Homework 4 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here] 1

Each homework consists of 3 problems, and you are expected to spend 30 min to 1 hour on each problem, but
definitely less than 1 hour. If you find yourself spending more than 1 hour, you are probably overthinking about
it. The optional problems may take significantly longer, so you can skip if you are short on time. But if you are
interested in exploring further, the fun you get from working on the optional problems is definitely worth it!

1 Adaptation via reaction orders

We learned that although our engineered systems tend to use integral feedback as part of the controller to achieve
perfect adaptation, biomolecular networks seem to use incoherent feedforward loops (IFFLs) more frequently. We
explore the general distinction between the structures of these systems, and reconcile our observations with the
control theory result that for a system to achieve perfect adaptation it is necessary and sufficient to have integral
feedback. This is largely based on the work [1] and [2]. Using integral feedback to analyze biological adaptation
was first done in [3] in the context of chemotaxis.

1.1 Adaptation, feedback versus feedforward, in linear control systems

We know that even for nonlinear dynamical systems, their dynamics around a fixed point can be analyzed and
understood by a linear system obtained from linearization with respect to the fixed point. This is even more
powerful for control systems, since the linear approximation would be all we need if our controller works as
intended and controls the system to stay around the fixed point we linearized with respect to. In this case, the linear
approximation always holds, so that although the underlying system is indeed nonlinear, the system dynamics
never “see” it unless our controller fails. This is another reason why linear systems is often assumed by default in
control theory and not considered a severe limitation. We will also see that this is the case for our understanding
of biological systems. Linearization is great at revealing structures and can yield powerful insights. So our ability
to analyze some biological phenomena via linear systems is a feature, not a limitation.

Coming back to our goal of understanding the general structure of feedback versus feedforward for adaptation, let
us start with analyzing them for a linear (time invariant) control system with a single input and a single output
(SISO).

d

—x=A b

dtw T + ow, (1)
y = cx + dw.

Here z € R" is the vector of state variables, w € R is the scalar disturbance input, and y € R is the scalar output.
So the shape of the dynamics matrices are A € R"*", b € R, c € R, and d € R'*1.

We can also write this in block-matrix form which is more succinct.

b= o] =] >

where we define M to be the matrix with (A4, b, ¢, d) as blocks.

1. Show that, at steady state,
y = (d—cA 'b)w. 3)

2. To achieve perfect adaptation, i.e. y = 0 for all constant w, we need

d—cA b =0. (4)
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If d # 0, draw a picture (control diagram) about how w maps to y via two branches. Reason that d # 0
corresponds to an incoherent feedforward (IFF) network motif where two branches cancel.

Therefore, for this to happen in an engineered control system, we need d to perfectly match cA~1b. This
requires physical parameters to satisfy exact equality, which is impractical.

Note that when d = 0, the perfect adaptation condition becomes cA~1b = 0, and the structure of the network
is hidden in A, so whether it is IFF or feedbcak is not clear.

3. (Optional.) Use the Schur complement formula for determinant to show that

A b _
detlc d] = det(A)(d — cA™1b). (5)

Since det A # 0 for a stable system, we have d — cA~!b = 0 is equivalent to det M = 0. Checking whether a
matrix’s determinant is zero is fast computationally, so this can be done for very large scale systems.

4. In contrast to IFF, integral feedback (IFB) does not require fine tuning of parameters to achieve perfect
adaptation. Consider k = cA~! and z = kz. Show that, under perfect adaptation, i.e. d — cA™1b =0, z
satisfies

z =1y, (6)

so z is an integral variable. Check that this holds even when d = 0, so the perfect adaptation condition
becomes cA™1b.

5. Consider the following example. This is adapted from Problem 2.3 in Homework 3.
I {—k‘n —ki2

1 1
T ka1 0 |0 |x2], @)
y| |1 0 |0]|w

Here the parameters k11, k12, ko1 are all positive. Check that this system achieves perfect adaptation, and write
down on integral variable. Is this system using IFF or IFB?

