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1 The explanation of chemical reaction network equation
At first, let us review how we describe a system of chemical reaction network (CRN).
According to our lecture, we have equation below:

˙⃗x =
dx

dt
= ΓΛkx

α

But this equation looks confusing because it lacks an explanation of each character. Let us
write this equation in a more understandable form:

˙⃗x =
dx⃗

dt
= ΓΛkx⃗

α

Here, ˙⃗x means derivative of x with respect to t, so it is equal to dx / dt. And x is
called by me the concentration vector of biomolecules because it represents every
concentration of biomolecules we consider. It can be written as [x1, x2......xn]T . So ˙⃗x
means the conception change of every biomolecule we consider, it can be written as
[dx1/dt,dx2/dt......dxn/dt]T .

For Γ , it is the uuppercase form of gamma (γ), it is called the matrix of stoichiometric
number change by me. To understand this, we must first figure out the definition of
"stoichiometic number chnange". For a chemical reaction:

4x1 + x2 = 2x1 + 3x2
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The coefficient in front of the variable x1 and x2 is called the stoichiometric number. To
make a difference of the coefficient in front of these reactants and products, let us use 1 to
represent the coefficient "4" in front of reactant x1, use 2 to represent coefficient "1" in front
of reactant x2. Similarly, we can also use 1 and 2 to represent cofficient in front of products
x1 and x2. We notice the x1 and X2 appear in both reactants and products, so we can then
definite another physical quantity γ, for γ1, it equals to α1 − β1, for γ2, it equals to α2 − β2.
The γ shown here is "stoichiometic number chnange". For every variable, or biomolecules
we consider, they have a unique γ. And when γ < 0, that means after this reaction happens,
the quantity of this biomolecule will decrease. For example, for biomolecule x1, after one
single reaction happens, it will consume 4x1 biomolecules and generates 2, so it consumes
2x1 in total. And for γ > 0, that means after this reaction happens, the quantity of this
biomolecule will increase. Notably, for many biochemical reactions or even chemical
reactions that occurred in tubes or reaction kettles, the molecules will rarely appear on
both both reactant side and the product side, because they will be invited. One example is
alkaline hydrogen oxygen fuel cell, the positive pole half reaction is:

2H2 − 4e− + 4OH− = 4H2O

and the negative pole half reaction is:

O2 + 4e− + 2H2O = 4OH−

when we consider the whole reaction of this battery, we just simply combine this 2 half
reactions together, and it becomes:

2H2 +O2 + 2H2O = 4H2O

For water, it appears in both reactant side and product side, we can divide 2H2O from both
side, so we get:

2H2 +O2 = 2H2O

but we can also save the divided 2 water molecules in both sides, because they have
practical significance, it means 2 water molecules is consumed in negative pole, and 4
water molecules generated in positive pole. For water, its α equals to 4, its β equals 2, and
its γ equals 4-2=2.

So, for "the matrix of stoichiometric number change", it is the matrix formed by γ, in other
words, every element in this matrix is γ.

So how do these γ arrange? We first need to definite the chemical reaction network (CRN).
Now this CRN can be written as:
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α11x1 + α12x2 + ...... + α1nxn = β11x1 + β12x2 + β1nxn

α21x1 + α22x2 + ...... + α2nxn = β21x1 + β22x2 + β2nxn

......

αm1x1 + αm2x2 + ...... + αmnxn = βm1x1 + βm2x2 + βmnxn

Here, M and N are positive integers.

For the first row of the matrix, it represents the first reaction of CRN written above, it
is:

[γ11,γ12......γ1n]

The second row of the matrix is:

[γ21,γ22......γ2n]

The last row, which is the number m row, is:

[γm1,γm2......γmn]

For Λk, it is called diagonal matrix of reaction rate constant. In linear algebra, we often
use Λ to represent a diagonal matrix. The diagonal matrix means every element don’t
locate in diagonal line is zero. In other words, for element aij in matrix Am×n, where
1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, unless i=j, aij = 0. But that doesn’t mean when i=j, aij ̸= 0. Another
question is what is "reaction rate constant", that means for a reaction 4x1 + x2 = 2x1 + 3x2,
according to the Law of mass action the reaction rate equals to v = k× x4

1 × x2, the k shown
here is "reaction rate constant". So, for this diagonal matrix, it can be written as k1, k2......kn

located on the diagonal line.

