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1 Introduction
In the previous lecture, we showed how to use Chemical Reaction Networks (CRNs) to
represent biosystem dynamics.

Suppose x is the reactant concentration vector, and v is the rate of reactions concerned, we
would have the dynamics of jth reactant xj as:

dxj

dt
=

∑
i

γijvi

We could write this in matrix form:
dx

dt
= Γv

where Γ denotes the matrix of reaction stoichiometry. Note that this gives the knowledge
of v → x: we update the reactant vector using the known reactions.

If we also know the detailed mechanisms (the elementary reactions), we could then write
mass-action laws for the rate:

vi = ki[x1]
αi1 [x2]

αi2 · · · = ki

∏
l

[xl]
αil

dx

dt
= Γv = Γ ∧k xα = Γ


k1

k2
. . .

kn


x

α11
1 xα21

1 . . .
xα12

2 xα22
2 . . .
...


Note that mechanisms like the mass-action law here give us knowledge of x → v, where
we know the reaction rate based on current reactant vector.

So combining the understanding in both directions, we would have a closed-loop relation-
ship of reactant x and rate v. It’s now clear that dx

dt
= Γv(x) = f(x), which means that the

updating of x vector relies on itself. We call the system with dx
dt

= f(x) an autonomous
dynamical system. We further need some methods or toolkits for us to conduct dynamical
analysis upon the CRN that we’ve just defined, and that’s what this lecture is basically
about.
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2 Dynamic Analysis
2.1 Dynamics of 1D Systems
We start from the simplest 1-dimension analysis, which is just a point moving along a line.
The dynamics ẋ = f(x) would tell us that when f(x) > 0, the point would move right; when
f(x) < 0, the point would move left; and when f(x) = 0 the point doesn’t move and would
stay there.

Figure 1

Figure 1 contains information sufficient to roughly determine the dynamics of state variable
x, and provides us with a geometric way of reasoning about dynamics. It’s essentially a
diagram of state space with derivative on corresponding state points. We call this kind of
diagram a “phase portrait”.

We could analyze the “stability” of point x∗ that, if we start at x∗, then we would stay there
forever. If we start from points other than x∗, it will always move towards x∗.

Definition 2.1. A phase portrait is a diagram that for every x, draws the derivative
(essentially a vector field) f(x) = dx

dt
.

Definition 2.2. A fixed point is x∗ such that f(x∗) = 0.

Thus you can never cross a fixed point, since you would be trapped whenever you get
there.

Definition 2.3. A fixed point x∗ is (locally) stable if the starting point x(0) is close to x∗,
then x(t) → x∗ as t → ∞.

Apart from the phase portrait (Figure 1), we could also get intuitive understanding of
stable fixed points using time trajectory plots (Figure 2).
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Figure 2

Example 1. Consider the dynamics(Figure 3):

dx

dt
= f(x) = −x

Figure 3

The dynamics of state variable in this case is so simple that we could even solve for the
accurate dynamics first:

1
x

dx

dt
= −1

d log x
dt

= −1

log x(t) = −t+ log x(0)
x(t) = x(0)e−t
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Figure 4

Thus x = 0 would be a stable fixed point.

△

Example 2. Consider the dynamics:

dx

dt
= x2

Figure 5
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1
x2

dx

dt
= 1

d
(
− 1

x

)
dt

= 1

−
1
x
= t−

1
x(0)

x(t) =
1

1
x(0) − t

x(t) =
x(0)

1 − x(0)t

We see that x = 0 is also a fixed point, but no longer stable.

In fact from the detailed dynamics x(t) that we worked out, the state x would blow up in
finite time (t = 1

x(0)). We couldn’t get this information (finite-time blow up) by simply
staring at the phase portrait. But this is indeed a pathological, unrealistic case. In normal
regular cases the geometric thinking still does a good job.