1.2 Reaction order in the structure of biomolecular systems (Optional)

For a biomolecular system, we know variables = are concentrations, therefore positive. They also change via
production and degradation reactions, which are processes with positive rates. The disturbance w is also reaction
rate constants or species concentrations, which is positive. So we can write

d

%xi :fi+($>w)_fi_(xaw)v (8)

for each variable z;, where f;' is the overall production flux of z, and f;  is the overall degradation flux of x.

To be consistent with the positivity, let us also define the output as

and h is a positive function as well.
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We linearize the system around a fixed point 2*, which satisfies ;" (v*) = f; (2*) for all i. This allows us to define
a steady state parameter called the lifetime of species x;, defined as

x¥

= 10

S 1o

The interpretation is that 7;* is the steady state concentration of =} divided by the production (or degradation) flux,
so it gives the time it takes to re-produce all z; molecules in the steady state pool by the steady state fluxes.

Since elementary reactions have monomial reaction rates, the production and degradation rates” exponents often
have special structures. This is captured by log derivatives, also called reaction orders. We say the production
(degradation) order of x; with respect to x; at point z* is

dlog f*
H S (0%) = o2t (o 11

and the production-degradation order of x; with respective to z; at point z* as H;;‘(x*) = HiA () —
A7_ *

The log derivative ignores the multiplicative constants and extracts the exponents if f: is a monomial. For example,

if f;F = k*a{'25?, then Hﬁ’+ = a; and Hfé’_ = ay. If inaddition f{ = k™ z9, then H{} = ajand H{5 = as — 1.

Mimicking the definitions of (A4, b, ¢, d), we can similarly define

bt _ 9log £
¢ 0logw
TS
_ Ologh
- Ologz;’
g — 8logh.
dlogw

)

¢
J

Since variables z, w, y are positive, we would like to linearize in a multiplicative fashion. So instead of the additive
difference 6x; = x; — x}, we consider the multiplicative difference dx; = 5;; = 2% We do the same to define the

3

local input and output variables 6w and dy as multiplicative differences.

Show that the linearized system around fixed point 2* in terms of multiplicative differences satisfy

das : x\—1 A bl |5
g0z | _ |diag(T™) o |H Hd ox . (12)
oy 0 1| H¢ H®||éw
Here diag(7*) is a diagonal matrix with the positive vector 7* on the diagonal.

1.3 Reaction order condition for perfect adaptation

We mimic the analysis we did in the first subsection for adaptation in linear control systems, and apply it to the
linearization of biomolecular system in Eqn 12 which has additional structure.
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1. Consider the system in Eqn (12). Show that, at steady state,

oy = (H — HS(HY) 'Hb)w. (13)

(Hint: 7* is a positive vector.)
Try to map the results from the first subproblem to conditions on reaction order matrices (H4, H®, H¢, H?).

2. Consider the following example of an IFF system achieving perfect adaptation.

.’i‘l :klw — xr1r9,
By =kow — B, (14)

Yy =x1.
This corresponds to the following biomolecular reaction network,
X+ W EW 2w X,

X1+X2$X2£>@.

(Optional.) Show that linearization of this system in terms of reaction orders yields the following:

|

3. Check that, assuming the system has a stable fixed point, the system achieves perfect adaptation just from
conditions on the reaction orders, namely the determinant of the H M matrix with (H A HY HC H d) as blocks
is zero.

(15)

What's the integral variable?

This provides an explanation for why biological system can routinely use IFF as a way to achieve perfect
adaptation. Indeed, IFF requires parts of the system dynamics to perfectly match. But for most linear systems
in engineered machines, the parameters that need to be fine-tuned to match perfectly are not structural, such
as resistance and capacitance. These parameters are like concentrations, reaction rate constants, and lifetimes
in biomolecular systems. However, due to the reaction order structure in the nonlinearity, biomolecular
reaction networks can achieve perfect adaptation in a structural fashion, without fine-tuning of parameters.

