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1 Biochemical reactions in cells
Cellular changes occur through chemical reactions, which are fundamentally governed by
diffusion kinetics. These reactions typically take place under the prevailing cellular con-
ditions of temperature and pressure. Whether and when a reaction proceeds is largely
determined by the presence of enzymes, which act as catalysts. From a thermodynamic
perspective, many favorable reactions could take years to complete on their own (e.g.,
spontaneous glucose degradation, peptide bond cleavage, or ATP hydrolysis). However,
enzymes accelerate such processes dramatically, often by factors of 1010 or more.

1.1 notations of (Bio)chemical reactions

Reaction Type Notation Meaning Examples
Elementary (����) Straight Arrows

(→)
Implies reaction mech-
anism (all key players
included)

E+S ⇔ C → E+P;
Gene + RNAP ⇔ C0 → C1 → ...
→ Cn → Gene + RNAP + mRNA

Composite (����) Squiggly Ar-
rows (⇝)

May have hidden mecha-
nism, reaction

S⇝ P;
Gene⇝ Gene + mRNA;
(S,P)⇝ (S-1,P+1)

Implies reaction mechanism, meaning it's an irreducible reaction step, you CAN'T break
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it down further, or it's useless to do so, for your concern
e.g. E+S ⇔ C → E+P; Gene + RNAP ⇔ C0 → C1 → ...... → C~n → Gene + RNAP +mRNA
it may have Hidden mechanism, meaning it's reaction only describes the net change of
several steps of reactions
e.g. S⇝ P; Gene⇝ Gene + mRNA;
(S,P)⇝ (S-1,P+1) (another notation for Composite, focused on change of molecular num-
bers)

Examples:

1. Cell replication, N becomes 2N: N⇝ 2N or N⇝ N+1

2. Photon doubles in a laser: photon + atom activated → 2photon + atom ground

3. Diffusion into a cell through a passive channelon membrane: Aout → Ain

4. ATPase pumping H+ and of the cell: H+
in⇝ H+

out

1.2 Estimates of enzymatic reaction rates
Enzymatic reactions occur when an enzyme and its substrate collide and then bind; the
enzyme's atoms then orient the substrate in specific ways, ultimately transforming it into
a product with atoms in different positions. Thus, there's a two-step process: binding and
catalysis.

E+ S ⇔ C⇝ E+ P

The fastest reaction rate is limited by association rate (react immediately after association),
which is governed by diffusion, so called ”diffusion limited on rate”, for example in heat
diffusion:

flux at a point on E surface:

j(a) = D
αC

αR

Roughly,

j(a) = D
αC

αR
|a ∽

C∞
a

⇒ j = D
C∞
a

More details: cons. of mass ⇒ 4π R2j is constant, so

j ∝ 1
R2

αC

αR
= j ∝ 1

R2 ⇒ C(R) =
A

B
+ C
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A,B is constant, Boundary condition: C(a)=0, C(∞)=C∞, so B=C∞, A=-aC∞
J = j · 4πa2 = 4πDa · C∞ ⇒ KonC∞ (1)

kon = 4πDa ∽ 10 · 102 µm2/s · 1nm · 6 · 1023

mol
· 1L

1015 µm3 ∽ 109 s−1 mol−1

So, if C ∽ 1 mM, then it's about 106 reactions/s per enzyme.

However, most enzymes operate much more slowly, being bottlenecked by the catalysis
step, typically around 10−102 reactions/s.
Note that for elementary reactions, i.e., reactions that occur immediately upon collision,
the flux of E+ S → C is given by KonES (where E and S denote the concentrations), since
each enzyme reacts at a rate of KonS. This relationship is called the law of mass action,
and it describes how the flux scales with reactant concentrations.
1.2.1 Detailed Derivation of Diffusion-Limited Flux
Based on the steady-state diffusion model, we consider an enzyme E as the center point,
with substrate molecules diffusing throughout the solution. Under steady-state condi-
tions, the flux through any spherical surface of radius R centered at the enzyme remains
constant, i.e., 4πR2 · j = constant ̸= 0. This conservation relation indicates that the amount
of substrate C consumed at the enzyme surface is exactly balanced by the amount diffus-
ing into the sphere from the external environment.
Derivation of the Spherically Symmetric Diffusion Equation The general diffusion
equation (Fick’s second law) in three dimensions is:

∂C

∂t
= D∇2C

where ∇2 is the Laplace operator.

