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Each homework consists of 3 problems, and you are expected to spend 30 min to 1 hour on each problem, but
definitely less than 1 hour. If you find yourself spending more than 1 hour, you are probably overthinking about
it. The optional problems may take significantly longer, so you can skip if you are short on time. But if you are
interested in exploring further, the fun you get from working on the optional problems is definitely worth it!

1 Building blocks of diverse bioregulation
We learned about the three archetypal behaviors of bioregulation from one binding reaction, namely saturation,
bottleneck, and ultrasensitivity. Biological systems can build diverse bioregulatory behaviors out of these
fundamental elements of bioregulation. We investigate some of them here.

1.1 Competitive binding
Consider the following binding network.

𝐺 + 𝑅1 ⇌ 𝐶1, 𝐺 + 𝑅2 ⇌ 𝐶2. (1)

This is an abstract binding network model, but it may help by considering a specific biological context. We
can view 𝐺 as a gene, with repressors 𝑅1 and 𝑅2 binding with it competitively, so either 𝑅1 binds to form
a complex 𝐶1 or 𝑅2 binds to form a complex 𝐶2, but not both. Let 𝐾1 and 𝐾2 denote the dissociation con-
stants of the two binding reactions. The conserved quantities are the total concentration of gene molecules
𝐺tot = 𝐺 + 𝐶1 + 𝐶2, the total concentration of repressor one, 𝑅1,tot = 𝑅1 + 𝐶1, and the total concentration of
repressor two, 𝑅2,tot = 𝑅2 + 𝐶2.

The activity species is 𝐺, since it is the unrepressed gene with transcriptional activity. The concentrations that can
be regulated are those of the repressors. Therefore, described in terms of input-output, we have 𝐺 as the output,
𝑅1,tot, 𝑅2,tot as inputs, and 𝐺tot, 𝐾1, 𝐾2 as parameters.

The idea of this competitive binding behavior is that the gene has only one binding site for it to be repressed,
and we have two types of repressors, 𝑅1 and 𝑅2, that both represses 𝐺 at this binding site. Therefore, 𝑅1 and
𝑅2 competes to bind with 𝐺. We would like to see how does the repression effect change with the amount of
repressors 𝑅1 and 𝑅2, and how does this compare with just one repressor.

1. Consider the behavior of this binding network under the overabundance limit where 𝑅1,tot and 𝑅2,tot
are overabundant, while 𝐺tot is left variable. So this behavior’s dominance condition is 𝑅1,tot ∼ 𝑅1 and
𝑅2,tot ∼ 𝑅2. Show that the following holds under this dominance condition,

𝐺 ∼ 𝐺tot
1

1 + 𝑅1,tot
𝐾1

+ 𝑅2,tot
𝐾2

. (2)

This is the saturation behavior with two saturating variables. Note that, if we view this as a function of 𝑅1,tot
alone, i.e. considering 𝑅2,tot as a parameter as well, then we can compare what does this additional binding
reaction do by comparing the above expression with the one-variable saturation function

𝐺 ∼ 𝐺tot
1

1 + 𝑅1,tot
𝐾1

. (3)

We see that increasing 𝑅2,tot
𝐾2

is effectively “flattening” the saturation curve of 𝐺 in terms of 𝑅1,tot.

Draw the function of 𝐺 vs 𝑅1,tot/𝐾1 for different 𝑅2,tot/𝐾2 to see this.
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2. We can visualize this behavior. Since there are two inputs 𝑅1,tot and 𝑅2,tot, we can consider a 2D graph
with 𝑅1,tot as x-axis and 𝑅2,tot as y-axis. There are three dominance regimes included in this behavior,
namely 𝐺tot ∼ 𝐺, 𝐺tot ∼ 𝐶1 and 𝐺tot ∼ 𝐶2. Show that these dominance conditions of 𝐺tot for each regime
corresponds to validity conditions involving 𝑅1,tot, 𝑅2,tot, 𝐾1 and 𝐾2. For example, the first dominance
regime 𝐺tot ∼ 𝐺 should correspond to 1 ≫ 𝑅1,tot/𝐾1, 𝑅2,tot/𝐾2.

Then, for each of these dominance regimes, draw their regions of validity on the 2D input graph. Compare
this with your drawings of 𝐺(𝑅1,tot/𝐾1) for different 𝑅2,tot/𝐾2 in the previous problem.

3. What is the condition on the parameters 𝐺tot, 𝐾1, 𝐾2 for this behavior to hold? Show that 𝑅1,tot ∼ 𝑅1 and
𝑅2,tot ∼ 𝑅2 means 𝐺 ≪ 𝐾1, 𝐾2.

Then we need to translate 𝐺 in this condition into totals and binding constants. This can be done for each
dominance regime. So let us consider each dominance regime, namely 𝐺tot ∼ 𝐺, 𝐺tot ∼ 𝐶1 and 𝐺tot ∼ 𝐶2.
For each dominance regime, re-express the behavior condition 𝐺 ≪ 𝐾1, 𝐾2 in terms of totals and binding
constants.

