Homework 5 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here] 1

This homework consists of 3 problems. This homework unfortunately tend to take much longer to complete, simply
because analysis of noise tend to be more complicated, and takes more effort to gain interesting conclusions. But I
have done considerable work to streamline the problems, so if you spend extra time, you will for sure be rewarded
by the understanding you gained. If you are short on time, it is fine to come back to this homework later in your
research career...

(Optional.) Gillespie

Write an implementation of the Gillespie algorithm to simulate stochastic trajectories. This helps you to gain intu-
itions about the stochastic models described in this homework. Here is an implementation of Gillespie if you want
one that is ready to use: https://colab.research.google.com/drive/1qL7_Bk8_jVIWgPCUF5voUrI1lnE1hF8e87
usp=sharing.

1 Bursty gene expression

Noise becomes important for gene expression when the number of proteins expressed is low and the expression
kinetics is bursty. We investigate how bursty-ness emerge in different mechanistic models of gene expression,
and focus on the unregulated case, and leave regulatory mechanisms such as feedback to the next problem. The
interpretations mainly follow this paper [1] giving a clear review of noise analysis for gene expression. By walking
through this problem, we have covered the main takeaways about what people have learned about bursty gene
expression.

1.1 Poisson from simple production and degradation (Optional)

Let us first establish the fact that the molecule count of a species regulated by simple production and degradation
reactions follow a Poisson distribution. Let us consider the production and degradation of mRNA, for example.

GEGgaem, M. 1)

1. Show that the chemical master equation is the following.

%p(M, t) = [kmGp(M — 1) = kpGp(M)] + [ym (M + 1)p(M + 1) — ym Mp(M)]. 2)

Here M is the copy number of M, and G denotes the copy number of GG. Note that G is constant.
2. Then show that at steady state, the probabilities follow

(M + D)p(M +1) =\ + M)p(M) — Ap(M — 1), M=1,2,...

p(1) =Ap(0), ©

where A\ = kjy’—‘G

3. Use induction to show that the following formula holds for steady state p(A/):

p(M +1) (M), M=0,1,2,.... @)

w1t

(Hint: Show that it holds for M = 0, then show that for a given M =1,2,...,if p(M +1) = ﬁp(M), then
p(M +2) = ﬁp(M + 1). Then use induction.)


https://colab.research.google.com/drive/1qL7_Bk8_jVJWgPCUF5voUrIlnElhF8e8?usp=sharing
https://colab.research.google.com/drive/1qL7_Bk8_jVJWgPCUF5voUrIlnElhF8e8?usp=sharing
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4. Use the above equation and the fact that 337_, p(M) = 1 to show that p(0) = e~*, therefore
)\M

= Me_)‘. (5)

p(M)
This is the probability mass function (PMF) of a Poisson distribution with rate A, which is also the mean. So
we have established that the distribution of M follows a Poisson distribution.

1.2 Translational bursts

Let us first consider the vanilla process of transcription and translation in gene expression, and see how the
signal-amplification due to the transcription and translation process itself can be viewed as bursty-ness and increase
noise. In other words, this model considers gene expression bursty-ness to come from the fact that each mRNA
transcript is expressed several times. This is the model used in [2] in 2002, for example, to explain the noise in
gene expressions measured. This model is also used in [3] when the stochastic expression of the proteome and
transcriptome of E. coli at the single molecule level was first measured in 2010, although this model has caveats
which we will discuss at the end.

1. Consider the following reaction network for a simple transcription-translation process,

GEwaim, M™Mypr, MIue P2 ©)

Since the gene molecule’s number G does not change, only the numbers of mRNA and protein molecules

change. Let (M, P) denote the number of mRNA M and protein P molecules respectively. Let p(M, P, t)

denote the probability that the number of mRNAs and proteins are M and P respectively at time ¢. Note that

since the mRNA is regulated by a simple production and degradation process by itself, indeé)endent of P, we
km

know from the previous subproblem that M follows a Poisson distribution with mean =2=.

