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1 Order of Magnitude(OoM) reasoning
The world is connected, and our “eye” to see such connections are orders of magnitude
reasoning. Seemingly unrelated observations could be in fact deeply constraining each
other. To practice this “vision”, we explore some calculations below, with contexts grad-
ually shifting from the macroscopic world we are more familiar with to the microscopic
world of molecules and cells.

1.1 Hangzhou Exodus
To get a feeling for order of magnitude reasoning, let us start with an estimate for the
following problem. Imagine Hangzhou is in a sudden crisis, so we need to evacuate the
population of Hangzhou, what would be the best way to do it? By Car? Train? Airplane?
Remember that Hangzhou has a population of about 10 million.

We probably want to leave Hangzhou fast. So let us consider the transportation method
that is fastest for individuals.

• By airplane:

– We have 1 airport in Hangzhou
Let’s say under emergency we need 2 min for an airplane to leave airport.
2 min/airplane =⇒ 60 × 24 ≈ 103 min/day

=⇒≈ 500 airplane/day

1



102 people/airplane =⇒ 5 × 104 people/day
=⇒ 200 days

200 days is too long for to escape from an apocalypse. Is there a method that can be faster
than this? We observe that the key bottleneck of the airplane method is that we only have
one airport in Hangzhou. The airplane itself is fast, but the number of runways is too
low.

Given this, let us leave the estimate for trains as an exercise (we would guess it is too slow
overall due to the same reason of bottleneck as the airplane method), and directly jump
to escape by cars. Cars have many lanes on highways to travel, which may resolve the
previous bottleneck.

Figure 1

Hangzhou

Highways

• By cars

– Let’s say totally we have 10 highways to leave Hangzhou (Roughly check the
map, see Fig 1)
4 lanes/way =⇒ 8 lanes total/way (Emergency state: all lanes going out.)

=⇒≈ 102 lanes

– Properties of cars
Speed v ≈ 80 km/h ≈ 20 m/s
Distance between cars L ≈ 40 m/car (let’s say we need 2s to react)
Capacity N = 4 people/car
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FLuxPerLane =
N · v
L

=
4 people/car × 20 m/s

40 m/car
≈ 2 people/s

=⇒100 lanes × 2 people/(s · lane)× 3600 s/hour × 24 h/day ≈ 2 × 107 people/day
So roughly 1 day all people are evacuated.

Roughly 1 day to evacuate all people in Hangzhou, which is very nice indeed! However,
we assumed the only bottleneck is the number of lanes and ignored other possible con-
straints. Could new limiting factors come into play? For example, we assumed there are
enough cars inHangzhou, and every person can get into a car. Could the actual number of
cars be limiting? What if people drive slower or faster than the speed we assumed?

To reason about these problems, let us investigate the real bottleneck of the cars method.
We notice that the flux of people per lane is dependent on both the speed of driving and
the distance between cars, and the latter is limited by our time to react, τ. But τ is the
same due to fundamental human reflex, which cannot be drastically reduced. So this is
the actual bottleneck. Let us rewrite our calculation in terms of τ.

• Could it be that number of Cars is not enough?
( A new bottom neck? Could be, but does it matter?)
Let τ be the time to react to guarantee safety.And τ is fixed as we are all human.

Flux =
Nv

L
=

N

τ

(
τ =

L

v

)
=⇒Car = Walking
e.g. we walk 1 m/s, need 2 m distance between people.
So, we could just WALK ON HIGHWAYS to evacuate.

The Hangzhou exodus example shows how the dimensions of key quantities dictate the
solution to a problem. Next, let us consider another problem that further demonstrates
this dimensional reasoning, and how it can be used to extend our intuition from themacro-
scopic world we are familiar with to other scales.

1.2 Dimensional reasoning: jump height in animals
Many animals can jump while across different sizes, we humans can jump, cats can jump,
fleas can jump. We may be wondering if there is some relationship between jump heights
and animal sizes?

• Example: A student can jump:
30 cm for Karla; Maybe 60 cm for a professional athlete.
(There is no change of orders of magnitude within humans.)