Now, some of these conditions involve the input variables 𝑅1,tot and 𝑅2,tot, which can be disregarded, since
these variables are varied freely across all positive reals, so there is always some region in the input space
that satisfies conditions on them. So the validity condition for the behavior only needs to consider the
conditions involving only the parameters, not the inputs. Show that the only conditions left, which is the
validity condition for this behavior, is 𝐺tot ≪ 𝐾1, 𝐾2.

4. (Optional) What happens in the other behavior conditions? For example, what happens if 𝐺tot ≫ 𝐾1, 𝐾2?
This corresponds to the limit where both 𝑅1 and 𝑅2 binds with 𝐺 tightly. So you can consider the total
number of tight binders 𝑅tot = 𝑅1,tot + 𝑅2,tot, and 𝐺 is a simple function of 𝐺tot and 𝑅tot, just like the tight
binding limit of 𝐺 + 𝑅 ⇌ 𝐶𝐺𝑅. Write down the specific expression of 𝐺 as a function of 𝑅1,tot and 𝑅2,tot.
Note that there is a discontinuous or ultrasensitive transition between the two regimes in the tight binding
limit.

Then, what are the dominance regimes that this behavior includes? For each dominance regime included, look
at their validity conditions, and see that indeed their overall behavior’s validity condition is 𝐺tot ≫ 𝐾1, 𝐾2.

What happens if 𝐾1 ≪ 𝐺tot ≪ 𝐾2, so that 𝐺 binds with 𝑅1 tightly, but binds with 𝑅2 weakly? We can again
consider the 𝑅2 overabundance limit, so 𝑅2,tot ∼ 𝑅2. Then 𝐺 + 𝑅1 ⇌ 𝐶1 can be treated as tight-binding
limit, to have two dominance regimes. One regime is 𝐺 + 𝐶1 more than 𝑅1,tot, in which case the dominance
conditions are 𝐺 + 𝐶1 ∼ 𝐺 and 𝑅1,tot ∼ 𝐶1. In this regime, we can derive

𝐺 ∼ 𝐺tot
1

1 + 𝑅2,tot
𝐾2

. (4)

The other regime is 𝐺 + 𝐶1 less than 𝑅1,tot, in which case the dominance conditions are 𝐺 + 𝐶1 ∼ 𝐶1 and
𝑅1,tot ∼ 𝑅1. In this regime, 𝐺 ∼ (𝐺 + 𝐶1) 𝐾1

𝑅1,tot
. Based on this, you can derive

𝐺 ∼ 𝐺tot
1

𝑅1,tot
𝐾1

+ 𝑅2,tot
𝐾2

. (5)

Derive the validity conditions for each of these two regimes. Compare this behavior with the previous one
where both 𝑅1 and 𝑅2 are tight binding.

A relevant reference on such problems using traditional methods of analysis is Chapter 1 of the book [1].
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1.2 Titration sponge (Optional)
Another example that is similar in binding network topology to the competitive binding example is the molecular
titration sponge. Consider the following binding network:

𝐺 + 𝑅 ⇌ 𝐶𝐺𝑅, 𝑅 + 𝑇 ⇌ 𝐶𝑅𝑇 . (6)

Here 𝐺 is a gene that can bind with a repressor 𝑅, while the repressor can also be sequestered by a titrator molecule
𝑇 . The conserved quantities are 𝐺tot = 𝐺 + 𝐶𝐺𝑅, 𝑅tot = 𝑅 + 𝐶𝐺𝑅 + 𝐶𝑅𝑇 , and 𝑇tot = 𝑇 + 𝐶𝑅𝑇 . The dissociation
constants for the two binding reactions are denoted 𝐾𝐺𝑅 and 𝐾𝑅𝑇 respectively.

Since we are interested in the gene expression, and the repressor number tends to be dynamically adjusted while
the titrator is used to change the overall behavior of the system, let us consider 𝐺 as output, 𝑅tot as input, and
𝑇tot, 𝐺tot, 𝐾𝐺𝑅, 𝐾𝑅𝑇 as parameters. Compared with competitive binding, we can map 𝐺 to 𝑅1, 𝑅 to 𝐺, and 𝑇 to
𝑅2, and see that here we are effectively taking 𝑅1 as output, and 𝑅2,tot as input, while 𝑅1,tot is also considered as a
parameter.

The idea of this titration sponge behavior is the following. When 𝑅 represses gene expression in the typical
saturation behavior of a binding reaction 𝐺 + 𝑅 ⇌ 𝐶𝐺𝑅, where we have

𝐺 ∼ 𝐺tot
1

1 + 𝑅tot
𝐾𝐺𝑅

, (7)

if we want gene expression to be sensitive to 𝑅tot = 𝑅 + 𝐶𝐺𝑅, this requires 𝑅tot ≫ 𝐾1. But we may want to elevate
the threshold of repression, which is currently 𝐾1, while keeping 𝑅’s binding with 𝐺 relatively tight. So we would
like a different method to elevate the repression threshold, which can be done by titrating a number of repressors
away by the titrator molecules 𝑇 .

Let us investigate whether this can work and what are the conditions for it to hold.