In spherical coordinates (r, θ,φ), the Laplace operator is expressed as:

∇2C =
1
r2

∂

∂r

(
r2∂C

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)
+

1
r2 sin2 θ

∂2C

∂φ2

Due to the spherical symmetry of the problem (enzyme is spherical and substrate diffusion
is isotropic), the concentration C depends only on the radial distance r:

C = C(r), ∂C

∂θ
= 0, ∂2C

∂φ2 = 0

3



Substituting these conditions into the Laplace operator gives:

∇2C =
1
r2

∂

∂r

(
r2∂C

∂r

)

Under steady-state conditions (∂C
∂t

= 0, i.e., 4πR2 · j = constant (non-zero)), the diffusion
equation simplifies to:

D · 1
r2

d

dr

(
r2dC

dr

)
= 0

Since D ̸= 0, we obtain the spherically symmetric steady-state diffusion equation:

1
r2

d

dr

(
r2dC

dr

)
= 0

Solving the Diffusion Equation Multiplying both sides by r2 and integrating once:

d

dr

(
r2dC

dr

)
= 0 ⇒ r2dC

dr
= A

where A is an integration constant.

Rearranging and integrating again:

dC

dr
=

A

r2 ⇒ C(r) = −
A

r
+ B

where B is another integration constant.
Applying Boundary Conditions Applying the boundary conditions:

• At the enzyme surface (r = a): C(a) = 0

• At infinity (r → ∞): C(∞) = C∞
Substituting the boundary conditions to solve for the integration constants:{

0 = −A
a
+ B

C∞ = B
⇒ A = aC∞, B = C∞

Thus, the concentration distribution is:

C(r) = C∞
(

1 −
a

r

)
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Calculating Flux and Reaction Rate Calculating the concentration gradient:

∂C

∂r
=

aC∞
r2

The gradient at the enzyme surface (r = a):

∂C

∂r

∣∣∣∣
r=a

=
C∞
a

According to Fick’s first law, the flux is:

j = D · C∞
a

The total reaction rate is the flux multiplied by the enzyme surface area:

J = j · 4πa2 = 4πDaC∞
Defining the reaction rate constant km = 4πDa, we obtain J = kmC∞.

This derivation provides a rigorousmathematical foundation for understanding diffusion-
limited reaction kinetics, following the approach consistent with the file’s content.
1.2.2 How to understand j = D ∂c

∂R
?

From the perspective of dimensional analysis: j represents the number of molecules pass-
ing per unit area per unit time.

• Dimension of j: molecules
area·time = N

L2·T

• Dimension of D: diffusion coefficient, length2

time = L2

T

• Dimension of ∂c
∂R

: concentration gradient, concentration
length = (N/L3)

L
= N

L4

Therefore, dimensional verification of j = D ∂c
∂R

:

[D] ·
[
∂c

∂R

]
=

L2

T
· N
L4 =

N

L2 · T
= [j]

The dimensions are consistent, validating the physical relationship.
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1.3 Dynamics of chemical reaction networks(CRN)
A generic chemical reaction (Elementary or Composite)

α1X1+α2X2+...+αnXn → β1X1+β2X2+...+βnXnα1X1+α2X2+...+αnXn ⇝ β1X1+β2X2+...+βnXn

α stand for reaction stoichiometry, β stand for product stoichiometry
Reaction stoichiometry: γj = βj − αj(j = 1, 2, 3, ...,n)
Net change notation: (X1,X2, ...,Xn) → (X1 + P1,X2 + P2, ...,Xn + Pn)
Every time this reaction happens, xj~ flux caused by this reaction is γj ∗ v

Several reactions form a network (GRN)

m stand for reactions, i = 1, 2, ...,m
n stand for species, j− 1, 2, 3, ...,n

αi1X1 + αi2X2 + · · ·+ αinXn → βi1X1 + βi2X2 + · · ·+ βinXn

d

dt
xj =

∑
i

γijvi =
∑

i:γij>0

Vijvi −
∑

i:γij<0

Vijvi = f+j − f−j = fj

dx

dt
= Γv = f+ − f−

Note that this hold always, for both elementary and composite, Since all we're done is
”accounting”, for where molecules went. Only depends on γ, not α or β, so ”net change
notation” is enough. We can write this even if we don't know the regulation mechanism.
But to have a full description of the dynamics.

Does v depend on x ? i.e. reaction kinetics
Kinetics: Law of mass actin Elementary reactions' kinetics follow the law of mass ac-
tion:

α1X1 + α2X2 + · · ·+ αnXn k (reaction rate constant)
−−−−−−−−−−−−−−−−−−−−→

β1X1 + β2X2 + · · ·+ βnXn

v(x) = reaction rate = flux = kXα1
1 Xα2

2 · · ·Xαn
n

e.g. E+ S K−→ C, rate = KonES(K = Kon)
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Now with several reactions forming a network

αi1X1 + αi2X2 + · · ·+ αinXn ki−→ βi1X1 + βi2X2 + · · ·+ βinXn

vi = kiX
αi1
1 · · ·Xαin

n = kiX
αi

d

dt
xj =

∑
i:γij>0

γijvi −
∑

i:γij<0

|γij|vi = f+j (x) − f−j (x)

dx

dt
= Γv(x) = Γ ∧k xα = f(x) = f+(x) − f−(x)

1.4 Analysis of 1D and 2D dynamics by phase portrait
These are autonomous dynamical systems dx

dt
= f(x). How to understand their dynamics?