• To infer the relationship, let’s analyze from the energy:
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Eg = mgh = Em (Eg : gravitational potential energy)
m ∝ L3 (m ∝ Volume ∝ Length3)

Em ∝ L3fm (fm : volume fraction of muscle)
=⇒ h ∝ L0fm
Jump height is independent of mass/volume/size.

The above result is saying, the height an animal can jump has nothing to do with its mass,
volume or size, the only thing that matters is fm, the muscle fraction, as long as the animal
still uses the same muscle mechanism to jump. And this is roughly true:

• Rat : 50 cm
Flea : 25 cm
Cats : 100 cm (Roughly same order of magnitude)

The next question is time, as we have the same h, we got the same speed leaving the
ground.

1
2
mv2 = mgh =⇒ v is constant as h is constant

So humans, rats, fleas and cats all share roughly the same speed when leaving the ground.
Imagine fleas leaving the ground 3 meters per second! This is like thousands of body
lengths per second, which scales to human would be kilometers per second!

If we observe Karla’s jumping action carefully, we can find this jump takes her about 0.5 s
from stretching the leg to leaving the ground. This duration is reasonable formuscles since
she has about 0.5 m to release the muscle energy. But what about other animals?

• Time cost to release the energy in the muscle

The time τ is proportional to the height one can use to speed up. Thus

τ ∝ L

v
(τ : time to release energy)

Human: v ≈ 3 m/s =⇒ L
v
= 1 m

3 m/s ≈ 0.3 s
Cat: v ≈ 3 m/s =⇒ L

v
= 0.2 m

3 m/s ≈ 0.1 s
Flea: v ≈ 3 m/s =⇒ L

v
= 2 mm

3 m/s ≈ 1 ms !!

Even fastmuscles need about 0.1 s to contract its half length, 1 ms is far too short. The truth
is fleas choose to store energy in the bending of their shells to go beyond this limitation
on the the speed of release due to muscle mechanisms.

From rough calculations, we could use scaling to go from numbers we are familiar with
and scale up to what is very different scales animals are doing.
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For the next example, let’s heat up everything, to see what intuition that heating up pota-
toes can bring us. If we know how long to heat up a potato, can we assume how long to
cool down the moon?

1.3 Scaling: heating potatoes, and the moon

Figure 2

{
δx

δT

Heat  �low

{x-1 x+1x

Firstly we need to link together the time and the heat change, to find how item’s size can
involve this process. For simplicity, let’s consider a rod 2, with a temperature gradient
along its length, decreasing from left to right.

• Heat diffusion on rod
From intuitive, heat flux should be proportional to the local gradient of tempera-
ture,this gives:

J = −K▽T (J : Flux of the heat)

▽T ≈ δT

δx
(▽T : Gradient of Temperature )

And also, the neat change of temperature is reflected by the stored energy.

∆E ≈ CVδT (CV : Heat capacity per Volume, with unit: Heat/T)
(Change in E per volume taken T change by δT )

To derive how temperature changes over time, we will apply the principle of energy con-
servation. Consider a small segment of the rod with length δx, The net heat flux (the heat
flowing inminus the heat flowing out) results in a change in the segment’s internal energy.
This energy balance leads to the following relationship:
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• Temperature changing in time
From conservation of energy: at x change temperature by δT in δt time
then

δxCvδT = (Jx−1 − Jx+1)δt = K(▽Tx+1 − ▽Tx−1)δt

=⇒δT

δt
=

K

CV

·
▽Tx+1 − ▽Tx−1

δx

=⇒∂T

∂t
= κ▽2T (κ =

K

CV

is heat diffusivity)

Now we have the partial derivative equation to describe how T changed with time, that
says the temperature’s change rate on one site is proportional to the temperature’s Hessian
on this site. The object’s size’s effect on the temperature change time is embedded within
this Hessian. To get the atypical scaling, we can simply remove the partial derivatives.
(We can derive the scaling just from variation in a unit time/length/etc).

• Thus we have
∂T

∂t
= κ

∂2T

∂xx

=⇒T

t
≈ κ

T

x2

=⇒t ≈ x2

κ

So the time grows with size’s square. To cool down the moon, now we need another
parameter κ, we don’t know yet but we can estimate from heating up potatoes.

