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Each homework consists of 3 problems, and you are expected to spend 30 min to 1 hour on each problem, but
definitely less than 1 hour. If you find yourself spending more than 1 hour, you are probably overthinking about
it. Problems with (*) are for further explorations which may take longer, and are OPTIONAL if you are short on
time.

1 Analysis of dynamics by phase portrait

For this problem, we consider a series of classic dynamical systems and use the techniques we learned in class to
understand their dynamics.

1.1 Downward pendulum

Consider a pendulum suspending from a point, with 6 denoting it makes with the vertically downward axis (e.g.
on the left), so § = 7 is vertically upward, for example. Let m denote the mass of the point mass at the end of the
pendulum, and assume the rod of the pendulum is mass-less. Let L denote the length of the pendulum.

1. Show that the dynamics of the system is )
gsinf = —L40. @

2. Transform this into a state system, by defining the state variables z; = 6 and zo = 6. Show that the system is
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3. Draw the phase portrait of the system. Note that z; can go beyond — to 7, since the pendulum and rotate
several rounds. A good choice for the range of x; axis can be [-3m, . (Hint: What does energy conservation
imply for the phase portrait?)

Describe the different types of dynamic trajectories this system can have.

4. Do the small-angle approximation to linearize the system. In other words, linearize around the fixed point
6=60=0,ie z; =1z =0. How does the linearized system compare with the spring system we looked at in
class? What does this imply about its dynamics? Compare the dynamics of the linearized system with the
dynamics of the full system analyzed via phase portrait above, what are captured by the linearization and
what are not captured?

1.2 Upward or inverted pendulum (*)

Now we consider the upward pendulum, or the inverted pendulum. This is often considered the first example in
control systems.

Let ¢ denote the angle the pendulum makes relative to the vertically upward position, so ¢ = m — 6 if the angle
¢ makes is on the same side (e.g. left) of the vertical axis as the angle made by ¢, where 0 is the angle of the
downward pendulum in the previous problem.

1. Show the dynamics for the inverted pendulum is
gsing =L ®)

and the state system dynamics is
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where z1 = ¢, 2 = ¢.
Is the fixed point 21 = z2 = 0 locally stable? What is the linearized system?

2. We can add control to stabilize the system around the fixed point. In other words, we can add control to
balance the inverted pendulum at its upward position. What control can achieve this objective?

We can first try a passive control by adding friction. Add a friction term to the linearized system and analyze
the local stability of the fixed point. Is it enough to stabilize the upward position?

3. Let us try adding a more active control. Imagine a hand or a cart supporting the inverted pendulum at the
bottom, and exerting a horizontal force F'. This is called an inverted pendulum on a cart.

Let z denote the horizontal location of the bottom of the inverted pendulum, with positive = pointing to the
opposite side of the vertical axis as angle ¢ (e.g. positive x is on the right.) Then its acceleration & captures
the result of the force F'. The resulting equations of motion is

gsinp + & cos p = L. (5)

Write this as a control system, with state variables z; = ¢, 2 = ¢, and u = &, we have
d I T 0
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Linearize the system around the operating point 1 = x2 = u = 0 (operating point is like a fixed point but for
a control system, so the control variable is also fixed.) Write the system in the form of %x = Ax + Bu, where
A and B are constant matrices.

4. Intuitively, to stabilize the inverted pendulum by the horizontal force at the bottom, when ¢ tilts towards
the left, we also need to accelerate to the left. This means, for positive ¢ = x;, we want a negative & = u. If
we give them a linear relation, we obtain v = —k,z1, where k; is the linear coefficient. This is like adding
a spring on the pendulum point mass as the controller. What'’s the resulting closed loop dynamics of the
linearized system? (Open loop refers to the case u = 0, and closed loop refers to when the controller v with
its dependence on z is added.) Can the upward position be stabilized under this controller, maybe for some
parameters? How does the closed loop dynamics compared with the downward pendulum? What would
you add to the controller to further stabilize the system?