2 Regimes of biocircuits reveal different modes of failure

In the previous problem, we saw that, from an example biocircuit, we could analyze the reactions to find out that
the structure achieving perfect adaptation is contained in the reaction orders of the reactions. In this problem, we
consider the relation in reverse. For a given reaction order structure achieving perfect adaptation, there could be
several reaction networks having the same reaction order structure. Do these different implementations of the
same reaction order structure make a difference? If so, in what sense? Combining the method of dominance
regimes from our previous homework to analyze bioregulation, we could get an answer for this problem.

1. Consider the incoherent feedforward circuit below, which was studied in Problem 1.
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.i‘l :klw — xr1r9,
j:’g :kQ’w — BQL’Q, (16)
Yy =T.

This corresponds to the following biomolecular reaction network,

X, +wEwWER Wy x,,
X1+X23>X2ﬁ>@.

Since X3 here catalyzes the degradation of X, from the binding-catalysis perspective of bioregulation, we
know the underlying regulatory mechanism must be that X; and X5 binds to form a complex before X, is
degraded. For a simple mechanism of this form, let us consider the following.

K kca
X17f + Xg,f = C1o Zceaty X17f. (17)

Here K is the dissociation constant, X; ; is the X; molecule free in solution, where i = 1,2, and Cy» is
the complex formed by X; binding with X,. The previous reactions involving X; and X», without the f
subscript, means they do not distinguish the free versus bound forms of X; and X, molecules, and they all
participate.

So, to be consistent with this notation, the total concentration of X in the context of this binding reaction is
X1 = Xy ¢ + C2, and similarly X = X, ; 4 C12 is the total concentration of X».

Notice that the binding reaction between X y and X5 ; is just like the enzyme-substrate binding reaction
E + § = C. What is the regime that achieves the perfect adaptation reaction order, Ci2 o< X;X2? What is
the (asymptotic) validity condition in terms of X, X, K?

Combine this with the steady state relation x5 oc w. Does this mean the system will fail, i.e. go out of the
validity condition of the adaptive regime, for disturbance w that is too large or too small?

2. We can consider another incoherent feedforward circuit with X, repressing the production of X;.
w
a1 :klf — Ty,
T2
By =kow — P2, i
Yy =x1.
Show that this system has the same reaction order matrices (H A HY H¢, H?) as the degradation one

considered above, therefore achieves perfect adaptation.

3. For the repression IFF above, we can consider the following biomolecular reaction network achieving it:
W2 W X,

X 508 X,
K
Wi+ Xo = Cwxy, Wy ﬁ) Wr+ Xi.
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Here X; and X, degrades by themselves, and W catalyzes the production of X,. W also catalyzes the
production of X, but this is repressed by X3, so only the free form of W that is not bound by X5, denoted
Wy, is active in producing X.

Consider the binding reaction between W; and X5, and the active species Wy as output. What is the regime
that achieves the desired reaction order? What is the validity condition for this regime?

Together with the steady state relation, zo o w, what does this imply about the disturbances w that this
system will fail to adapt? w that is too large or too small?

Reference: The degradation IFF design is often called the sniffer model, and is discussed as a classic
example of adaptation in systems biology. For example, see [4] for a brief review. The repression IFF was
experimentally implemented to achieve adaptation to variations in the number of plasmids in [5]. Very
recently, [6] attempted to use the same principle to design micro RNA circuits that can compensate for gene
dosage changes in mammalian cells.

3 Integral windup in integral feedback

Although both incoherent feedforward (IFF) and integral feedback (IFB) can achieve perfect adaptation in biological
systems, IFB has a unique advantage that its adaptation property does not depend on the details of the plant! The
integral control variable is solely in the controller, therefore by its existence, guarantees that if the system reaches
steady state, it achieves perfect adaptation. In other words, it could be argued that IFB achieves an extremely
robust form of perfect adaptation that is independent of all the details of the plant!

