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1 Order of Magnitude(OoM) reasoning

The world is connected, and our “eye” to see such connections are orders of magnitude
reasoning. Seemingly unrelated observations could be in fact deeply constraining each
other. To practice this “vision”, we explore some calculations below, with contexts grad-
ually shifting from the macroscopic world we are more familiar with to the microscopic
world of molecules and cells.

1.1 Hangzhou Exodus

To get a feeling for order of magnitude reasoning, let us start with an estimate for the
following problem. Imagine Hangzhou is in a sudden crisis, so we need to evacuate the
population of Hangzhou, what would be the best way to do it? By Car? Train? Airplane?
Remember that Hangzhou has a population of about 10 million.

We probably want to leave Hangzhou fast. So let us consider the transportation method
that is fastest for individuals.
* By airplane:

— We have 1 airport in Hangzhou
Let’s say under emergency we need 2 min for an airplane to leave airport.
2 min/airplane = 60 x 24 ~ 10® min/day
—>= 500 airplane/day



10? people/airplane == 5 x 10* people/day
=—> 200 days
200 days is too long for to escape from an apocalypse. Is there a method that can be faster
than this? We observe that the key bottleneck of the airplane method is that we only have

one airport in Hangzhou. The airplane itself is fast, but the number of runways is too
low.

Given this, let us leave the estimate for trains as an exercise (we would guess it is too slow
overall due to the same reason of bottleneck as the airplane method), and directly jump
to escape by cars. Cars have many lanes on highways to travel, which may resolve the
previous bottleneck.

Figure 1
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® By cars

— Let’s say totally we have 10 highways to leave Hangzhou (Roughly check the
map, see Fig 1)
4 lanes/way = 8 lanes total/way (Emergency state: all lanes going out.)

—= 10? lanes

— Properties of cars

Speed v ~ 80 km/h ~ 20 m/s
Distance between cars L~ 40 m/car (let’s say we need 2s to react)
Capacity N = 4 people/car



N-v 4 people/car x 20 m/s
L 40 m/car

=100 lanes x 2 people/(s - lane) x 3600 s/hour x 24 h/day ~ 2 x 10" people/day
So roughly 1 day all people are evacuated.

FLuxPerLane = ~ 2 people/s

Roughly 1 day to evacuate all people in Hangzhou, which is very nice indeed! However,
we assumed the only bottleneck is the number of lanes and ignored other possible con-
straints. Could new limiting factors come into play? For example, we assumed there are
enough cars in Hangzhou, and every person can get into a car. Could the actual number of
cars be limiting? What if people drive slower or faster than the speed we assumed?

To reason about these problems, let us investigate the real bottleneck of the cars method.
We notice that the flux of people per lane is dependent on both the speed of driving and
the distance between cars, and the latter is limited by our time to react, T. But 7 is the
same due to fundamental human reflex, which cannot be drastically reduced. So this is
the actual bottleneck. Let us rewrite our calculation in terms of T.

¢ Could it be that number of Cars is not enough?
( A new bottom neck? Could be, but does it matter?)
Let T be the time to react to guarantee safety.And 1 is fixed as we are all human.

Flux = N = N <T:E)
L T v

—>Car = Walking
e.g. we walk 1 m/s, need 2 m distance between people.
So, we could just WALK ON HIGHWAYS to evacuate.

The Hangzhou exodus example shows how the dimensions of key quantities dictate the
solution to a problem. Next, let us consider another problem that further demonstrates
this dimensional reasoning, and how it can be used to extend our intuition from the macro-
scopic world we are familiar with to other scales.

1.2 Dimensional reasoning: jump height in animals

Many animals can jump while across different sizes, we humans can jump, cats can jump,
fleas can jump. We may be wondering if there is some relationship between jump heights
and animal sizes?

¢ Example: A student can jump:
30 cm for Karla; Maybe 60 cm for a professional athlete.
(There is no change of orders of magnitude within humans.)

* To infer the relationship, let’s analyze from the energy:



E; =mgh =E,, (Eg: gravitational potential energy)
m o L3 (m o Volume o Length?)
E.. o L3f,, (fi : volume fraction of muscle)

— ho L'f,
Jump height is independent of mass/volume/size.

The above result is saying, the height an animal can jump has nothing to do with its mass,
volume or size, the only thing that matters is f,,, the muscle fraction, as long as the animal
still uses the same muscle mechanism to jump. And this is roughly true:

* Rat: 50 cm
Flea: 25 cm
Cats : 100 cm (Roughly same order of magnitude)

The next question is time, as we have the same h, we got the same speed leaving the
ground.

1
§mv2 = mgh = v is constant as h is constant

So humans, rats, fleas and cats all share roughly the same speed when leaving the ground.
Imagine fleas leaving the ground 3 meters per second! This is like thousands of body
lengths per second, which scales to human would be kilometers per second!

If we observe Karla’s jumping action carefully, we can find this jump takes her about 0.5 s
from stretching the leg to leaving the ground. This duration is reasonable for muscles since
she has about 0.5 m to release the muscle energy. But what about other animals?