The last one in this equation needed to explain is x⃗α, I call it mass action expression vector.
For every element in this vector, its form is:

xαi1
i1 + xαi2

i2 + ...... + xαin

in

with 1 ⩽ i ⩽ m.

This so-called "mass action expression vector" is formed by mass action expression of
each reaction in CRN. And the first reaction occupies the first row of this vector, the
second reaction occupies the second row of this vector...... In other words, if the reaction
"α11x1 + α12x2 + ...... + α1nxn = β11x1 + β12x2 + β1nxn" is represented by "reaction 1",
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the mass action expression of reaction 1 is xα11
11 + xα12

12 + ...... + xα1n
1n . If the mass action

expression of reaction 1 is represented by "M1", the "mass action expression vector" can be
written as:

[M1,M2......Mm]T

That is all the characters participated in the equation describing the chemical reaction
network (CRN). And now I will briefly introduce how can we get this equation. Now we
only consider there is one reaction in the CRN, the CRN can be described by:

α1x1 + α2x2 = β1x1 + β2x2

What does dx⃗/dt mean here? It is [dx1/dt,dx2/dt]
T , so we solve these two elements of this

vector separately. For dx1/dt, it equals:

dx1/dt = γ1 × v1 = γ1 × k1 × xα1
2 × xα2

2

The first "=" above comes from the relationship between molecule changing rate and
reaction rate. Considering in 1 second, the reaction happens N times, and the γ represents
when there is 1 reaction happens, the molecules change (increase/decrease) is γ = α− β,
the molecule changes is γ×N. Notably, the γ can indicate whether molecules increase or
decrease, as we discussed above. The second "=" is the Law of mass action.

When the reaction number increases to m, the total molecule number increase to n, the
equation of chemical reaction network becomes:

ẋ =
dx⃗

dt
= ΓΛkx⃗

α

2 Time Scale Separation
What is the meaning of "Time Scale Separation"? I think it is the thought to consider
those "fast reaction" and "slow reaction". The meaning of "fast reaction" is that it can
become chemical equilibrium quickly. For example, we consider the enzyme catalysis
process:

E+ S <=> [k1][k−1]ES− > [kcat]E+ P

Here we consider the first step (binding reaction). In this step, Enzyme (E) binds substance
(S) and becomes complex ES, and ES can dissociate into E and S. In other words, this step is
reversible. For any reversible chemical reaction, we can use reaction equilibrium constant K
(uppercase) to describe how thorough is the reaction, which is a thermodynamic parameter.
And there is also reaction rate constant k (lowercase) to describe how fast can the reaction
go, which is a kinetic parameter and obey the Law of Mass Action.
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K =
k1

k−1
=

c(E)× c(S)

c(ES)

For the dissociation constant Kd, it describes how easy the complex ES can dissociate,
which is the reciprocal of K.

Kd =
1
K

The second step (catalytic reaction) is the complex ES becomes E and product (P). This
process is considered as irreversible, so there is only one reaction rate constant called Kcat

representing the k of catalysis.

When we use the principle of "Time Scale Separation", we consider the binding reaction as
fast reaction, and the catalytic reaction as slow reaction. That means we can consider the
binding reaction has reached chemical equilibrium. Notably, this opinion (fast reaction has
reached chemical equilibrium) is used by Michaelis and Menten in 1913 to explain enzyme
kinetics. And in 1925, G.E.Briggs and James B.S.Haldane use steady-state approximation
(SSA) to explain enzyme kinetics, and SSA is considered as a better model in biochemistry
textbook. In SSA, it no longer considers the binding reaction reaches equilibrium, it
considers the concentration of ES complex is not changed, in other words, it has dc(ES)

dt
= 0,

so it satisfies the following equation:

k1 × E× S = k−1 × ES+ kcat × ES

But in the following part, we use "Time Scale Separation", that means we should remember
the binding reaction is in equilibrium, and this equation is true in any case.