Show that the chemical master equation of this reaction system is the following.

(M7 P’t) :[kijp(M - 17P) - kap(M, P)] + [kpMp(MvP - 1) - kpMp(Mv P)]
+ [m(M 4+ Dp(M + 1, P) = 4 Mp(M, P)] + [yp(P + 1)p(M, P + 1) — 5, Pp(M, P)].

at” @)

2. (Optional.) Let (-) denote the average, e.g. (M) denotes the average of M. Let Var(:) denote the variance, e.g.
Var(M) = (M?) — (M)?, and let Cov(-) denote the covariance, e.g. Cov(M, P) = (MP) — (M)(P). Show
that the moments of order two or less satisfy

d
$<M> :ka - 7m<M>7
& (Py =ky(M) —{P),
9 (M2) =2k GUM) + kG — 27 (M) 3 (M), (®)
CAMP) =knG(P) + k(M) — 3 (MP) — 7 (MP),
d

—{P?) =2k, (MP) + k(M) — 29,( P) + 7, (P).
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From the above, show that the mean and covariances satisfy

M) =hG = (M),
& (P =ky(M) —3(P),
% Var(M) =k G + ym (M) — 23y, Var(M), ©)
% Cov(M, P) =k, Var(M) — (v, + ) Cov(M, P),
% Var(P) =k,(M) + 2k, Cov(M, P) + y,(P) — 27y, Var(P)

3. Solve the steady state moment equations to obtain the steady state moments, and show that they satisfy the

following:

km

M) =—10@G,

(M) o
ky, km k

(P)="L—"G = 2(M),
Yo Tm Tp
km

Var(M) :'TG = (M), (10)
Cov(M, P) =— Nar(M) = — 2 (p),

Ym + Vp Ym + Yp

. ov = o
Var(P) =(P) + 22 Cov(M, P) = (P) (1 A %).

Here the expressions for Cov(M, P) and Var(P) are re-written with the equations for lower moments.

4. Recall that the simple production-degradation process ) = X results in a Poisson distribution of X such

that its variance is equal to the mean, Var(X) = (X). Therefore, we can use the ratio of variance to mean to

compare a distribution to the Poisson distribution. This is called the Fano factor, F'(X) = V?ES() .

For the Fano factor of PP, we see that

B ey .

Typically, the degradation rate of proteins is much slower than the degradation rate of mRNAs, so v, < Yy,

we we obtain
_ Var(P)

(P)

F(P) ~ 1+, (12)

where we define b = k—i Here b is the average number of proteins synthesized per transcript, which can be
interpreted as the burst size of protein production caused by each transcription event.
We see that the noise is increased by a factor of b due to transcription-translation.

Some moderations of the interpretation above are due. This model’s explanation for bursty gene expression is
rather unsatisfactory for the following reason. It showed that, when mRNAs have short lifetimes +, < ~,,, the
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noise of protein Var(P) is increased by a factor b = f:P which is the number of proteins synthesized per mRNA
transcript. However, this increase in noise does not necessarily mean there are actually bursty translational events.
Indeed, when there are hundreds of mRNAs in the cell all expressing proteins, the stochasticity of each mRNA’s
translational events is evened out, and the production of proteins is more like a continuous steady stream, rather
than short bursts. Only when the number of mRNAs in the cell is close to zero or one would this translational
burst interpretation be physically sound. However, most genes do not have such a low mRNA copy number, so the
bursty features of fluorescence observed for gene expression CANNOT be mechanistically explained by the fact
that each mRNA produces multiple proteins.

1.3 Random burst sizes give rise to Gamma or Negative Binomial distributions (Optional)

Instead of starting with a mechanistic explanation about how the bursts happen, we could also start with
experimental observations and focus on the distributional shape. For example, it was observed that the burst
size b of protein production is roughly exponentially distributed in [4], the famous paper that was the first to do
single-cell single-molecule measurements of gene expression profiles. To be exact, since the burst size is about
the number of protein molecules, b should take integer values. So the exact distribution could be that b follows a
geometric distribution, as was considered in [5, 6] in 2000.