We start simple from low dimensions:

Exp1
dx

dt
= f(x) = −x

Fixed point: x∗ s.t. F(x∗) = 0
Feature of f(x) = −x

Fixed point: You DON'T change if you start from a fixed point, if you start at a different
initial condition, you'll go to x = 0 until you are stable at a fixed point.

Exp2

dx

dt
= f(x) = x3

Fixed point: x∗ s.t. F(x∗) = 0
Feature of f(x) = x3 Fixed point: You DON'T change if you start from Fixed point, but
you'll go further and further if you're not

Exp3
dx

dt
= f(x) = x2 − r
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Figure 1 Exp3 f(x) = x2 − r

1D can only define stable or unstable, ”go away” or ”coverage”, because trajectory is 1D
as well, and the point CAN'T go back

Exp4 Bio product minus degradation

ẋ = µ− x

Fixed point: x = µ Exp5: bistable

Figure 2 ẋ = µ− x

ẋ = f+(x) − x
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Figure 3 ẋ = f+(x) − x

How to create a 1D (Bio) bistable system?
2D system In 2D system trajectories can ”go back” along any axis, but trajectories can't
overlap itself
On top of fixed points: f1(X

∗) = f2(x
∗) = 0, also nullelines f1(X

∗) = 0|f2(x
∗) = 0, These

are enough to determined dynamics.

Figure 4

1.5 Types of dynamics in 2D
Dynamics about a fixed point graph needed
New in 2D: center Exp1 Spring question

F = mẍF = −kx ⇒ mẍ+kx = 0 ⇒ x1 = x1, x2 = ẋ ,so mẋ2+kx1 = 0 d

dt

[
x1
x2

]
=

[
0 1

−k/m 0

][
x1
x2

]
Trajectories neither spiral in or out, x = 0 is a center, not stable

Also, we can look at energy, which is conserved:
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Figure 5 Spring

1
2
mx2

2 +
1
2
kx2

1 = E
dE

dt
= mx2ẋ2 +mx1ẋ1 ⇒ dE

dt
= −mx2

k

m
+ kx1x2 ⇒ −kx1x2 + kx1x2 = 0

If there's friction:
mẍ+ kfẋ+ ksx = 0 (2)

Define the state variables x1 = x, x2 = ẋ. Then

d

dt

[
x1
x2

]
=

[
0 1

−ks/m −kf/m

][
x1
x2

]
. (3)

The total mechanical energy is
E = 1

2mx2
2 +

1
2ksx

2
1. (4)

Taking the time derivative gives

dE

dt
= −mx2

(
ks

m
x1 +

kf

m
x2
)
+ ksx1x2 = −kfx

2
2 < 0. (5)

means the circle shrunks overtime.
1.5.1 3D and beyond
3d-system Trajectories can roam freely, no constraint anymore due to dimensions, e.g.
graph needed The best way to analyze is to stimulate and to look, lack of structure, Noth-
ing very useful can be said.
system beyond 3D To say something for >=3 dimensions, still by dimension reduction
⇒ Reduce to 0 dimension: fixed point
⇒ Reduce to 1 dimension: fixed point, limit cycles
⇒ Reduce to 2 dimensions: then analyze on 2D....
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1.6 Local stability analysis
Local dynamics in general ⇒ Local is always Linear
assuming d

dt
(xt∆x) = f(x)⇒ consider small perturbation∆x around x

d

dt
(xt∆x) =

d

dt
∆x = f(x+ ∆x) ≈ f(x) +

αf

αx
(x)∆x

Assuming at x = x∗, a fixed point, so f(x∗) = 0

d∆x

dt
= A∆x ⇒ A =

αf

αx
(x∗)

dx

dt
= ax ⇒ x(t) = x(0)eat

Eigenvector (λ, v) s.t. Av = λv, let x(0) = y(0)v, then:

1
∆t

(
x(∆t) − x(0)

)
= Ax(0)

1
∆t

(
y(∆t) − y(0)

)
v = Avy(0) = λvy(0)

⇒ dy

dt
= λy ⇒ y(t) = y(0)eλt

⇒ x(t) = y(0)eλtv

So, behaviors can be decomposed in terms of Eigenvector

When Re(λ) > 0, Eigenvector is unstable, When Re(λ) < 0, Eigenvector is stable
A is Hurwitz: When Re(λ) < 0, for all λ ∈ Eigenvector(A), this guarantees x = 0 is
stable.
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