Ctrl & Comp in Bio Sys - Westlake Univ., Fall 2025

Lecture 10: Computation Biomachine

2025.1113
Lecturer: Fangzhou Xiao Scribe: Kaijun WANG, Xinyu WANG, Xiaowen ZHANG

Contents

1 Logic gate computation in cells 2
1.1 Basiclogicgate 2
1.2 Logic gate implementation with catalysis reactions 2
1.3 Comparison of complexity with engineered machines 2

2 Neural networks 4
2.1 LTU: Titration GRN Implementation 6
2.2 Practical Considerations 8

3 Side Note: Binding is much more efficient! 9

4 Computational Tasks in Biology vs Engineered Systems 10
4.1 Logic Gates, LTUs, and Cellular Computation 10
4.2 Real Example: Multi-fate Differentiation 10
4.3 Developmental Motifsand SAMI 12

Again, like what we discussed in adaptation biomachine, when we consider biological
systems, we often consider they have distinct functions. e.g. computation. To achieve such
functions, we have built engineered machines. e.g. computers. Since biological systems
also need to achieve the same tasks, the structures and design principles of engineered
machines could be used to better understand why biological systems are built in this way.
Although the functions of engineered machines and biomachines are the same (hopefully),
their implementations can be different.

Biological systems need to process information to respond to environments. e.g. activate a
gene expression to take up new nutrient, start a stringent response when harsh conditions
hit because a new cell type when growth factors say "differentials"...

environment —{Cell / Biocircuit}—» action

Figure 1

How are the computations done? How complex a computation the cell achieve in this way?

In engineered machines, we build computational units, then link them up for larger and

larger computations. In the following sections, we will search for biological computational
units.

1 Logic gate computation in cells

1.1 Basic logic gate

We built computers consisting of binary logic gates to perform computation. Both the
inputs and the outputs of logic gates are binary, either true(1) or false(0). There are three
basic logic gates: AND, OR, NOT.

A B|AB
0 0] 0
% AND Output 0 1] 0
1 0] 0
1 1) 1

A B|A+B

0 0] O

‘% 4’ Output 0 1] 1

1 0 1

1 1 1

Al-A
A Output 0 1
110

Figure 2 Diagrams of AND(top), OR(middle and NOT(down) gates and their corresponding
truth tables

1.2 Logic gate implementation with catalysis reactions

Maybe cells can do the same thing. Let’s assume that cells encode 0/1 as low/high
concentration, Xy, X;. And cells may implement logic gates via catalysis reactions. The
following equations show a series of catalysis reactions that achieves a NAND gate. We
should note that NAND gate itself is enough to build universal Turing machines.

1.3 Comparison of complexity with engineered machines

But let us slow down here. If we assume that three substrates and four reactions are needed
to implement a single NAND gate, then a cell—with roughly 10? types of enzymes—could

2

X Y|Z
0 01
é }z 0 11
1 01
1 1]0

Xo+ Yo+ Zo— Xo+ Yo+ Z4
Xo+Yi+Zyg— Xo+ Y1+ 24
Xi+Yo+Zo =Xy +Yo+ 2y
X1+ Y14+ 2y = Xi+ Y1+ Zg

Figure 3 Diagrams of NAND gate, truth table and catalysis reactions implementation of NAND

effectively generate only about (3 x 10?) logic gates, even if all enzymes were devoted to
computation. When we compare this level of complexity with engineered machines, early
electronics such as a 1972 pocket calculator (about 3 x 10? transistors) and the Apollo
Guidance Computer used for the moon landing (around 5 x 10% logic gates) exceeded cellular
computational complexity only modestly. As technology progressed, microcontrollers with
limited functionality reached about 10° gates, and modern laptop processors now contain
on the order of 10° gates. At the very least, we should recognize that cells operate in a far
more complex and dynamic environment than a microcontroller does—yet there remains
a vast gap in raw computational complexity between a cell and a modern microcontroller.
Thus, we conclude that if cells only use logic gates for computation, the complexity of logic
gates is not enough. Maybe cells do computations in smarter ways to achieve more efficient
computing than logic gates.