Figure 6

△

Example 3. Consider the dynamics:

dx

dt
= x2 − r
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Figure 7

Depending on the specific parameters of dynamics, the stability would be different. We
use open dots to indicate the unstable fixed points. Half-open dot in r = 0 indicates that
only points starting from left plane would land onto x = 0, but the points starting from
right plane would move on forever. So it’s “half stable”. △

Example 4. We could even have infinitely many fixed points and use the geometric thinking
to analyze dynamics. (ex. f(x) is sinusoidal)

Figure 8

△

Example 5. A point moving on a circle is also 1D, and the state variable now could be the
rotation angle θ. The corresponding dynamics is the angular velocity θ̇. Simply θ̇ = −θ

would give us a fixed point in circular state space.
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Figure 9

△

2.2 Dynamics of 2D Systems
We now move onto the 2D systems, with dynamics:

ẋ1 = f1(x), ẋ2 = f2(x)

The phase portrait containing dynamical information of each point is now impossible
to draw out completely. In this case we would have a two-dimensional space (x1, x2)
and the corresponding velocity vector (ẋ1, ẋ2) of each point (just like a directed compass
accompanying every point on the 2D state space plane). But we actually don’t require that
much information! Our coarse-grained geometrical thinking needs just the sign of the
dynamics (> 0, < 0 or = 0), thus we explicitly draw the lines where fi = 0 (we call them
nullclines) and indicate + or − on either side.

Figure 10

The fixed points discussed above would correspond to x∗ such that f1(x
∗) = f2(x

∗) = 0.
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Definition 2.4. The nullcline of xi is the point set {x ∈ R2 : fi(x) = 0}, i = 1, 2.

Consider single variable component at a time: suppose we consider the horizontal x1,
then the nullcline f1(x) = 0 indicates the places that we would be trapped when moving
horizontally (just like the fixed points in 1D).

Using the intuition built in 1D, we could get the 2D dynamical behavior (around a fixed
point) by simple combination of two 1D dynamics on different directions:

Figure 11

But we could also get some new behaviors:

Figure 12

2.3 2D System: Spiral and Radius
Example 6. See how we build up the dynamics by combining 1D dynamics: consider the
system:

θ̇ = 1
ṙ = −r

Intuitively, it’s a constant-speed rotation with the shrinking radius movement.
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Figure 13

We can also try to convey the dynamics information using (x, y) coordinate (x = r cosθ and
y = r sin θ):

ẋ = ṙ cosθ− r sin θ · θ̇
= −r cos θ− r sin θ

= −x− y

ẏ = ṙ sin θ+ r cosθ · θ̇
= −r sin θ+ r cos θ
= x− y

In matrix form: [
ẋ

ẏ

]
=

[
−1 −1
1 −1

][
x

y

]
Notice that in (x, y) coordinate, the dynamics seems much more complicated: the dynamics
of one state variables relies on the other. Whereas in the original polar coordinate, the
dynamics are decomposed clearly. △

Example 7. In the example above, if we let the radius remains constant:

θ̇ = 1
ṙ = 0
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then transform it into (x, y) coordinate gives:

ẋ = −r sin(θ) = −y

ẏ = r cos(θ) = x

[
ẋ

ẏ

]
=

[
0 −1
1 0

][
x

y

]
This time the dynamics of one variable totally relies on the other one.

Figure 14

△

2.4 2D System ’Center’: Mass on a Spring
2.4.1 System Description
We consider an idealized spring-mass system with:

• A point mass m constrained to one-dimensional motion

• A linear spring with constant k (Hooke’s law)

• No friction or external forces

Newton’s second law yields:
mẍ+ kx = 0 (1)

where x(t) is the displacement from equilibrium.
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2.4.2 State Space Representation
Converting to first-order system with x1 = x and x2 = ẋ:

ẋ1 = x2 (2)

ẋ2 = −
k

m
x1 (3)

Matrix form: [
ẋ1
ẋ2

]
=

[
0 1

− k
m

0

][
x1
x2

]
= Ax (4)

2.4.3 Eigenvalue Analysis and Stability
The characteristic equation is:

det(A − λI) = λ2 +
k

m
= 0 (5)

Eigenvalues:

λ1,2 = ±iω0, ω0 =

√
k

m
(6)

Stability criterion: Since Re(λ) = 0, the system is marginally stable. The equilibrium
(0, 0) is a center with closed orbital trajectories.
2.4.4 Energy Conservation
Total mechanical energy:

E =
1
2mx2

2 +
1
2kx

2
1 (7)

Time derivative:
dE

dt
= mx2ẋ2 + kx1ẋ1 = mx2

(
−

k

m
x1

)
+ kx1x2 = 0 (8)

Energy conservation explains the closed orbital behavior: each trajectory lies on a constant
energy ellipse.