• Hong long to heat up a potato?
From experience, about 10 min is need to heat up a potato of size10 cm
=⇒ κ ≈ x2

t
≈ 1×10−2 m2

600 s ≈ 1.5 × 10−5 m2/s
Now we get the number of κ, finally we can turn our view to moon!

• Cool down the moon since its birth.
L = 2000 km = 2 × 106 m

t ≈ x2

κ
=

4 × 1012 m2

1.5 × 10−5 m2/s
≈ 3 × 1017s

(3600 s × 24 h × 365 day =⇒ 3 × 107 s/year)
=⇒t ≈ 1 × 1010years

The solar system is approximately: 4.6 billion years ≈ 5 × 109 years. Our calculation sug-
gests the Moon is not yet fully cooled, but very close. In reality, the Moon is considered
fully cooled. This is because, early in its history, its molten core greatly accelerated the
cooling process through convection, which is a much more efficient method of heat trans-
fer than conduction alone.

Through these examples, we’ve seen how order of magnitude reasoning reveals profound
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connections. These cases demonstrate that by identifying the core physical constraints and
understanding how they scale, we can make powerful predictions across vastly different
domains.

Now let’s dive into the biology world to see what surprise the order of magnitude reason-
ing can bring us.

1.4 OoM in biology: molecules in cells
1.4.1 Order of Magnitude(OoM) reasoning in biology

• In biologyworld, OoM is often very helpful to give a ”Null hypothesis”,”Nullmodel”,
predicting what should occur based only on fundamental physical or chemical prin-
ciples, before we spendmuch time doing literature reading, detailed simulations, or
even experiments.

Like physics, in biology world,we often care about some quantities. At the single-item
level, we care about properties like length, volume, weight, speed, position... At the pop-
ulation level, quantities like number and concentration etc. become important. Let’s start
with some of these basic properties of different molecules within cells.
1.4.2 Molecules in cells

• References: cell biology by the numbers. Also, “Snapshot: characteristic rates and
timescales in cell biology”. s

Atom Cell Human

1Å/0.1nm
10-10m 10-6m

1μm 1m

• Length scale of different cells
E.coli 1 µm
Yeast 5 µm
Mammalian 20 µm(10 µm roughly)

Tomake the following analysis more specific, let’s take E.coli as our standard reference for
the microscopic world.

• E.coli

– Volume of E.coli:
1 µm2 = 1 × 10−18 m3 = 1 × 10−15L = 1 fL ( f : femto)

1 µL (of bacteria) =⇒ 1 × 109cells
As 1 mL of bacterial culture at saturation =⇒ pellet is 1 µL
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So for 1 mL of culture media, the E.coli cells are actually takes only 10−3 of the vol-
ume which is even less dense than our classroom.

– Mass (of proteins? metabolites?):
Glucose/Nucleotide: 3 × 102 Da =⇒ Size : (3 × 102)

1
3 ≈ 6 Å

Amino acid(a.a): 102 Da( a bit lighter (from about 60 ∼ 200 Da))

The a.a.’s average MW is 102 Da is because we calculate average in log,
√

60 × 200 ≈
100. Further this is because the order of magnitude changes under log space.

Now we need how many a.a. in a protein to calculate the MW of proteins

– How many a.a. in a protein?{
lower bound 50 a.a.
upper bound 5 × 103 a.a. =⇒

√
2 × 105 ≈ 300 a.a.

=⇒ ≈ 300 a.a./protein =⇒ MW = 30 kDa/mol

=⇒Num of protein per cell = 1 pg
30 kDa/mol

· 6 × 1023 Da
mol

≈ 2 × 107

The above result gives us a theoretical upper bound of the number of proteinswithin
one e.coli, as we assume all molecules within one e.coli is protein. While commonly,
for one type of protein, this number is from 103 ∼ 104

– Concentration:
What is the concentration of one molecule per cell?
1 molecule/cell =⇒ 1

1×10−15 L
mol

6×1023 ≈ 10−9 M = 1 nM
Metabolites 106 ∼ 107 /cell =⇒ 1 ∼ 10 mM
Protein 103 ∼ 104 /cell =⇒ 1 ∼ 10 µM