* Time cost to release the energy in the muscle

The time 7 is proportional to the height one can use to speed up. Thus

L .
T - (T: time to release energy)

Human: v~3m/s= L =18 ~(035s
v 3m/s

Cat: vadm/s = L =02m (g
v 3m/s

Flea: VA 3m/s = L =2mm 1 pg !l
v 3m/s

Even fast muscles need about 0.1 s to contract its half length, 1 msis far too short. The truth
is fleas choose to store energy in the bending of their shells to go beyond this limitation
on the the speed of release due to muscle mechanisms.

From rough calculations, we could use scaling to go from numbers we are familiar with
and scale up to what is very different scales animals are doing.



For the next example, let’s heat up everything, to see what intuition that heating up pota-
toes can bring us. If we know how long to heat up a potato, can we assume how long to
cool down the moon?

1.3 Scaling: heating potatoes, and the moon
Figure 2

Heat flow
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Firstly we need to link together the time and the heat change, to find how item’s size can
involve this process. For simplicity, let’s consider a rod 2, with a temperature gradient
along its length, decreasing from left to right.

¢ Heat diffusion on rod
From intuitive, heat flux should be proportional to the local gradient of tempera-
ture,this gives:

] =—KvT (] : Flux of the heat)
T
VT ~ Z_x (VT : Gradient of Temperature )

And also, the neat change of temperature is reflected by the stored energy.

AE ~ CydT (Cy : Heat capacity per Volume, with unit: Heat/T)
(Change in E per volume taken T change by 6T)

To derive how temperature changes over time, we will apply the principle of energy con-
servation. Consider a small segment of the rod with length 6x, The net heat flux (the heat
flowing in minus the heat flowing out) results in a change in the segment’s internal energy.
This energy balance leads to the following relationship:
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¢ Temperature changing in time
From conservation of energy: at x change temperature by 6T in 6t time

then
XCydT = (Jx , — Jx. )0t =K(VTy,, — VT, )bt
:>6T K VT, — VT,
ot N CV ox
oT K
—— =kVT (k = = is heat diffusivity)
ot Cv

Now we have the partial derivative equation to describe how T changed with time, that
says the temperature’s change rate on one site is proportional to the temperature’s Hessian
on this site. The object’s size’s effect on the temperature change time is embedded within
this Hessian. To get the atypical scaling, we can simply remove the partial derivatives.
(We can derive the scaling just from variation in a unit time/length/etc).

e Thus we have
oT KE)2T
ot ox©
T T

= — X~ K—
t x2
X2
—t~ —
K

So the time grows with size’s square. To cool down the moon, now we need another
parameter k, we don’t know yet but we can estimate from heating up potatoes.

* Hong long to heat up a potato?
From experience, about 10 min is need to heat up a potato of sizel0 cm
= ko X DABIIE 15 % 1075 m?/s
Now we get the number of k, finally we can turn our view to moon!

¢ Cool down the moon since its birth.
L =2000 km =2 x 10° m

x2 4 x 10'? m?
S T 15 x 105 m2/s
(3600 s x 24 h x 365 day = 3 x 107 s/year)
=t~ 1x 10"years

~3x10"s

The solar system is approximately: 4.6 billion years ~ 5 x 10 years. Our calculation sug-
gests the Moon is not yet fully cooled, but very close. In reality, the Moon is considered
tully cooled. This is because, early in its history, its molten core greatly accelerated the
cooling process through convection, which is a much more efficient method of heat trans-
fer than conduction alone.

Through these examples, we’ve seen how order of magnitude reasoning reveals profound
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connections. These cases demonstrate that by identifying the core physical constraints and
understanding how they scale, we can make powerful predictions across vastly different
domains.

Now let’s dive into the biology world to see what surprise the order of magnitude reason-
ing can bring us.

1.4 OoM in biology: molecules in cells

1.4.1 Order of Magnitude(OoM) reasoning in biology

* Inbiology world, OoM is often very helpful to give a "Null hypothesis”,”Null model”,
predicting what should occur based only on fundamental physical or chemical prin-
ciples, before we spend much time doing literature reading, detailed simulations, or
even experiments.

Like physics, in biology world,we often care about some quantities. At the single-item
level, we care about properties like length, volume, weight, speed, position... At the pop-
ulation level, quantities like number and concentration etc. become important. Let’s start
with some of these basic properties of different molecules within cells.

1.4.2 Molecules in cells

* References: cell biology by the numbers. Also, “Snapshot: characteristic rates and
timescales in cell biology”. s

Atom Cell Human
| | |
14/0.1nm 1um 1m >
10°m 10°m

* Length scale of different cells
E.coli 1 um
Yeast 5 um
Mammalian 20 um(10 pm roughly)

To make the following analysis more specific, let’s take E.coli as our standard reference for
the microscopic world.

e E.coli

— Volume of E.coli:
lum? =1x108¥m?*=1x107PL=1fL (f:femto)

1 uL (of bacteria) = 1 x 10%cells
As 1 mL of bacterial culture at saturation = pellet is 1 uL



So for 1 mL of culture media, the E.coli cells are actually takes only 10? of the vol-
ume which is even less dense than our classroom.