1. Since we are interested in the repression of 𝑅 on 𝐺, let us assume the 𝑅-saturation behavior for the binding
reaction 𝑅 + 𝐺 ⇌ 𝐶𝐺𝑅 between them. Show that this implies

𝐺 ∼ 𝐺tot
1

1 + 𝑅+𝐶𝐺𝑅
𝐾𝐺𝑅

. (8)

2. Now we add in titrator. To be an effective titrator, we need the repressor to bind with the titrator first, so their
binding reaction 𝑅 + 𝑇 ⇌ 𝐶𝑅𝑇 should be tight-binding. Furthermore, since 𝑇 serves as a titrator but not an
inhibition on 𝑅, its number should be less than the number of repressors, which means 𝑇tot ≪ 𝑅 + 𝐶𝑅𝑇 .
Show that, under this condition, we have

𝐶𝑅𝑇 ∼ 𝑇tot, (9)

which in turn implies
𝑅 + 𝐶𝐺𝑅 ∼ 𝑅tot − 𝑇tot. (10)

These results together imply
𝐺 ∼ 𝐺tot

1
1 + 𝑅tot−𝑇tot

𝐾𝐺𝑅

. (11)

So we see that indeed this gives an effective elevation of the repression threshold. Compare the new threshold
𝑅tot − 𝑇tot ≫ 𝐾𝐺𝑅 with 𝑅tot ≫ 𝐾𝐺𝑅.
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3. What is the validity condition for this behavior? List the dominance regimes involved in this behavior, and
derive their validity conditions.

4. Now, what if we assume that 𝑅 binds with 𝐺 tightly as well, but 𝐾𝑅𝐺 ≫ 𝐾𝑅𝑇 so that 𝑅 binds with 𝑇 even
tighter? What would be the resulting function of 𝐺 in terms of 𝐺tot, 𝑅tot, and 𝑇tot? Note that there should be
an ultrasensitive transition between the two regimes in this behavior. Compare this tight-binding titration
sponge behavior to the previous saturation titration sponge behavior.

A reference on the titration effect in molecular interactions is this chapter of the online textbook on systems biology
https://biocircuits.github.io/chapters/12_molecular_titration.html. Titration is also used in this 2016
work [2] to reduce noise and improve the original repressilator (which kick started synthetic biology in the year
2000) to persistently oscillate over hundreds of generations! Titration is also found to be the natural mechanism
that controls replication initiation, to stably couple genome replication and cellular growth. In [3], it is shown that
by titrating a replication initiator molecule with binding boxes on the genome, the cell can form a “progress bar”
measuring how far replication has gone compared to growth, therefore coupling the two processes.

1.3 Tunability in two-layer regulations (Optional)
Previous two examples considered the same binding network topology, with two binding reactions connected “in
parallel”. In this example, let us consider connecting two binding reactions “in series”. Consider the following
binding network:

𝐿 + 𝑅 ⇌ 𝐶𝐿𝑅, 𝐶𝐿𝑅 + 𝑃 ⇌ 𝐶𝐿𝑅𝑃 . (12)

For a biological context, we can consider 𝐿 as a ligand, binding with a receptor 𝑅 to form an activated complex
𝐶𝐿𝑅, which can then bind with a protein 𝑃 to activate it. So the catalytic activity species is 𝐶𝐿𝑅𝑃 . The conserved
quantities are 𝐿tot = 𝐿 + 𝐶𝐿𝑅 + 𝐶𝐿𝑅𝑃 , 𝑅tot = 𝑅 + 𝐶𝐿𝑅 + 𝐶𝐿𝑅𝑃 , and 𝑃tot = 𝑃 + 𝐶𝐿𝑅𝑃 . Let 𝐾𝐿𝑅 and 𝐾𝐿𝑅𝑃 denote
the dissociation constants of the two binding reactions.

The input is 𝐿tot, the output is 𝐶𝐿𝑅𝑃 , and the parameters are 𝑅tot, 𝑃tot, 𝐾𝐿𝑅, 𝐾𝐿𝑅𝑃 .

The idea of this behavior is that we want to regulate the activity of 𝑃 by varying 𝐿tot, and do this by first binding
with a receptor, and then bind with the protein. We would like to see how does this additional step in the middle
help with the diversity of the regulation, when compared with a direct activation of 𝑃 by 𝐿.

1. Let us consider 𝐿 is overabundant in its binding with 𝑅. As for the binding of 𝐶𝐿𝑅 with 𝑃 , let us consider
the regime where neither are saturated, so 𝐶𝐿𝑅 + 𝐶𝐿𝑅𝑃 ∼ 𝐶𝐿𝑅, and 𝑃tot ∼ 𝑃 . Show that under these
assumptions, we have

𝐶𝐿𝑅𝑃 ∼ 𝑃tot𝑅tot
𝐾𝐿𝑅𝑃

𝐿tot/𝐾𝐿𝑅

1 + 𝐿tot/𝐾𝐿𝑅
. (13)

Compare this with the formula for a direct activation of 𝑃 by 𝐿 via binding 𝑃 + 𝐿 ⇌ 𝐶𝑃 𝐿 and have

𝐶𝑃 𝐿 ∼ 𝑃tot
𝐿tot/𝐾𝑃 𝐿

1 + 𝐿tot/𝐾𝑃 𝐿
(14)

when 𝐿 is overabundant.