Machine Complexity

cell (all the enzymes process information with gates) 3 x 10* gates

pocket calculator in 1972 3 x 10? transistors
moonlanding in 1970s 5 x 10% gates
microcontroller 10° gates

intel laptop chip 109 gates

Table 1 Complexity gap between cell and real engineered machines when assuming cells
process information with logic gates only.

2 Neural networks

Recent years (2010 onwards). Artificial neural networks (ANN) have taken over in com-
plexity of certain computational tasks, e.g. computer vision, language models/translation,
image recognition, robotics. .. ANNSs are more powerful by “depth”. Instead of just linking
computational units as cascades,

Input Output

Figure 4 Diagrams linking computational units as cascades

put them in layers, so they have exponential-in—-layer power of representational complexity.
Idea: use layers to build a very complex input—-output map that represents the solution of a
computational task. Then learn/represent this map by ANN. (Perceptron.) Computational
units of ANN are linear threshold units (LTU).

Input Output

Figure 5 Diagrams linking computational units in layers

WTXZZWiXi>e : y:l
i

wa=prq<6 :y=0

Divs
O
T Ri R; T 3
— N — o) ‘/\\\ 0 € v~ r*)(
mRNMA prvtean (&

ONE LTU

Figure 6 LTU implementation with gene regulatory network

Kix

G —>Gi+T; Transcription
T; Ka, T, + Ry Translation
T, X4) Transcript degradation
Ri Ny Regulatory species degradation
R; + Gy g Gij Regulation of transcription
Ri + R; % Dy Regulation among transcription factors
Dy + Gk k#; Gijx Binding of TF complex to gene
Gy i> Gy + T Result of regulation (Rate change)
Gijk ﬁ Gijx + Tx Result of regulation (Rate change)

2.1 LTU: Titration GRN Implementation

After given the definitions of the GRN, in this section we try to make it clear that why
it represents a LTU(or a neuron element) for further construction of an Artificial Neural
Network.

We begin by analyzing the two important species: a specific gene (G;) and a specific
regulator (R;). (In this case we assume the regulator is an repressor of gene). To make the
intuition clear, we denote the input repressor as I (which is the resulting output of the
previous layer), and the regulators in current layer would be the output variable, which we
denote R.

Single Gene G; We denote the total amount of gene as Gy i, consisting the free state
G; and regulated state Gj;. We can first solve the regulated state quantity using the
equilibrium of the binding reaction:

I, G;

Ii + Gj — Gij, K;\J/l =

Thus the regulated (bound) state is

I, G

Gij = Kij .
M

So the total amount of gene i would be:

Giot,i = Gi + Z Gij

)

L; G;
=Gl

j

:Gi<1+ZKli]. Ij>, 0
j M

hence
Gtot,i

Gy = —2t
h 1+Zj$1j

1
K
the form of a weighted linear combination. (i is the current node, and the j sums up all
the inputs). This is the exact result of design that we use the multiple regulator inputs to

assemble the input signals of a single LTU.

Notice that the mathematical form of this sum } ; 51 is analogous to the ANN, with

Single Regulator R; Similarly the regulator would have free state (R;) and the muted
dimer (D;;/, formed by its complementary regulator R}). At steady state, the total regulator
produced from gene G; can be written as

k+lk+x
kpdkrd

Rmm =04 Gy

Substituting the expression of G; above,

k+lk+x . Gtot,i
Kpakra 1+ 35 5
M

Riot,i = i

Note that in the last equation we assumed

it’s more like a choice of simplification and this whole term represents certain “gain of
protein R; from gene G; copy number.”