Food for thought: we analyzed and designed the control of the inverted pendulum by linearization around
the upward position, and the resulting behavior with the controller added is indeed that we stabilized the
system at the upward position. But we are told that linearization only holds for the local behavior around a
fixed point of a nonlinear system! Does our analysis for the stabilization controller based on the linearized
model holds true when the controller is added to the full nonlinear system, assuming we start with an initial
condition that is close to the fixed point? Why or why not?

2 Analog computation by chemical reaction networks

We know that chemical reaction networks (CRNs) with mass action kinetics, i.e. elementary reactions, have

monomial rates. For example, elementary reaction oy X1 + -+ + o, Xy, £> .-+ has reaction rate kz{*...z0",
where z; denotes the concentration of chemical species X;. This means most systems with polynomial dynamics
can be implemented by CRNs. Therefore, if any sort of computational problem can be solved by polynomial
dynamics, then we can write down a set of chemical reactions that performs the analog computation to solve this

problem.
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2.1 Square root

Let us consider the problem of computing the square root of a quantity X. Let us assume this input quantity is
given to us as the concentration of a chemical species. We need to come up with a CRN such that the concentration
of another chemical species Y is the output that performs the square root computation. In other words, at steady
state, y = \/x, where z and y are concentrations of X and Y species.

1. Consider the reactions X - X + Zand Z LN (), what is the rate equation of this CRN, and how is the steady
state concentration of z related to z?

2. Construct a CRN involving only X and Y such that y = \/x at steady state.

2.2 Decision making in winner take all
(Adapted from course Bio/CS 191 at Caltech taught by Erik Winfree in Winter 2017.)

While it might be obvious that algebraic problems such as taking square roots can be implemented by polynomial
dynamical systems, and therefore by CRNSs, it is actually the case that polynomial dynamical systems, and CRNSs,
are Turing universal, i.e. they can perform any computations that a Turing machine can. Therefore, CRNs can
actually solve all kinds of complex problems.

Here, we look at one simple case of decision making in winner take all. Imagine we are given two inputs X and Y,
and we would like to compare them and let the larger of the two be the winner. We could encode the inputs as
initial concentrations of the two chemical species, ¢ and yo. We could then indicate the winner by letting the
winner species take all the concentration, i.e. (oo, Yoo) = (0 + Y0, 0) if 29 > Yo, and (Too, Yoo) = (0, 2o + o), Where
Zoo and Y are steady state concentrations of X and Y, respectively.

1. Consider the following chemical reaction network.

X+v Loz
Z+ X Lox, 7)
Z+Y Loy

Intuitively describe, if we start with initial condition (x,y, z) = (x¢, o, 0), how would the system evolve and
what would be the final state of the system? What quantity is conserved?

2. Write down the rate equation for this CRN. How many fixed points does this system have? Which ones are
locally stable?

3. Use the conserved quantity to eliminate the z variable, so as to write the system dynamics in terms of just =
and y and have an equivalent 2d system. Now draw the phase portrait of the system and analyze its global
dynamics. Argue that the dynamics of this system indeed computes winner take all.

4. (Optional) Write computer code using your favorite language to simulate this system, plot time trajectories,
and find that the dynamics is indeed as desired. (Hint: This webpage has tutorials and examples on simulating
chemical reaction networks using python: https://biocircuits.github.io/technical_appendices/02b_
numerical_odes.html, and this webpage has similar things using julia: https://docs.sciml.ai/Catalyst/
stable/#doc_index_example.)


https://biocircuits.github.io/technical_appendices/02b_numerical_odes.html
https://biocircuits.github.io/technical_appendices/02b_numerical_odes.html
https://docs.sciml.ai/Catalyst/stable/#doc_index_example
https://docs.sciml.ai/Catalyst/stable/#doc_index_example
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3 Lotka-Volterra

A famous model in biological systems with oscillatory dynamics is the Lotka-Volterra model, or the predator-prey
model. It was originally proposed in the 1910s and 1920s to describe oscillatory dynamics seen in chemical
reactions and populations of predator and prey fishes in the ocean. Since then, it has been greatly extended and has
been developed as the workhorse model for interacting populations and communities in ecology, evolution, and
microbiology. Here we use the tools we’ve learned to look into the oscillatory dynamics of the classic model.