We see that adding the middle step of binding with 𝑅 adds a knob 𝑅tot
𝐾𝐿𝑅𝑃

that adjusts the maximal activation.
However, this can already be done by adjusting 𝑃tot. Is there a situation where this behavior with 𝑅-binding
step in the middle is more useful when compared with the direct activation?

https://biocircuits.github.io/chapters/12_molecular_titration.html


Homework 2 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here] 5

2. Consider the behavior with the assumptions on the two binding reactions swapped. Namely, let us consider
𝐶𝐿𝑅’s binding with 𝑃 having 𝐶𝐿𝑅 overabundant, and consider 𝐿 and 𝑅’s binding with neither saturating.
Show that in this case the behavior is

𝐶𝐿𝑅𝑃 ∼ 𝑃tot

𝐿tot𝑅tot
𝐾𝐿𝑅𝐾𝐿𝑅𝑃

1 + 𝐿tot𝑅tot
𝐾𝐿𝑅𝐾𝐿𝑅𝑃

. (15)

Note that this can be expressed as

𝐶𝐿𝑅𝑃 ∼ 𝑃tot

𝐿tot
𝐾eff

1 + 𝐿tot
𝐾eff

, (16)

where 𝐾eff = 𝐾𝐿𝑅𝐾𝐿𝑅𝑃
𝑅tot

is the effective dissociation constant.

Compare this with the direct activation behavior, we see that the 𝑅-binding step adds the 𝑅tot knob that can
tune the activation threshold. Given this, if we want to suppress the activity 𝐶𝐿𝑅𝑃 , what can we do other
than degrading 𝐿tot?

3. List the dominance regimes involved in the three behaviors considered thus far: direct activation, over-
abundant 𝐿, and overabundant 𝐶𝐿𝑅. Look at the dominance regimes’ validity conditions, and derive the
behaviors’ validity conditions. Compare them and discuss each behavior is suited for what situations.

2 Adaptation and realizability
The idea about realizability is that in the world of synthetic biology, we design biomolecular circuits to achieve a
certain function, such as adaptation. However, due to assumptions and approximations we make, some biocircuit
designs may achieve the desired function in a wide range of conditions, therefore easily realized in experiments,
while others may have a very limited range of conditions to achieve the desired function, therefore hard to realize
in experiments. We can call this property the realizability of a given biocircuit. What complicates the problem
even further is that we could get a wrong result on the realizability of a given circuit if our method of analysis is
not careful. In this problem, we briefly explore this by looking into the realizability of a particular biocircuit design
that achieves adaptation. This is based on the ongoing research work of Qinguo Liu.

In the landmark 2009 paper [4], the authors computationally explored a class of biocircuits that can achieve perfect
adaptation. One such network topology they discovered is negative feedback. This network is illustrated in Figure
1.

This network has two species, 𝐴 and 𝐵, that exist in both phosphorylated (𝐴*, 𝐵*) and dephosphorylated (𝐴, 𝐵)
forms. The enzyme catalyzing the phosphorylation of 𝐴 is the input species, 𝐼 . Since the phosphorylated form of
𝐴 is active, we can consider the total concentration of phosphorylated 𝐴, i.e. 𝐴*

tot = 𝐴* + 𝐶2 + 𝐶3, as output. So
the goal is to have the concentration of output 𝐴*

tot invariant to changes in the input 𝐼tot = 𝐼 + 𝐶1, by feedback
regulations from 𝐵’s activities.

This is achieved by phosphorylations and dephosphorylation activities coupling 𝐴 and 𝐵. The enzyme catalyzing
the phosphorylation of 𝐵 is a constant enzyme species, 𝐸. 𝐴 and 𝐵’s activities are coupled by 𝐴* catalyz-
ing 𝐵’s phosphorylation, and 𝐵* catalyzing 𝐴*’s dephosphorylation. Note that, since all catalysis reactions
are phosphorylations and dephosphorylations, the overall number of 𝐴 and 𝐵 molecules are conserved, i.e.
𝐴tot + 𝐴*

tot = 𝐴 + 𝐴* + 𝐶1 + 𝐶2 + 𝐶3 and 𝐵tot + 𝐵*
tot = 𝐵 + 𝐵* + 𝐶2 + 𝐶3 + 𝐶4 do not change with time. So we

can describe the dynamics of the system by two variables, which we can choose to be 𝐴*
tot = 𝐴* + 𝐶2 + 𝐶3 and
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Figure 1 Illustration of the negative feedback loop topology that achieves perfect adaptation, as depicted in [4]. The blue
small 𝑘 parameters are catalysis rate constants, and the red 𝐾 parameters are dissociation constants for the binding
reactions. Credit to Qinguo Liu.

𝐵*
tot = 𝐵* + 𝐶2 + 𝐶4. This yields the following dynamical system,

𝑑

𝑑𝑡
𝐴*

tot = 𝑘𝐴1𝐶1 − 𝑘𝐴2𝐶2,

𝑑

𝑑𝑡
𝐵*

tot = 𝑘𝐵1𝐶3 − 𝑘𝐵2𝐶4,

(17)

where the complexes are formed by the following binding network,

𝐼 + 𝐴 ⇌ 𝐶1, 𝐴* + 𝐵* ⇌ 𝐶2, 𝐵 + 𝐴* ⇌ 𝐶3, 𝐵* + 𝐸 ⇌ 𝐶4. (18)

2.1 An analysis of adaptation
The goal of the system is to have the steady state concentration of 𝐴*

tot be invariant to changes in the input 𝐼tot. Let
us first see how this can be true, following arguments adapted from [4].