This is the output of our GRN version LTU. We anticipate this to be capable of performing
the “decision” function of an LTU. Recall that we would have a firing output of the neuron
if the linear combination of input signals is higher than a threshold, and on the contrary
the neuron would be silent if the linear combination of input signals can’t achieve the
threshold. This gives the graphical intuition of a “decision boundary.”

7

In our molecular design, this exact decision boundary would be implemented by the result
of a “cruel competition” between R; and R{: since the binding of two regulators is so tight,
we can almost say that R; occurs only if Ry i > Ryot.i7, Since otherwise it would all show up
in the binding form Dj;.

In the previous paragraphs we already analyzed the computation essence (G; and R;)
of our GRN implementation, and we can now connect the whole body of this one LTU,
starting from the decision goal Ry i > Ryot i
Riot.i > Riot,i
o4 < K (oc- . kyikyx
1 1 1T

1 1
0(1(1 + Z FL) > 0(1/(1 + Z KTI])
j M j M
X4 Xy
e Ij > Ky — K. ()
> (%)

This has the LTU form “weighted sum > threshold.”

By comparing the last equation with the LTU definition, we can see that we successfully
built a LTU element with 3 genes. So theoretically, if we want, we can now build up an
ANN in biology.

2.2 Practical Considerations

The computational complexity (or specifically, the functional expression capability) of ANN
scales with the number of weights, or the number of connections between neuron units.
For one GRN-version LTU that we just created, this number of connection is roughly the
number of transcription regulatory binding to the genes (like G; and G{). So the number
of connection in this network would be the typical number of gene transcription binding
times the total number of genes involved.

Biological knowledge would give us a rough taste of this number of connections:

E. coli Yeast Human
#TFs 300 (7%) 200 (3%) 1800
TFs on a gene (ChIP-seqetc.) 1~2(0to10) 5-12(0to20) 10-12 (0 to 100)
weights 102 10° 104

The number of connections of network is at most the extend of 10*. We can also take a look
at the history of ANN, the success of deep learning and machine learning areas enables
amazing ai products and changed the human society. How many connection do we need
there?

Era Representative models/tasks # weights (order)

1990s LeNet (LeCun); MLP on MNIST; etc. ~10°
2010s Deep nets: AlexNet (2012), VGG-16 (2014), ResNet (2015) on ImageNet 107-10%
2020s Transformers: GPT-1, GPT-2, GPT-3, GPT-4 108, 10, 10, 10%2

So with our reasoning and estimation, even human cells achieves 1/10 of LeNet, which is just
for simple tasks like hand-written digit recognitions. This is somewhat unsatisfactory
and disappointed: we believe that cells are definitely more powerful and efficient, and we
are eager to achieve better computation with biology-implemented circuits. But I think it’s
no suprise that we face this challenge. We just made a hard, superficial analogy to make
a molecular network exactly the same as ANN to implement the computation, and this
is fairly impossible that cell happens to choose this very strategy. The success of human
world ANN, what problems we meet, what we can do, how ANN address computation
tasks. .. would be quite different with the situations for a cell, a biological entity.

3 Side Note: Binding is much more efficient!

When we attempt to build bio-computation machines, binding reaction network may be
more powerful than the gene regulation network(GRN).

We first show that a simple tight binding would implement a ReLU function. If two species
A and B bind very tightly to form complex C, then in the tight-binding limit the free
amount of A is approximately

A ~ max(0, Aot — Biot) = ReLU(Ayor — Biot)-

The number of binding reactions in cells would be much larger:

Type of binding reaction E.coli Yeast ~Mammalian
protein—protein 10*-10° 10°-10° 10°-107
enzyme-substrate / cofactor ~ 10° — —
protein—-DNA — — —
protein-RNA — 10*-10° —
protein-lipid / ion ... — — —
Total 10°-10° 10°-107 107-10°

But it still don’t scales to contribute to the computation complexity. What’s more, not all
bindings are tight. And we should not assume all of these binding reactions serve for just
“computation.” After all, cells need to do a whole bunch of other tasks.