K =
E× S

ES

K =
E× S

C

Here, C and ES has the same meaning, they are the concentration of enzyme-substance
complex. Here, I am not sure why Fangzhou thinks here he uses Quasi-steady state
assumption (QSSA), I think QSSA means dc(ES)

dt
0, but it changes very slow, much slower

than the changes of S, in other words, dc(ES)
dt

≪ dc(S)
dt

.

With this background knowledge, let us start to understand Fangzhou’s regime thoery!
Let us start with a 2-dimension graph, the x-axis is Stot, which means it is the total substance
concentration. For an enzyme kinetics assay, it is the final substance concentration you add
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in the tube. The y-axis is the Etot, which means the total concentration of enzyme. The
graph can be divided into three regimes, each regime has distinct biological meaning.

Interestingly, the term "regime" carries profound religious connotations, originally referring
to the specific parishes overseen by missionaries from different churches during the Middle
Ages. This is similar to the word "dogma" in the central dogma—which initially denoted
doctrines in the Bible. Likewise, "transcript" originally referred to the copying of religious
scriptures; "translation" initially meant translating religious texts, such as rendering written
Latin religious works into spoken English; and "canonical" derives from the religious term
"canon," meaning authoritative texts or norms.

So why this graph divides the whole space as three regimes? Fangzhou pointed out the
restrictions of every regime, that is like the version of the Bible used by missionaries in this
parish (regime).

In regime 1, the restriction is Etot = E,Stot = S. The biological meaning of this regime
is the binding affinity of enzyme and substance is low, there is very little ES complex in
the solution. Because Etot = E and Etot = E + C, E represents free enzyme that doesn’t
bind substance, C represents ES complex, as described above. So we can get E ≫ C and
Etot ≫ C. Similarly, we can get S ≫ C and Stot ≫ C. Now we focus on the equilibrium
equation Kd = E×S

C
, we can get S

Kd
= C

E
. And because we have Etot = E,Stot = S in

regime 1, we can get Stot

Kd
= C

Etot
. And because we previously proved Etot ≫ C, we have

Stot

Kd
= C

Etot
≪ 1, that is Stot ≪ Kd. Similarly, we can also get Etot ≪ Kd. So, we know

when we set the restriction Etot = E,Stot = S, it equals to Stot ≪ Kd and Etot ≪ Kd, and
it occupies the region surrounded by x-axis, y-axis, x = Kd and y = Kd. In my figure, I set
Kd as 1.

In regime 2, the restriction is Etot = E,Stot = C, we need to figure out where regime 2
located in 2D graph, And the answer is Etot ≫ Kd and Etot ≫ Stot. Here I will get the
proof process. Because Etot = E and Etot = E + C, we have Etot ≫ C. And because
Stot = C, we prove Etot ≫ Stot. Then is the other border. Because Stot = S + C and
Stot = C, we get C ≫ S. And because of the equilibrium equation Kd = E×S

C
, we can get

E
Kd

= C
S

. Because we get C ≫ S before, we have E
Kd

≫ 1, that is E ≫ Kd, and that becomes
Etot ≫ Kd. So we get two borders: Etot ≫ Kd and Etot ≫ Stot. That means the y-axis,
y = Kd and x = y is the border of regime 2, as my figure shows. The regime 2 shows there
are many enzyme, so almost all substance is binding with enzyme, and there is still many
free enzyme left. In other words, in this tube, the dominant component is free enzyme, then
the less one is enzyme-substance complex, and there is very little free substance here.