2.5 3D and Beyond
In 1D systems, we cannot go back. In 2D systems, we cannot overlap with ourselves. But
in 3D systems, limitations are seldom. (See Fig. Lines go across in 3D.)

For 1D systems, we have fixed points. For 2D systems, we have fixed points, nullclines,
and limit cycles. For 3D or higher-dimensional systems, we need to reduce the dimension
if we are lucky enough.
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2.6 Eigenvalue Classification and Stability
2.6.1 Routh-Hurwitz Stability Criterion for A
For linear systems ẋ = Ax, stability is determined by eigenvalues of A:

• Asymptotically stable: All Re(λ) < 0

– Trajectories converge to equilibrium exponentially

– Equilibrium is an attractor

– Complex eigenvalues: stable spiral/focus

• Unstable: Any Re(λ) > 0

– Trajectories diverge from equilibrium

– Equilibrium is a repeller

– Complex eigenvalues: unstable spiral/focus

• Marginally stable: All Re(λ) = 0 (purely imaginary)

– Bounded oscillatory motion

– Equilibrium is a center

– Example: Conservative systems (spring-mass)

Routh-Hurwitz criterion: For polynomial P(λ) = anλ
n + · · · + a1λ + a0, all roots have

Re(λ) < 0 if and only if all Routh-Hurwitz determinants are positive. For 2D systems, this
simplifies to: tr(A) < 0 and det(A) > 0.

13



2.6.2 Eigenvalue Plane Visualization

Im(λ)

Re(λ)

Stable
Re(λ) < 0

Unstable
Re(λ) > 0

Re(λ) = 0

Stable spiral Unstable spiralCenter

2.7 Linearization Around Fixed Points: The Jacobian Matrix J
2.7.1 From Nonlinear to Linear Analysis
Most biological systems are nonlinear. Unlike linear systems where dynamics can be
described by a constant matrix A, nonlinear systems are governed by:

dx
dt

= f (x) (9)

where x = [x1, . . . , xn]T and f (x) = [f1(x), . . . , fn(x)]T .
2.7.2 Linearization Around Fixed Points
A fixed point (equilibrium) x∗ satisfies f (x∗) = 0.

Key idea: Near a fixed point, the nonlinear system behaves approximately like a linear
system. We linearize by computing partial derivatives (slopes) of each component function
with respect to each variable.

Taylor expansion around x∗:

f (x) ≈ f (x∗) + J(x∗)(x − x∗) = J(x∗)(x − x∗) (10)

The Jacobian matrix J(x∗) contains all first-order partial derivatives (local slopes) evaluated
at the fixed point:
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J(x∗) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn... ... . . . ...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


∣∣∣∣
x=x∗

(11)

Physical interpretation: Each entry Jij =
∂fi
∂xj

represents how the rate of change of variable
xi responds to small changes in variable xj near the fixed point.
2.7.3 Local Stability from Jacobian Eigenvalues
The linearized system is:

d(x − x∗)

dt
≈ J(x∗)(x − x∗) (12)

Hartman-Grobman Theorem: If all eigenvalues of J(x∗) have non-zero real parts (hy-
perbolic fixed point), the local behavior of the nonlinear system near x∗ is topologically
equivalent to the linearized system.

Stability determination:

• All Re(λi) < 0 ⇒ fixed point is locally asymptotically stable

• Any Re(λi) > 0 ⇒ fixed point is unstable

• All Re(λi) = 0 ⇒ linearization inconclusive (requires nonlinear analysis)
2.7.4 Example: Predator-Prey System
Consider the Lotka-Volterra model:

dx

dt
= ax− bxy = f1(x,y) (13)

dy

dt
= −cy+ dxy = f2(x,y) (14)

Fixed points: (0, 0) and
(
c
d

, a
b

)
.

Computing partial derivatives:

J(x,y) =
[

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
=

[
a− by −bx

dy −c+ dx

]
(15)

At coexistence equilibrium
(
c
d

, a
b

)
:

J
( c

d
, a
b

)
=

[
0 −bc

d
da
b

0

]
(16)
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Eigenvalues: λ1,2 = ±i
√
ac (purely imaginary).

