thus adds extra stable states. Roughly, ifN transcription
factors participate in such combinatorial binding networks, one can achieve on the order of 2N stable
expression patterns. For N ≈ 10, this yields 102 to 103 stable cell types—comparable to the diversity of
cell types in many multicellular organisms.

Cells therefore perform efficient and complex computation primarily through binding networks: many
binding reactions and comparatively few catalytic reactions, a very different “hardware” from digital
electronics but capable of similarly rich computational behavior.
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