In regime 3, the restriction is Etot = C and Stot = S. This restriction equals Stot ≫ Kd

and Stot ≫ Etot. The proof process is the same as regime 2, just changes character E to
character S. And in regime 3, the biological meaning is there are many substance in the
tube, and almost all enzyme is binding with substance. The concentration of component is
S ≫ ES ≫ E, and in regime 2 is E ≫ ES ≫ S.
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Figure 1 Three Regimes

So, we can draw the graph with 3 regimes now! It is as in Figure 1.
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3 “LEGO” of Bioregulation
After we analyzed the 3 regimes, we can try to find what behaviors will have in this enzyme
kinetic system. In our class, Fangzhou gives us 3 situations, or so-called "LEGO". They
are saturation, bottleneck and ultrasensitivity. Now let us discuss each of them!

For saturation and bottleneck, they appear in the 2D graph, whose x-axis is Stot and y-axis
is Ctot, or call it EStot.

Let us talk about saturation now: imagine a line crossing regime 1 and regime 2, that
means we don’t change the total enzyme concentration, and increase the concentration
of total substance. That is like we are doing a substance tritation assay to draw the
Michaelis-Menten function. For this assay, the x-axis is the concentration of substance,
that is the same as our figure, the Stot. And the y-axis is the reaction rate, which has the
relationship v = kcat × C or v = kcat × c(ES), that is the same as our y-axis, too.

Figure 2

In regime 1, according to the equilibrium equation Kd = E×S
C

, we can get C = E×S
Kd

. Because
in regime 1, we have Etot = E,Stot = S, so we get the equation of C:

C =
Etot × Stot

Kd

Because Kd and Etot is constant now, because we just move along a line parallel to x-axis,
the concentration of total enzyme is the same, and the Kd can’t change when we choose a

8



pair of special enzyme and substance. So the equation of C is at the same form of y = kx,
which is positive proportional function, and the slope of C is Etot

Kd
.

In regime 3, the restriction is Etot = C, so the equation of C is:

C = Etot

Because Etot is a constant, C becomes constant now.

To link these two equation of C, we can use Hill function. The form of Hill function is as
below.

θ =
E

E+ C

The θ here is called Hill coefficient, which is proposed by Archibald Vivian Hill. The Hill
coefficient is well-known by the explanation of the binding of oxygen and hemoglobin.
For our enzyme catalysis process, the concentration of ES complex can be described as
below.

C = (E+ C)× C

E+ C
= Etot ×

C

E+ C
= Etot × (1 − θ)

Now we call 1 − θ as φ, and it can be written as below.

φ = 1 − θ =
C

E+ C
=

E×S
Kd

E+ E×S
Kd

=

S
Kd

1 + S
Kd

So, the C can be written as below.

C = Etot × (1 − θ) = Etot ×φ =

Etot×S
Kd

1 + S
Kd

Because in regime 1 and 3, we alaways have S = Stot, so the equation can be written as
below.

C =

Etot×S
Kd

1 + S
Kd

=

Etot×Stot

Kd

1 + Stot

Kd

When in regime 1, we have Stot ≪ Kd, so we get Stot

Kd
≪ 1, we can ignore the Stot

Kd
in the

denominator, the equation changes to this form.
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C =

Etot×Stot

Kd

1 =
Etot × Stot

Kd

When in regime 3, we have Stot ≫ Kd, so we get Stot

Kd
≫ 1, we can ignore the "1" in the

denominator, the equation changes to this form.

C =

Etot×Stot

Kd

Stot

Kd

= Etot

So, this equation can link both regime 1 and regime 3, let us review the equation described
C again.

C = Etot ×φ =

Etot×Stot

Kd

1 + Stot

Kd

So when crossing regime 1 and regime 3, in other words, when the total concentration of
substance crossing Kd, the concentration of C is changing smoothly. In the language of
mathematics, the left limit of Stot = Kd is equal to the right limit.