This may make it seem like IFB is always much more desirable. This is especially the case for engineered machines,
and for engineered biological systems in synthetic biology. Because from a human design perspective, modularity
facilitates iterative improvements. IFB makes it possible to have an “adaptation module” that could be attached to
any plant and achieve adaptation.

However, it is already understood in control theory that the reality is more complicated. On one hand, perfect
adaptation requires both an integral variable and that the system achieves steady state. Although IFB guarantees
the former independent of plant details, the latter, which involves stability, is always complicated and depends
on the plant. In fact, by attaching IFB to a plant, it usually tends to make the plant less stable, or harder to
stabilize.

Of course, in biology, we tend to downplay the importance of stability since cells always seem stable, or we simply
would not see unstable cells since they would not survive and grow. So we may care more about limitations of IFB
other than stability.

On the other hand, IFB, because of its feedback and error-accumulation nature, may result in a phenomenon called
integral windup. The idea is that, linear systems are always only valid in a finite region, and when a variable
becomes too large, the linear assumption would not hold, and nonlinearity such as saturation would start to appear.
The error accumulation could result in the integral variable quickly become very large when the disturbance is
strong, so that the feedback actuation may be saturated and no longer responsive.

We explore the consequence of integral windup in this problem.

1. Consider the following perfect adaptation circuit with integral feedback.
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T1 = axy — Y1,
i;Q =w—x, (19)
y=w— 2.
Here z, is positive, but x is real. w is disturbance input, positive, while y = w — z; is output.
Is the system adaptive? What is the integral variable?

Simulate the system’s dynamics, with w taking a square wave, i.e. stay at a low value for a duration, and
then stay at a high value for a duration, and repeat. Observe that the system adapts perfectly if allowed to
reach towards steady state.

. Now let us introduce saturation. Saturation often happens because the system needs to be physically
implemented. Our above equation for dynamics is a linear system, and x5 is an integral variable of z;. But to
achieve this with biomolecular reactions, z2’s dynamics cannot be exactly implemented as the concentration
of a species.

Let us consider the following implementation so that 5 is a virtual variable, zo = 25 — x5 .

T = om:; —yx1,
x; =w— kC, (20)
.%'2_ =T — kC,

where C'is the concentration of the complex from the following binding reaction,
X+ - K
2t Xoy =00, (21)

where X, Qif are the free form of X3° molecules in the solution.

Observe that, if the degradation of X3 by C is fast, then only one of X, and X is positive at any given time.
Show that, under this assumption and defining x5 = 23 — z,, we have the following dynamics,

1 = amax zo,0 — yry, (22)

To = W — X9.

The production rate of 1 now saturates if 22 becomes negative. This is saturation in the actuation of the
integral feedback by x.

. Simulate the above system with actuator saturation. Play around with the magnitude and durations of
the square wave input w. Observe that, for certain parameters, the controller may “skip” a period of the
disturbance and does not track like before. Explain why this happens based on the dynamics of z».

This “period skipping” shows that when integral windup happens, the huge magnitude of the integral variable
may render the system irresponsive for a while, causing detrimental influences on system performance.

. (Optional.) Simulate one of the incoherent feedforward systems in the previous problems and observe that
they do not have integral windup or period skipping.

This “period skipping” behavior is suggested as a method to distinguish feedback versus feedforward
systems in [7].
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5. (Optional.) If you try to fix the integral windup problem, what would you do?

Here is one suggestion. Instead of implementing x5 as the difference between two virtual variables, what if
we let 21 catalyze the degradation of z3 and operates in a regime so that x, saturates and the degradation
rate is independent of 25? This means the following reaction:

Xo+ X1 =C12 — Xj.

Under what regime does this reaction implement the desired integral feedback system? What is the validity
condition? When does this reaction violate the validity condition and saturates?

This situation is a sensor saturation, since when x5 is too small, the degradation rate of z2 becomes sensitive
to x2 again, so z2 no longer serves as an integral variable.

Does the integral windup behavior still happen in this case?
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