1. The key idea is to let 𝐵*
tot serve as an integral variable of 𝐴. So let us focus on the two binding reactions

forming 𝐶3 and 𝐶4, which determines the dynamics of 𝐵*
tot.
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Let us assume that there exists one regime such that 𝐶3 ∼ 𝐴*
tot and 𝐶4 ∼ 𝐸tot. Write down the equation

for the dynamics of 𝐵*
tot under this regime, and argue that if steady state is achieved, the output 𝐴*

tot is
determined solely by parameters independent of the input 𝐼tot = 𝐼 + 𝐶1.

2.2 A traditional analysis for validity conditions that fails... (Optional)
How to derive conditions that achieve the above desired integral feedback for perfect adaptation? Traditionally in
systems and synthetic biology, we assume enzymatic reactions have saturation behaviors of the Michaelis-Menten
form, which can dramatically simplify the regulatory behavior of a binding network. Then, further simplifying
assumptions can be made to see what conditions can yield the desired function. This is also the approach taken in
[4].

Let us follow this approach, but pay close attention to the conditions needed to assume enzymatic reaction rates
take Michaelis-Menten form. The assumptions made when writing down Michaelis-Menten functions are often
ignored in research works in this field, but it could result in catastrophic failures, as we will see at the end of this
problem.

1. First, let us assume every catalysis reaction has substrates saturating, so the catalysis rates take Michaelis-
Menten form. This means, for the enzyme-substrate binding reaction 𝐸 + 𝑆 ⇌ 𝐶 with dissociation constant
𝐾, we assume 𝐸tot ≪ 𝐾 so that 𝐶 ∼ 𝐸tot

𝑆tot
𝑆tot+𝐾 .

(A reminder on our analysis of dominance regimes. There are exactly three dominance regimes in one binding
reaction 𝐸 + 𝑆 ⇌ 𝐶, with dissociation constant 𝐾. One is 𝐸 + 𝐶 ∼ 𝐸, 𝑆 + 𝐶 ∼ 𝑆, with 𝐶 ∼ (𝐸+𝐶)(𝑆+𝐶)

𝐾 .
Another is 𝐸 + 𝐶 ∼ 𝐶, 𝑆 + 𝐶 ∼ 𝑆, with 𝐶 ∼ 𝐸 + 𝐶. The last is 𝐸 + 𝐶 ∼ 𝐸, 𝑆 + 𝐶 ∼ 𝐶, with 𝐶 ∼ 𝑆 + 𝐶.
The fact that there are exactly three regimes in a binding reaction is very powerful and is used throughout
for the analysis of bioregulations.)

By our design, 𝐵*
tot should be the integral variable of 𝐴*

tot. Therefore, 𝐶2, 𝐶3 and 𝐶4, which involve 𝐵 and
𝐵*, play the central role in the feedback regulation of 𝐵 on 𝐴. So we focus on the binding reactions of 𝐶2, 𝐶3
and 𝐶4. Let us walk through the Michaelis-Menten assumption for 𝐶2.

The binding reaction for 𝐶2 is 𝐴* + 𝐵* ⇌ 𝐶2, with dissociation constant 𝐾𝐴2, and 𝐵* is the enzyme and 𝐴*

is the substrate. For Michaelis-Menten behavior, we would like to write

𝐶2 ∼ 𝐵*
tot

𝐴*
tot

𝐴*
tot + 𝐾𝐴2

. (19)

To do so, we first assume 𝐵* + 𝐶2 ≪ 𝐾𝐴2 so that the 𝐴*-saturation behavior holds. So we have

𝐶2 ∼ (𝐵* + 𝐶2) (𝐴* + 𝐶2)
(𝐴* + 𝐶2) + 𝐾𝐴2

.

To replace 𝐵* + 𝐶2 with 𝐵*
tot = 𝐵* + 𝐶2 + 𝐶4, we need to assume 𝐶4 ≪ 𝐵* + 𝐶2. To replace 𝐴* + 𝐶2 with

𝐴*
tot = 𝐴* + 𝐶2 + 𝐶3, we need to assume 𝐶3 ≪ 𝐴* + 𝐶2. So the conditions for this behavior is

𝐶4 ≪ 𝐵* + 𝐶2 ≪ 𝐾𝐴2, 𝐶3 ≪ 𝐴* + 𝐶2. (20)

Perform a similar analysis for the binding reactions of 𝐶3 and 𝐶4 to obtain the following desired behaviors
and corresponding conditions.