1. The classic Lotka-Volterra model is the following:

%m = ax — PBxy,

; ®)
Y = 7y + day.

Here z is the population of the prey, and y is that of the predator.

(Food for thought: Could you a chemical reaction network with elementary reactions such that its dynamics
is the Lotka-Volterra system?)

Briefly describe what each term in the model means.

2. Look at the dynamics of the prey if there is no predator, i.e. when y is fixed at y = 0. This is a one-dimensional
system. What is the behavior and what is the solution?

This is called the exponential growth model, which captures a rapidly growing population.

3. Look at the dynamics of the predator when the prey is overabundant (i.e. assumed to be held constant at a
rather large number.) This is a one-dimensional system. Draw its phase portrait, and describe its dynamics.

This is called the logistic growth model, which captures a growing population with a saturating carrying
capacity determined by the environment.

4. Now look at the full Lotka-Volterra model.

What are the fixed points of the system? Are they locally stable? Show that V (x,y) = dx —vlog z+ By —alogy
is a conserved, and notice that it is non-negative since the entropy function x — alogx is non-negative
for > 0 and a > 0. (This V is like the energy function for mechanical systems we have studied. Such
generalized energy functions that are nonnegative and conserved or decreases over time are called Lyapunov
functions, and they can be used to analyze or even design global dynamics.) Draw the phase portrait for the
system, and described its dynamics.

5. (Optional) Does the Lotka-Volterra model have a stable limit cycle? If not, then the periodic oscillations
observed in the Lotka-Volterra model is rather unsatisfactory. This is because upon slight perturbations of the
model’s initial conditions, we would have different periods and different amplitudes of oscillations, which
makes it seems like the model’s periodic behavior is rather fragile. Realistically, the oscillatory behavior must
be stable at least to perturbations of relatively small magnitude for us to observe. To fix this problem, let us
consider what modifications of the Lotka-Volterra model may make it more realistic such that the periodic
behavior has a stable limit cycle.

This turns out to be a rather non-trivial problem, and took the joint work of quite a few researchers in the
field of nonlinear dynamical systems from 1960s to 1980s to fully understand. For example, it is known
that for all generalized Lotka-Volterra models %mi = b;x; + Z;‘:l a;jrj fori=1,...,n,aslong as it is in two
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dimensions, i.e. n = 2, there are no stable limit cycles. However, there exists stable limit cycles under some
parameter conditions for n = 3.

On the other hand, if we allow two realistic modifications of the Lotka-Volterra system, then we can have stable
limit cycles. First of all, it is unrealistic to assume that the prey grows exponentially without bounds when
there is no predator. Instead, prey’s growth should be limited by the carrying capacity of the environment.
So x’s growth rate should take the form ax(1 — ), where K is carrying capacity. However, this is not enough
since this does not go beyond the generalized Lotka-Volterra model form.

Secondly,, it is unrealistic to assume that the predator’s growth rate grows without bounds when the prey
is unlimited, since when there are few predators and overabundant prey, the growth rate should saturate
and does not increase with respect to prey’s population. So the term for prey’s consumption and predator’s
growth should take the form dy 1. This stops increasing with  when z is much larger than 1.

Together, these modifications yield the following model:

d T T
dt:c—aa:(l—K) —6y1+x,

ad T YT

©)

This is called the Rosenzweig—-MacArthur model.

Write computer code to simulate this ODE. Try it out for the following parameter set and observe a stable
limitcycle. a =y=1,=0=3,K = 3.

You can also play around with the parameters to see that, if we only add one of the two modifications, then
the positive fixed point is always stable so the predator and prey stably co-exists.

Reference: A lecture note by Hal Smith analyzing this variant of the Lotka-Volterra model can be found at
https://sites.science.oregonstate.edu/~deleenhp/teaching/fall15/MTH427/Rosenzweig.pdf.


https://sites.science.oregonstate.edu/~deleenhp/teaching/fall15/MTH427/Rosenzweig.pdf
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