Figure 3

Then let us talk about another behavior, or another "LEGO". It is called "bottleneck".
Bottleneck appears when the concentration of total substance moves along a line parallel
with x-axis and crosses regime 2 and regime 3. That means the total concentration of
enzyme is relatively high (higher than Kd). And the concentration of total substance
increases from relatively low (Stot ≪ Kd) to relatively high (Stot ≫ Etot ≫ Kd). When
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in regime 2, the restriction is Etot = E and Stot = C. So, the concentration of C is very
obvious.

C = Stot

And in regime 3, the restriction is Etot = C, so the equation of C is:

C = Etot

To link these two situation, the concentration of C can be written as below.

C = min(Stot,Etot)

This form looks like the concentration of C is controlled by the smaller one of the total
concentration of enzyme or substance.

Figure 4
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Figure 5

The third behavior or "LEGO" appears in the Etot − Stot graph, which means the x-axis is
Stot and the y-axis is Etot. The third behavior is called "ultrasensitivity". we continues
to imagine a line parallel to x-axis crossing regime 2 and 3, in regime 2, the restriction is
Etot = E,Stot = C, so the concentration of enzyme is as below.

E = Etot

In regime 3, the restriction becomes S = Stot and Etot = C. So the concentration of enzyme
is no longer equals Etot. Considering the chemical equilibrium equation, the form can
switch as below.

Kd =
E× S

C
=

E× Stot

Etot

Here, we use S = Stot and Etot = C to change the E and C in the equation. So the
concentration of enzyme is as below.

E =
Etot × Kd

Stot

So, if we consider the left limit and right limit when Stot = Etot, we will find they are
different. Why we consider the border is Stot = Etot here? That is because the border of
regime 2 and 3 is no longer Stot = Kd, but it is Stot = Etot.

For the left limit, it is as below.
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lim
Stot→E+

tot

E = Etot

For the right limit, it is as below.

lim
Stot→E−

tot

E =
E2
tot

Kd

So, there is a gap when Stot is crossing the border of regime 2 and regime 3. And we can
also notice when Etot is bigger, the gap will become bigger. That is because the length of
the gap equals to:

length =
E2
tot

Kd

− Etot = Etot(
Etot

Kd

− 1) = Etot ×
Etot − Kd

Kd

WhenEtot−Kd becomes bigger, the length of the gap will become bigger, the ultrasensitivity
will become much more obvious!

Figure 6

For ultrasensitivity, there is an example given in our class: imagine the binding of a kind of
ligand and receptor is very tight (almost irreversible), that means when c(ligand) is bigger
than c(receptor), there is almost no free receptor, almost all receptor is binding with ligand.
And now the free ligands start to degrade, for example, they are ubiquitinated protein
inhibitor. So when the total concentration of ligand crosses the border of Stot = Etot, here
Stot means the total concentration of ligand and Etot means the total concentration of
receptor, the concentration of receptor will undergo a very shape increase from almost
zero to almost Etot (the total concentration of receptor). This is just like the substance
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or inhibitor of enzyme with Hill coefficient larger than 1, for example, the figure shown
below.

Figure 7

4 Adaptation Biomachines
In the section, Fangzhou told us a way to control the system, avoiding being disturbed.
This well-known and widely-used control method is Proportion Integration Differentiation
(PID). We can describe PID controller as the equation below.

u(t) = Kp × y(t) + KI ×
∫ t

0
y(t)dt+ KD × dy(t)

dt

Here, u(t) is the output of a PID controller, and y(t) is the disturbance. The PID controller
contains three parts: the present, the past, and the future.

Kp × y(t) represents the present, it is to give a force in the opposite direction.

And KI ×
∫t

0 y(t)dt presents the past, because it is the integral over all time in the past. It
is used to control the steady-state error. The steady-state error means the error is relatively
small and will not grow when time goes. But if we allow this small error to accumulate,
the system will become far from steady state over time.

And the KD × dy(t)
dt

represents the future, because it contains the derivative of y(t), it can
reveal the change of y(t). This item can prevent the system from falling into shock, or
control the over regulation caused by the first two items.
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