— Mass (of proteins? metabolites?):
Glucose/Nucleotide: 3 x 102 Da = Size : (3 x 102)3 ~ 6 A
Amino acid(a.a): 10? Da( a bit lighter (from about 60 ~ 200 Da))

The a.a.’s average MW is 10? Da is because we calculate average in log, v/60 x 200 ~
100. Further this is because the order of magnitude changes under log space.

Now we need how many a.a. in a protein to calculate the MW of proteins

— How many a.a. in a protein?
lower bound 50 a.a.
upper bound 5 x 10? a.a.

= & 300 a.a./protein = MW = 30 kDa/mol

1 pg 6 x 10 Da
30 kDa,/mol mol

— V2 x 10° &~ 300 a.a.

= Num of protein per cell = 2 x 107

The above result gives us a theoretical upper bound of the number of proteins within
one e.coli, as we assume all molecules within one e.coli is protein. While commonly,
for one type of protein, this number is from 10 ~ 10*

— Concentration:
What is the concentration of one molecule per cell?
1 Lo 10-9 M —
1 molecule/cell = m% ~10" M =1nM
Metabolites 10° ~ 107 /cell = 1 ~ 10 mM

Protein 103 ~ 10* /cell = 1 ~ 10 uM

— Volume of Genome, protein
Genome: E.coli got 5 Million base pairs
If we first calculate about length:

5% 10% bp x 0.3 nm/bp ~ 1 x 10° nm = 10* um

This result indicate that the genome are so long that it needs to be folded at
least 1,000 times to put into E.coli. But what about its volume?
Now we calculate its volume:

3x102A3/bp-5x 10" bp =300- (1 x 107% um)3 -5 x 107 ~ 1.5 x 10~ 2 um?

So while long, Genome only take ~ 1%of volume of a cell.
What about protein’s volume? Roughly one e.coli have about 107 proteins, thus:



300 a.a x 100 A3 x 107 ~ 0.3 pum® = 20 — 40% of the cell
So unlike genome, proteins are crowded!

From above data and calculation we have built some sense of this micro-world, and static.
But what about dynamics?

1.4.3 Rates in cells — Diffusion(How molecules move in cells)

- _/

Let’s first get some sense of how diffusion happens for this microscopic world.

From our calculations for the heat diffusion case, we know the diffusion behavior has the
following scaling relating T, the duration, and x, the distance the diffusion behavior can
reach.

¢ Diffusion scaling:
1_ D

The diffusion effect was first studied by Robert Brown, 1827. He put a pollen under water
and observed under a microscope, and found the pollen jiggling without any apparent

force. And now we can make his experiment as a reference to start up. Let’s estimate the
diffusion coefficient for pollen first.

¢ Infer the parameter for pollen.



How big is a pollen particle? From our daily experience, while we can see the gran-
ules that contains lots of pollen particles, we cannot observe individual pollen par-
ticles directly by naked eye. However, Brown can observe a pollen particle under
a microscope, a microscope in the 1800s so not a very large magnification. So we
could estimate that a pollen particle should be around the size of an eukaryotic cell
which can be easily observed under the microscope, so ~ 10 pm.

Some observation is that: When pollen jiggles under microscope, we can see the jig-
gles in seconds, so the movement should be roughly ~ 1 pm on seconds timescale.
But most movements cancel out.

To move a significant distance, around one body length 10 pm, requires much longer,
since we do not see the pollen particles significantly move within minutes of obser-

vations. Therefore, 10 pm movement requires about 1 h, so D can be estimated as
2

10 um)? — —
D= =00 351073 um—?/s.

Pollen provides a good beginning for us to scale down to proteins, so the key question is,
how does D change when the particle size decreases? From our intuition, the smaller the
particle, the faster it shall move. In other words, D is negatively correlated with L which
denotes the particle size. We can guess D o< L™}, and it turns out to be true.

Why? Diffusion is balance between thermal force (water hitting on pollen) and drag in
viscous(low Re,”skin friction drag”)

2
{Ffiiifgnoco}l_v (two forces are balanced)
v v 1
D=pKgT xpox =x—xL
F Lv

Now let’s go from pollen to proteins

* Diffusion rate of protein
. . 1
Protein size: (300)3 ~ 1 nm
Dprotein Lpollen _ 10pum __ 4 A _ 2
Drpotten & LPTotein T lom T 1 x 10 = DprOtEIn - 100 HI /S

With the diffusion rate, now we can calculate how long it takes for a protein to move
across different cells just by passive diffusion.

¢ Time for a protein to diffusion in different cell

E.coli: 1 pm t%’%:ugét—ﬁgjszlxlofzs
- ~ x2 o (10pm)®
Mammalian: 10 um te 5~ 00 ym? /5 — ls
_ x2 __ (100 um)® _
Eggs 100 pum tN%NW‘%};/SleOS
2 m
Axon: 1m ~ 5~ % =10 s =~ 3 x 10? years
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Thus we see for long cells like neurons, transferring proteins by passive diffusion becomes
inefficient as t o« x*. This suggests that more efficient protein transport mechanisms must
exist for these cells.
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