Let us investigate the resulting distribution on protein numbers given a geometric or exponentially distributed
burst size b, while assuming the number of mRNA is roughly constant.

1. In [4], a simple argument was made to show that the distribution of protein number should follow a Gamma
distribution.

Consider again the model in Eqn (6), but with the translation replaced with bursty expression and the burst
size is exponentially distributed with mean b. In other words, the translation reaction should be

M ™ vy BP,

where B is a random variable with distribution Exp() (mean b).

We first simplify the scenario by assuming mRNA dynamics is fast, therefore its fluctuations can be ignored
when considering the protein’s dynamics. Indeed, since mRNA’s degradation rate ,, tends to be much larger
than that of protein, 7, we can assume mRNA is always at a steady state distribution, and the production of
proteins comes from a series of random independent burst events.

Then, let us reason about the mRNAs, i.e. the number of transcription events, that contribute to the current
value of protein number. Since the proteins are degraded at a rate of -, the duration that contributes to the
current value is % The number of mRNAs produced in this duration is therefore kav—lp. So the effective

number of transcripts that can cause bursty translations and contribute to the current number of proteins is
km G

a = .
Tp

Then, assuming the bursty translational events of these mRNA transcripts are independent of each other, the
number of proteins produced per generation is the sum of @ independent and identically distributed (iid)
random variables of burst size B, where B ~ Exp(}).

Now, based on this argument, show that the number of proteins follow a Gamma distribution with
Gammal(a, b), where a is the shape parameter, and b is the scale parameter.

(For the exact derivation, see [7] and the book [8] referenced therein.)
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2. Here are some interpretations of the Gamma distribution above, as is used in [4, 3]. Show that the coefficient

of variation (CV) squared is %gg) = 1, and the Fano factor is W{T%P) =b.
km

Note that, from our analysis above, we have a = TG’ the average number of mRNA transcripts that contribute
p

to the current number of proteins, and b = % is the average number of proteins produced per mRNA
molecule. And they are related by ab = (P).

Another observation from [3] is that the mRNA number and protein number for a gene seem un-correlated.
Is this in agreement or disagreement with this model? (Hint: Look at Cov (), P) analyzed in the previous
subproblem.)

(Note that although the same result is used in [3], which is a very famous paper, it had an error in the part
describing the Gamma distribution for protein number. Here, a could be interpreted as the number of
mRNAs per cell cycle as described in the paper, but its actual meaning that made the Gamma distribution
argument work in the original derivation of [4, 7] was that a is the number of burst events that contribute to
the current value of the protein. This is because it was assumed that mRNA degradation rate is much faster
than that of proteins, therefore fluctuations of mRNA can be integrated out and proteins are produced in
random independent burst events. See Section 3.2 of the Supplementary Information of [1] for more details.
Also, the CV squared of protein count is ¢!, not a as described in the paper [3], while the Fano factor is
indeed b.)

3. (Optional.) Considering the discrete nature of the number of proteins, we can also consider the translational
burst size B to be a discrete random variable, therefore geometrically distributed Geom(p) with mean b,
p= 1%1)/ which has a probability mass function of

1 1

P{B=n}=(1-p)p=(1- m)nm-

The interpretation is that the P{B = n} is the probability that the first successful trial happened after n failed
Bernoulli trials, which are independent and have success probability p.

Given that the sum of a iid geometric random variables with mean b yields a negative binomial random
variable NegBinom(a, 1/b), argue that the distribution for the number of proteins should be NegBinom(a, 1/b),
which has a probability mass function as follows,

P{P:n}:(l_p)npa<a+n_1>:(1—’—192)aﬂl<a+z—1>'

n

Note that this is consistent with the Gamma distribution above, since the negative binomial distribution is a
discrete analog of the Gamma distribution. For a detailed explanation of this relations between the Gamma
distribution and the negative binomial distribution, see the following excellent response from DeepSeek
https://chat.deepseek.com/share/s13mmcengfd3aoio2z.