4 Computational Tasks in Biology vs Engineered Systems
4.1 Logic Gates, LTUs, and Cellular Computation

In engineered systems such as digital computers, the fundamental computational elements
are logic gates (e.g. AND, OR, NOT, NAND), which implement Boolean operations
and logical deduction. In deep artificial neural networks (ANNSs), the basic units are
linear threshold units (LTUs); large networks of LTUs can approximate arbitrary complex
input-output maps.

A natural question is: what are the analogous computational tasks in biological systems?
Do cells need to perform logical deduction, or fit arbitrary input—output functions the way
engineered ANNs do?

One ubiquitous task is the following: in response to different combinations of environmental
signals (nutrients, antibiotics, hormones, morphogens, and so on), a cell switches into
different internal states, often realized as distinct gene-expression programs. Thus the cell
must implement at least one nontrivial map.

environmental inputs — cellular states / behaviors.

A convenient abstraction is shown in Fig7.

environmental / external signals internal gene regulatory network stable cellular state / response

Figure 7 Abstract view of cellular computation: environmental inputs are processed by the
cell into distinct output states.

4.2 Real Example: Multi-fate Differentiation

A concrete biological example is multi-fate differentiation (e.g. Zhu Ronghui, Elowitz
lab, Science 2022). The computational task is to generate on the order of 10?-10? distinct
cell types using on the order of 10 transcription factors (TFs), rather than 10>-10°® distinct
TFs.

This is achieved by combinational encoding. For example, if three genes A, B, C can each be
high or low, there are 2° = 8 possible expression patterns. More generally, N genes provide
2N combinatorial patterns.

The implementation is through multistability in gene-expression space: each stable cell type
corresponds to a distinct stable fixed point (attractor) of the underlying dynamical system.
Figure 8 shows a simple schematic with three stable fixed points in the plane spanned by
gene A and gene B.

10

gene B,

A
\
V¥ —306—
> 0 =< /$\
7 AN
NV
> 0 <
AN

geﬂe A
Figure 8 Multistability in the gene A-gene B plane. Filled dots are stable fixed points;

surrounding arrows indicate flow of cell states toward these attractors.

Another Example of Multistability: Toggle Switch

A canonical synthetic example is the toggle switch with mutual repression (Gardner
& Collins 2000). Two genes A and B repress each other’s expression via their protein
products.

At the gene level, the proteins bind the opposite promoter and inhibit transcription; at the
protein level, A and B form a mutually repressive pair. This is summarized schematically

N
\‘/

Figure 9 Mutual repression between two genes A and B and between their protein products.

N
@ \/

Mutual Repression: Dynamics and Nullclines

We write the binding reactions

Ga+B=GE, Gg+A=Gf,

11

and the dynamics for the total protein concentrations A and By as

dAtot . GA
dt VR Grot OAset 0
dBtot GB
= — OByt
dt v+ B Gtot 6 tot ()
Assuming Gt < Ka, Kg,
Gtot
GArR —————,
A 1 + Btot/KA ()
G
B tot ()

T 14 Aw/Kp

From dB,,/dt = 0 we obtain the nullcline

1 1
Bit==|V+FRp———|.
ot 5(B1‘|‘Atot/KA)

A schematic of the A, and B nullclines is shown in Fig. 10; there is only one intersection,
so the system is monostable in this simple parameter regime.

To increase nonlinearity, we can let repressors be dimers (or multimers):

~ Gtot
1+ (Beot/Ka)?

Ga+2B =GB, Ga

However, even then we may obtain only two stable states, with a middle unstable fixed
point.

4.3 Developmental Motifs and SAMI

Motifs from developmental biology often combine self-activation with mutual inhibition
(sometimes referred to as SAMI). It is easy in such motifs to make one gene high and the
other low, yielding two alternative stable states.

However, competitive binding for inhibition and higher-order binding such as dimerization
can further sharpen response curves and introduce ultrasensitivity. This raises the question:
can two genes produce more than two stable states (e.g. three stable states)?