– Volume of Genome, protein
Genome: E.coli got 5 Million base pairs
If we first calculate about length:

5 × 106 bp × 0.3 nm/bp ≈ 1 × 106 nm = 103 µm

This result indicate that the genome are so long that it needs to be folded at
least 1, 000 times to put into E.coli. But what about its volume?
Now we calculate its volume:

3 × 102 Å3/bp · 5 × 107 bp = 300 · (1 × 10−4 µm)3 · 5 × 107 ≈ 1.5 × 10−2 µm2

So while long, Genome only take ∼ 1%of volume of a cell.
What about protein’s volume? Roughly one e.coli have about 107 proteins, thus:
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300 a.a × 100 Å3 × 107 ≈ 0.3 µm3 =⇒ 20 − 40% of the cell

So unlike genome, proteins are crowded!

From above data and calculation we have built some sense of this micro-world, and static.
But what about dynamics?
1.4.3 Rates in cells — Diffusion(How molecules move in cells)

hours

mins

Let’s first get some sense of how diffusion happens for this microscopic world.

From our calculations for the heat diffusion case, we know the diffusion behavior has the
following scaling relating τ, the duration, and x, the distance the diffusion behavior can
reach.

• Diffusion scaling:
1
τ
= D

x2

The diffusion effect was first studied by Robert Brown, 1827. He put a pollen under water
and observed under a microscope, and found the pollen jiggling without any apparent
force. And now we can make his experiment as a reference to start up. Let’s estimate the
diffusion coefficient for pollen first.

• Infer the parameter for pollen.
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How big is a pollen particle? From our daily experience, while we can see the gran-
ules that contains lots of pollen particles, we cannot observe individual pollen par-
ticles directly by naked eye. However, Brown can observe a pollen particle under
a microscope, a microscope in the 1800s so not a very large magnification. So we
could estimate that a pollen particle should be around the size of an eukaryotic cell
which can be easily observed under the microscope, so ∼ 10 µm.

Some observation is that: When pollen jiggles under microscope, we can see the jig-
gles in seconds, so the movement should be roughly ∼ 1 µm on seconds timescale.
But most movements cancel out.

Tomove a significant distance, around one body length 10 µm, requiresmuch longer,
since we do not see the pollen particles significantly move within minutes of obser-
vations. Therefore, 10 µm movement requires about 1 h, so D can be estimated as
D = x2

τ
= (10 µm)2

3600 s ≈ 3 × 10−3 µm−2/s.

Pollen provides a good beginning for us to scale down to proteins, so the key question is,
how does D change when the particle size decreases? From our intuition, the smaller the
particle, the faster it shall move. In other words, D is negatively correlated with L which
denotes the particle size. We can guess D ∝ L−1, and it turns out to be true.

Why? Diffusion is balance between thermal force (water hitting on pollen) and drag in
viscous(low Re,”skin friction drag”){

Force ∝ L2

Friction ∝ Lv
(two forces are balanced)

D = µKBT ∝ µ ∝ v

F
∝ v

Lv
∝ L−1

Now let’s go from pollen to proteins

• Diffusion rate of protein
Protein size: (300) 1

3 ≈ 1 nm
Dprotein

DPollen
∝ Lpollen

Lprotein
= 10 µm

1 nm = 1 × 104 =⇒ Dprotein = 100 µm2/s
With the diffusion rate, nowwe can calculate how long it takes for a protein to move
across different cells just by passive diffusion.

• Time for a protein to diffusion in different cell
E.coli: 1 µm t ≈ x2

D
= (1 µm)2

100 µm2/s = 1 × 10−2 s
Mammalian: 10 µm t ≈ x2

D
≈ (10 µm)2

100 µm2/s = 1 s
Eggs 100 µm t ≈ x2

D
≈ (100 µm)2

100 µm2/s = 100 s
Axon: 1 m t ≈ x2

D
≈ (1×106 µm)2

100 µm2/s = 1010 s ≈ 3 × 102 years
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Thus we see for long cells like neurons, transferring proteins by passive diffusion becomes
inefficient as t ∝ x2. This suggests that more efficient protein transport mechanisms must
exist for these cells.
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