4. (Optional.) Our argument in this subproblem so far is more intuitive and crude than accurate and exact.
In fact, we ignored the noise contribution to protein number from the fluctuations of mRNA copy number.
This can be observed by considering the conditional probability of protein number for a fixed mRNA copy
number, p(P|M). Argue that, under Geom(}) distributed translational bursts, p(P|M) should follow a
NegBinom (M, %) distribution. This was shown in [5].


https://chat.deepseek.com/share/s13mmcengfd3aoio2z
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As a result of this, if M = a, then we recover our result above. However, since M fluctuates with a Poisson
distribution, the noise of protein number P should be larger than predicted before. This means, the Fano
factor should be larger than b. Indeed, as shown in the previous subproblem, we derived a Fano factor of
1+0.

1.4 Transcriptional bursts give rise to Poisson with a zero spike

Previously, the non-Poissonian behaviors all happen at the protein level, and mRNAs obeyed a Poisson distribution.
However, it was soon observed that mRNAs have drastically non-Poisson behavior as well. Not only is the noise of
mRNA number much larger than Poisson, it was also observed that quite often the distribution is bimodal, with a
large spike at zero copy number. In 2014, [9] attributed this behavior in bacteria to the fact that the gene needs to
be uncoiled before transcription, so the gene should be considered to have two states, on and off. See the reaction
network below.

Go%Gl, GiEGi+Mm, Mo (13)

This is also sometimes called the telegraph model. We analyze the transcriptional noise in this case.

1. Let us first analyze the distribution of the gene, since its dynamics is independent of M. Let G denote the
total number of gene molecules. Show that the chemical master equation for p(G1, t), the probability that
there are G} copies of the gene molecule in state G; at time ¢ follows

%p(Gb t) = [a(Giot = G1+1)p(G1 =1, 1) —a(Grot — G1)p(G1, D]+ [B(G1+1)p(Gr+1,8) = BG1p(Gr, )], (14)

for G1 =1,2,...,Giot — 1, and the boundary cases follow

%p(ov t) :,Bp(l, t) - ap(o, t),
d (15)

&p(Gtotv t) =ap(Giot — 1,t) — Bp(Ghot, t).

We can directly solve the above to get the solution for p(G1,t). Instead, we could also directly get the answer
by intuitive arguments, and check that the answer is true.

Let po(t) = % and p(t) = % denote the fraction (probability) of gene molecules that a gene molecule is

in Gy or G state at time ¢. Since each gene molecule transits between the Gy and G state independently, we

have J
ZP1(t) = apo(t) = Bpi(t) = a1 — pi(t)) - Bpa(?).

This can be easily solved explicitly. And the probability p(G1, t) satisfies

p(G1,t) = <%it)p1(t)G1po(t)G°,

a Binomial distribution with probability parameter p;(¢).

Check that indeed this follows the CME for p(G1,t) above. So the steady state distribution is

G
w60 = (G
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where p; = aaT,B' and pg + p1 = 1. This is the Binom (G, p1) distribution for steady state G;.

So the noise of the gene follows
Var(G1) Po Do

(G1)2 piGet  (Gr)

Note that this noise is smaller than Poisson by a factor of py. So by having active and inactive states, and
switching between them, we can have a low molecule number G\ while having relatively small noise, as
long as most molecules are active, p; =~ 1. However, this model did not account for the noise of G, which
could have noise contributions that make the noise of GG1 larger than Poisson.