Binding Reactions and Nullcline Analysis

We enrich the model by introducing explicit binding between A and B:

Ga +A =G}, 0
Gg + B = G5, 0
A‘f’B\:‘CAB. ()

12

(IS\I_uIIcIines with One Intersection

O 1 1 1

dAtotl’df =0
O’Btot/dlL =0

0 1 2 3

Atot

Figure 10 Nullclines for the mutual repression toggle in a simple parameter regime with a
single intersection. More curvature is needed to obtain multiple fixed points.

The dynamics become

dA ot A

- —0A ot

TR
dBiot Gg

= — OByor.

d t x + B Gtot tot

Using a quasi—steady-state approximation,

* GtOfB

and assuming Cap < Ka, Kp so that

At = A+ Cas,

For the A, nullcline,

(X+BA—|—KA

We consider different regimes:

13

Btot ~ B + CAB-

- 6At0t'

0
0

0
0

Figure 11 With stronger nonlinearity, the nullclines can intersect three times; typically the
middle fixed point is unstable and the outer ones are stable, giving bistability.

1. At very low:

2. Aot very large:
x <P

=
A+ Ka A+ Ka
(a) If Byt is small, then A ~ A, and

B
At ~ =
ot~

(b) If Byt is comparable with Ay, then

A = Agot — Brot < Ka,

giving
Kﬂ(Atot Btot) - 6At0t7
A
hence 5K
Btot — (1 - TA>Atot

@ |a B) |B

Figure 12 Schematic nullcline of A in the presence of A-B binding; in the relevant region the
slope can be tuned to be less than 1.

Despite the additional binding, the system may still be only bistable unless we introduce
stronger ultrasensitivity in the activation step.

Homodimer Activation, Heterodimer Inhibition and Scaling

We now consider homodimer activation together with heterodimer inhibition. Dimers A,
and B, activate their own promoters, whereas the heterodimer C 4 is inactive:

A+A=A,, 0
B+ B = By, 0
A+ B = Cag, §)
A+ Ga = G}, 0
B, + Gg = Gj. 0

At = A+ 2A5 4 Cas, Biot = B 4+ 2B3 + Cas.

Assuming Gt < Kga, Kgp and that A,, B; never dominate, one can show that in the
regime where By is comparable to Ay,

Atot — Biot)?
A =~ At — Biot, Ay~ (”K—tt)a
A

and setting dA,/dt = 0 yields

(Atot - B’ro’c)2
——————— = 0A
B KAKGA tot

This corresponds to an effective A*-type activation that can bend the nullcline upward and
produce three intersections (three stable states) for two genes.

Ultrasensitivity from binding and dimerization thus adds extra stable states. Roughly, if N
transcription factors participate in such combinatorial binding networks, one can achieve

15

>
Ao

Figure 13 A2-like activation bends the nullcline upward, allowing three intersections and thus
three stable states for two genes.

AW @

()

7~

A

/\

/

(B[B)

~ (B(B

B

Figure 14 Homodimer activation (A9, B2) and heterodimer inhibition via Cap.

on the order of 2N stable expression patterns. For N 2 10, this yields 10% to 10 stable cell
types—comparable to the diversity of cell types in many multicellular organisms.

Cells therefore perform efficient and complex computation primarily through binding
networks: many binding reactions and comparatively few catalytic reactions, a very
different “hardware” from digital electronics but capable of similarly rich computational

behavior.

16

	Logic gate computation in cells
	Basic logic gate
	Logic gate implementation with catalysis reactions
	Comparison of complexity with engineered machines

	Neural networks
	LTU: Titration GRN Implementation
	Practical Considerations

	Side Note: Binding is much more efficient!
	Computational Tasks in Biology vs Engineered Systems
	Logic Gates, LTUs, and Cellular Computation
	Real Example: Multi-fate Differentiation
	Developmental Motifs and SAMI