𝐶3 ∼ 𝐴*
tot

𝐵tot
𝐵tot + 𝐾𝐵1

, 𝐶2 ≪ 𝐴* + 𝐶3 ≪ 𝐾𝐵1. (21)
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𝐶4 ∼ 𝐸tot
𝐵*

tot
𝐵*

tot + 𝐾𝐵2
, 𝐸tot ≪ 𝐾𝐵2, 𝐶2 ≪ 𝐵* + 𝐶4. (22)

2. Combine the conditions for 𝐶2 and 𝐶3 to obtain that the overall condition is

𝐶2, 𝐶4 ≪ 𝐵* ≪ 𝐾𝐴2, 𝐶2, 𝐶3 ≪ 𝐴* ≪ 𝐾𝐵1, 𝐸tot ≪ 𝐾𝐵2. (23)

In particular, notice that the condition 𝐶2, 𝐶4 ≪ 𝐵* implies 𝐵*
tot = 𝐵* + 𝐶2 + 𝐶4 ∼ 𝐵*. Similarly, we have

𝐴*
tot = 𝐴* + 𝐶2 + 𝐶3 ∼ 𝐴*.

Based on this, we have already specified the dominance regime for the binding reaction 𝐴* + 𝐵* ⇌ 𝐶2.
Argue that 𝐶2 ∼ 𝐴*

tot𝐵*
tot

𝐾𝐴2
. Then show that 𝐶2 ≪ 𝐵* implies 𝐴*

tot ≪ 𝐾𝐴2.

Similarly, we have also specified the dominance regime for the binding reaction 𝐴* + 𝐵 ⇌ 𝐶3, since 𝐶3 does
not dominate 𝐵 + 𝐶3 or 𝐴* + 𝐶3. Argue that 𝐶3 ∼ 𝐴*

tot𝐵tot
𝐾𝐵1

. Then show that 𝐶3 ≪ 𝐴* implies 𝐵tot ≪ 𝐾𝐵1.

The following summarizes the conditions we have obtained thus far in terms of totals:

𝐵tot ≪ 𝐾𝐵1, 𝐵*
tot ≪ 𝐾𝐴2, 𝐴*

tot ≪ 𝐾𝐵1, 𝐾𝐴2, 𝐸tot ≪ 𝐾𝐵2. (24)

3. Now, recall that, under the desired saturation (Michaelis-Menten) behaviors, we have the following dynamics
of 𝐵*

tot:
𝑑

𝑑𝑡
𝐵*

tot = 𝑘𝐵1𝐶3 − 𝑘𝐵2𝐶4 ≈ 𝑘𝐵1𝐴*
tot

𝐵tot
𝐵tot + 𝐾𝐵1

− 𝑘𝐵2𝐸tot
𝐵*

tot
𝐵*

tot + 𝐾𝐵2
. (25)

To achieve the desired result that 𝐵*
tot serves as an integral variable of 𝐴*

tot, we need 𝐵tot ≫ 𝐾𝐵1 and
𝐵*

tot ≫ 𝐾𝐵2.

Does this contradict the conditions we have assumed previously? What does this imply?

2.3 Holistic regimes come to rescue
In our previous analysis, we followed the traditional approach where we first make the assumption that all
enzymatic reactions follow Michaelis-Menten kinetics, and then find regimes where our desired behavior is
achieved. This eventually resulted in contradictory conditions such that seemingly our desired behavior can
NEVER be achieved!

However, the fault in this case actually rests on our method of analysis. Making the Michaelis-Menten assumption
in the first step already ruled out several regimes, which includes regimes that achieves perfect adaptation.

We can “rescue” our previous analysis by getting rid of Michaelis-Menten assumptions altogether, and directly
search for the regimes that achieve our desired behavior. We do this below.

1. Based on the idea about this adaptation behavior, we want a regime where 𝐵*
tot serves as the integral variable

of 𝐴*
tot. Therefore, we want 𝐶3 ∼ 𝐴*

tot and 𝐶4 ∼ 𝐸tot. We can start with this to derive the dominance regimes
that may achieve our desired function.
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Let us list the total variables so we have an idea of all possible regimes.

𝐼tot = 𝐼 + 𝐶1,

𝐴tot = 𝐴 + 𝐶1,

𝐴*
tot = 𝐴* + 𝐶2 + 𝐶3,

𝐵tot = 𝐵 + 𝐶3,

𝐵*
tot = 𝐵* + 𝐶2 + 𝐶4,

𝐸tot = 𝐸 + 𝐶4.

(26)

Let us start with the binding reactions of 𝐶3 and 𝐶4. What is the desired regime for 𝐵 + 𝐴* ⇌ 𝐶3? And
what is the desired regime for 𝐵* + 𝐸 ⇌ 𝐶4?

Show that, under these regimes, the total variables satisfy

𝐼tot = 𝐼 + 𝐶1,

𝐴tot = 𝐴 + 𝐶1,

𝐴*
tot ∼ 𝐶3,

𝐵tot ∼ 𝐵,

𝐵*
tot ∼ 𝐵* + 𝐶2,

𝐸tot ∼ 𝐶4.

(27)

2. So we can choose one dominance regime to check whether the desired integral feedback property holds. Let
us consider the regime where (𝐼tot, 𝐴tot, 𝐴*

tot, 𝐵tot, 𝐵*
tot, 𝐸tot) ∼ (𝐼, 𝐴, 𝐶3, 𝐵, 𝐶2, 𝐶4).

Show that in this case the system dynamics is

𝑑

𝑑𝑡
𝐴*

tot = 𝑘𝐴1
𝐼tot𝐴tot

𝐾𝐴1
− 𝑘𝐴2𝐵*

tot,

𝑑

𝑑𝑡
𝐵*

tot = 𝑘𝐵1𝐴*
tot − 𝑘𝐵2𝐸tot.