The linearization predicts a center, but nonlinear effects may produce limit cycles or more
complex dynamics.
2.7.5 Limitations of Linear Analysis

• Valid only near fixed points (local analysis)

• Cannot capture global phenomena (bifurcations, limit cycles, chaos)

• Fails at non-hyperbolic equilibria (Re(λ) = 0)

• Misses nonlinear effects (multistability, hysteresis)
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3 Chemical Reaction Network Related
3.1 Constraints Rules for CRN
Now that we’ve learned how to analyze dynamics, let’s look at dynamical systems that arise
from Chemical Reaction Networks (CRNs). These systems have further structure.

ẋ = Γv(x) = ΓΛkx
α = f+(x) − f−(x)

Rule [P]: Positivity
• Variables xj are positive.

• Fluxes vi(x) are positive.

Rule [PU]: Parameter Uncertainty
Reaction rate constants satisfy ki ̸= ki ′ for different reactions i ̸= i ′. This means we cannot
perfectly match different processes.

Both the increase and decrease of xj arise from comparison between its production and
degradation terms:

ẋj = fj = f+j − f−j

Example:
ẋ = µ− γx

Here, the production rate µ and the degradation rate γx are two different processes. Thus,
the fixed point is:

x∗ =
µ

γ

This steady state results from two processes pushing against each other. Therefore, x∗ is
not structural—it is uncertain and may “shake” due to fluctuations in parameters.

Rule [CP]: Constructural Polynomial Dynamics
Positivity implies a constraint on polynomial dynamics:

ẋj =
∑

i:νij>0

νijvi −
∑

i:νij<0

|νij|vi

where each flux term follows:

vi = kix
αi1
1 xαi2

2 · · · xαin
n
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Summary
• CRNs can be viewed as structured polynomial dynamical systems.

• Positivity and parameter uncertainty govern their qualitative behavior.

• Steady states may not be structurally stable due to distinct production and degradation
processes.
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Degradation Reactions and Forward Invariance
For a reaction degrading xj, we require:

νij < 0.

Since αij ⩾ 0 and βij ⩾ 0, this requires:

αij ⩾ 1.

Hence, the flux follows:
vi ∝ x

αij

j , with αij ⩾ 1.

Reasoning from Positivity:
vi = 0 when xj = 0.

Otherwise, xj would become negative — which is physically impossible.

This constraint ensures that the positive orthant is forward invariant, meaning that
trajectories starting with xj > 0 will remain in the positive domain.
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Examples of Constrained Polynomial Dynamics in CRNs
1. ẋ = x− µ

Is this possible? No, because the degradation term −µ is constant and does not vanish
when x = 0. Thus, positivity is violated.

2.
{
ẋ1 = µ1 − x2

ẋ2 = x1 − µ2

or equivalently, [
ẋ1

ẋ2

]
=

[
0 −1
1 0

][
x1

x2

]

Question: Is this possible? Here, both equations depend on variables that vanish at
zero, ensuring positivity consistency — but such a structure may not correspond to
an actual CRN unless stoichiometric coefficients and rate laws align.

Conclusion:

• Degradation reactions require αij ⩾ 1 to preserve positivity.

• The positive orthant remains forward invariant — states cannot cross into negative
concentrations.

• Not all polynomial systems satisfy CRN constraints; each term must obey physical
positivity rules.

3.2 Methods to Circumvent Polynomial Constraints
3.2.1 Dual Rail Representation
Coordinate transformation approach:

x = x+ − x−, ẋ+ = f+ − ηx+x−, ẋ− = f− − ηx+x− (17)

Limitation: For ẋ = µ− kx, decomposition requires:

µ− k(x+ − x−) = µ+ kx− − kx+ (18)

This introduces two separate rate constants, violating parameter independence.
3.2.2 Time-Scale Separation in Enzymatic Reactions
Standard enzymatic reaction:

E+ S
kon
⇌
koff

ES
kcat⇝ E+ P (19)

Typical rate constants:

20



• Binding: kon ∼ 108 M−1s−1, effective rate kon[S] ∼ 105 s−1 at [S] ∼ 1 mM

• Catalysis: kcat ∼ 101–102 s−1

Time-scale separation: Binding (∼ µs) is much faster than catalysis (∼ ms), enabling
quasi-equilibrium approximation and Michaelis-Menten kinetics.

Advantages over coordinate transformation:

• Preserves physical meaning

• Maintains parameter independence

• Based on real biophysical processes

• Enables multi-scale modeling
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