(28)

Use the condition that 𝐴0 = 𝐴*
tot + 𝐴tot is conserved to rewrite the system as the following:

𝑑

𝑑𝑡

[︃
𝐴*

tot
𝐵*

tot

]︃
=

[︃
−𝑘𝐴1

𝐼tot
𝐾𝐴1

−𝑘𝐴2
𝑘𝐵1 0

]︃[︃
𝐴*

tot
𝐵*

tot

]︃
+

[︃
𝑘𝐴1

𝐼tot
𝐾𝐴1

𝐴0
−𝑘𝐵2𝐸tot

]︃
. (29)

Show that this system has a unique fixed point, which satisfies 𝐴*
tot = 𝑘𝐵2

𝑘𝐵1
𝐸tot, and this fixed point is stable.

So this system achieves perfect adaptation.

3. (Optional.) For the dominance regime selected above, derive its validity condition, which should be in terms
of totals and dissociation constants.

This condition corresponds to one region in parameter space that the perfect adaptation behavior holds.
Compare this dominance regime and the validity conditions with our analysis in the previous subproblem
where we first made Michaelis-Menten assumptions. Is this regime eliminated when making Michaelis-
Menten assumption? If we only make Michaelis-Menten assumption on some of the binding reactions, which
subset of binding reactions can be assumed as Michaelis-Menten and still keep this regime included?
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3 Glycolytic oscillations and robustness-efficiency tradeoffs of adaptations
We can use perspectives of control theory to better understand the design principles of natural biological systems.
We do so by conceptualizing a plant-controller split, and then by analyzing what is special about the natural
controller among the space of all possible controller designs, we can get a glimpse of why natural biological systems
evolved into this form. Of course, if the natural controller does not seem special and indeed inferior to some of the
controller designs, then instead of lamenting on evolution is not optimal or life is not designed, we can always put
our engineer hat on and construct synthetic biological systems that surpass the performance of natural ones!

To illustrate this perspective of using control theory to understand biological design principles, let us investigate
the control of the glycolysis pathway. The glycolysis pathway consumes glucose and produces protons, ATPs, and
metabolic intermediates that are part of the central metabolism and connects to many other metabolic pathways. It
is so central that it is present in essentially every biological organism. Therefore, it is reasonable to consider the
hypothesis that the regulation of the glycolysis pathway is optimized in some sense.

Since the early 1960s, it has been observed that when cells are starved, and glucose is suddenly added, oscillations
in the concentrations of the glycolysis pathway’s intermediates (namely NADH) at minutes timescale has been
observed [5]. People hypothesized that this must serve some functional purpose. But intuitively, we would
imagine that the main objective of controlling the glycolysis pathway is to stably supply ATP, protons, and other
intermediates, not oscillating them. Also, such suspicion is further supported by the fact that such oscillations
are only observed under extreme and unrealistic scenarios. Therefore, could it be that glycolytic oscillations do
not serve any functional purposes? But then why cells do not get rid of it? In the 2011 work [6], through control
theory analysis, it is shown that glycolytic oscillations is simply an inevitable side effect of the controller design
that adapts to changing demands on ATPs. In particular, there is a fundamental tradeoff between robustness and
efficiency that cannot be broken for all possible controller designs. If a controller adapts to changing ATP demands
efficiently, then it inevitably tends to oscillate and is fragile.

We follow some parts of the analysis in [6] in this problem.
3.1 Steady state analysis of the tradeoff in a simplified glycolysis model
While the actual glycolysis pathway consists of many steps, given our goal of analyzing glycolytic oscillations,
we can focus on ATP production with overabundant glucose supply. Therefore, we can simplify the glycolysis
pathway into just two steps. The first step is one unit of ATP is consumed to activate glucose and produce one unit
of the intermediate molecule. The second step is the consumption of one intermediate molecule to produce two
units of ATP.

ATP Intermediate, Intermediate 2ATP. (30)

Since ATP is supplied by glycolysis to other metabolic pathways, we also need to consider the consumption of ATP.
So we have another reaction

ATP ∅. (31)

1. Denote 𝑥1 = 𝑥int as the concentration of intermediate, and 𝑥2 = 𝑥ATP as the concentration of intermediate.
Then denote 𝑣1 = 𝑣PFK and 𝑣2 = 𝑣PK as the reaction fluxes for the two catalysis reactions, since one step
among the ATP-consuming reactions is known to be catalyzed by the PFK enzyme, and one step among the
ATP-producing reactions is known to be catalyzed by the PK enzyme. The third reaction, the consumption of
ATP, can be viewed as disturbance flux 𝑤, since the consumption of ATP is determined by other parts of the
cell and the external environment, which can increase when experiencing hardship such as heat shock. Write
the system in the following form:

𝑑

𝑑𝑡
𝑥 = 𝑆𝑣 + 𝑆𝑤𝑤, (32)
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where 𝑆 is the reaction stoichiometry matrix of the two catalysis reactions, and 𝑣 is the two-dimensional
vector of the two reaction’s fluxes, 𝑆𝑤 is the stoichiometry matrix of the third reaction, and 𝑤 is the scalar
flux of the third reaction. What are the matrices 𝑆 and 𝑆𝑤?

2. To make this system have internal metabolic dynamics, we need to know how the fluxes 𝑣 are regulated
by the metabolites 𝑥. In this particular case, from biochemical experiments, we know that the PFK and PK
enzymes are allosterically activated by AMP, therefore effectively inhibited by ATP. So we can assume they
take the following form:

𝑣1 = 𝑣PFK = 2𝑥𝑎
ATP

1 + 𝑥2ℎ
ATP

, 𝑣2 = 𝑣PK = 2𝑘𝑥int

1 + 𝑥2𝑔
ATP

, (33)

where 𝑎 is the sensitivity of 𝑣PFK to 𝑥ATP, with a typical value of 𝑎 = 1, ℎ is the strength of inhibition of this
flux by ATP, with a typical value from 1 to 4, 𝑘 is the rate constant for 𝑣PK, and 𝑔 is the strength of inhibition
of the PK flux by ATP, with a typical value between 0 and 1. There are “2”s here and there, for the purpose of
normalization and simplification.

Write down the full control system given how the fluxes are regulated by the metabolites. Assume the
reference value of the disturbance flux 𝑤 is 𝑤* = 1. Then, with 𝑤 kept constant, this control system becomes
an autonomous dynamical system, amenable to stability analysis.

Show that the steady state equations are 𝑣1(𝑥*) − 𝑣2(𝑥*) = 0 and 2𝑣2(𝑥*) − 𝑣1(𝑥*) − 𝑤* = 0, where 𝑥* is the
steady state concentration of 𝑥. Solve this to get that one fixed point is

𝑥* = (𝑥*
1, 𝑥*

2) = (𝑥*
int, 𝑥*

ATP) = (1/𝑘, 1). (34)

This fixed point is unique if 𝑎 = 2ℎ, for example.

Then, denote Δ𝑥 = 𝑥 − 𝑥* as the deviation from the fixed point, and similarly denote Δ𝑤 = 𝑤 − 𝑤*, and
linearize the system around this fixed point. Show that the linearized reaction fluxes are

Δ𝑣PFK = (𝑎 − ℎ)Δ𝑥ATP, Δ𝑣PK = 𝑘Δ𝑥int − 𝑔Δ𝑥ATP. (35)

And the linearized system is the following:

𝑑

𝑑𝑡

[︃
Δ𝑥int

Δ𝑥ATP

]︃
=

[︃
−𝑘 𝑎 + 𝑔 − ℎ
2𝑘 −𝑎 − 2𝑔 + ℎ

]︃[︃
Δ𝑥int

Δ𝑥ATP

]︃
+

[︃
0

−1

]︃
Δ𝑤. (36)

3. Analyze the stability of the fixed point using the Routh-Hurwitz criterion. (Note that 𝑘 > 0.) Show that the
stability condition can be expressed as

0 < ℎ − 𝑎 < 𝑘 + 2𝑔. (37)

4. The output of the system is ATP concentration, since we care about maintaining ATP at a reference level.
Therefore the steady state error in response to a given perturbation can be expressed as

⃒⃒⃒
Δ𝑥ATP

Δ𝑤

⃒⃒⃒
.

Show that the steady state error satisfies ⃒⃒⃒⃒Δ𝑥ATP
Δ𝑤

⃒⃒⃒⃒
=

⃒⃒⃒⃒ 1
ℎ − 𝑎

⃒⃒⃒⃒
. (38)

Observe that there is a tradeoff between the steady state error and the margin of stability. If we want to adapt
to changing demands, i.e. changing Δ𝑤, we need the steady state error to be small. This means we want a
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large ℎ − 𝑎, which requires a large 𝑘 + 2𝑔 to keep the system stable. Since 𝑘 corresponds to the number of
enzymes, a large 𝑘 + 2𝑔 means a larger metabolic overhead to produce a large number of enzymes. From
this, we see that to adapt to a changing environment, there is a tradeoff between robustness, i.e. margin of
stability, and efficiency, i.e. metabolic overhead to produce enzymes.

This also explains that sustained oscillations, which happens when 𝑘 + 2𝑔 goes below ℎ − 𝑎 to make the
system unstable, happens under starvation causing the number of enzymes to be low so that 𝑘 is small.
This shows that glycolytic oscillation may not have a functional role in itself, but a side effect of having an
ℎ − 𝑎 such that the system adapts to changing demands on ATP with a small steady state error, which only
becomes apparent under conditions such as starvation causing 𝑘 to be too small.

3.2 Simulations reveal dynamic tradeoffs for varying control parameters (Optional)
Our previous analysis reveals a simple tradeoff between robustness and efficiency when the system adapts to
changing environments at steady state. Through simulations, we can get a sense of how the tradeoff on system
performance also holds dynamically.

Take the full (nonlinear) system, and run numerical simulations of the system trajectory. Try 𝑔 = 0, and increase ℎ
from 1 to 4. What do you observe? Then choose an ℎ with small enough steady state error, and increase 𝑘, what do
you observe? Note that large oscillations means the system is fragile and sensitive to disturbances.

Try 𝑔 = 1 and do the same increase on ℎ. How does the trajectories compare with the 𝑔 = 0 case? What would you
imply from this?
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