. Now we derive the distribution of M. Recall that, from the first subproblem, if G; = Gt always, then steady
state M follows Poisson(\), where \ = @ Now that G is Binom (G}, p1) distributed with p; = aajﬁ,
we see that M’s steady state distribution should be close to a Poisson distribution with its rate following a
binomial distribution. The actual distribution is slightly different from this since this argument assumes M
reaches steady state distribution instantly when G changes, while actually the dynamics of M and G, are
correlated and changing simultaneously.

Still, we can get a good enough answer to glean some intuitions based on this argument that M reaches
steady state instantly when (1 changes, which corresponds to the assumption that v > « + f, since the
former is the rate for dynamics of M, and the latter is for the dynamics of G;.

Let us consider individual gene molecules, and consider the mRNAs produced by each gene molecule. In
other words, let us first consider the case that Gy, = 1. Let M, denote the number of mRNAs in this case.
Show that, the steady state M; follows

M, ~ Poisson(\1), w%th probab%l%ty P1 = 555 (16)
0, with probability pg = 1 — p;
_k
where A\ = 5
Then show that, the mean and variance of M; are
a k
M) =p1 A\ = -,
(M) =p1\1 a+t By (17)

Var(Ml) :pl)q(l + po)\l).

Conclude that, since M is the result of Gy, copies of the gene molecule, each independently producing
mRNAs, we have M is the sum of Gy coplies of M, therefore satisfies

« thot
(\/j = )\ = _—
(M) =p1 a+pB v

Var(M) =p1A(1 + poAr).

So we see that the distribution of M is a “spike” at zero mixed with a Poisson distribution.

i

(18)

From the above, we see that in the telegraph model, the Fano factor satisfies

Var(M) Bk
= =1+pA=14+——--—.
(M) a+ By
So the noise of transcription is amplified by the factor pgpA;. This comes from the noise of G, since G has a

Fano factor of po, and this is amplified by the production rate A; per G molecule.

F
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3. (Optional.) Now let us solve the mean and variance exactly. Write down the chemical master equation for
p(M, G1,t), the probability that there are M copies of mRNA and G coplies of the gene molecule in state G
at time ¢. Then calculate the steady state mean and variances, and show that

Var(M) TG
—— = =14+ popA\——, 19
< M> PoA1 o+ (19)
where 7¢ = Tiﬁ is the timescale of G, and 73y = % is the timescale of M.

So we see that compared to the result assuming fast M kinetics, the noise is slightly smaller, accounting for
the timescale difference between M and G. When 7¢ >> 77, we recover the fast M limit. When ¢ < 73y,
we have fast G dynamics, so G practically fixed at the time scale that M varies, and there is no noise
contribution to M from G;.

1.5 Eukaryote transcriptional bursts give rise to plateaus and long-tails (Optional)

Later on, observations of transcript number distribution in mammalian cells seem to deviate even from the
telegraph model, and call for a third state for the gene. For example, as shown in the data and argued by parameter
inference in [10] from 2024, the number of mRNA transcripts tend to be long-tailed, bi-modal, or have a plateau near
zero. This relate to further chromosomal and methylation mechanisms of transcriptional regulation in mammalian
cells. Intuitively, due to the multitude of regulations, we can consider genes in mammalian cells to be “off by
default”. Then, upon removal of the super-coiling, methylations, etc, the gene enters a “weakly accessible” state,
but is not actively transcribed. Lastly, when activating components such as transcription factors bind, the gene
enters a highly active state.

To model this, we can consider the reaction network below.

k k k k
GO%@%GQ, GL 25 G+ M, Go 2 Go+ M, M50 (20)
2 3

Here G is completely off, G; is weakly on, and ('3 is strongly on, so k is significantly larger than &, .

Explore the behavior of this model of bursty transcription through either analysis or simulations. Find scenarios
where distributions from this model is unlikely to be explained by the telegraph model where the gene only has
two states.

2 Summing up the noise in biomolecular systems

In the previous problem, we considered gene expression noise in an un-regulated setting. What happens if the
gene is regulated? Could the noise be suppressed? Would there be a limit to noise suppression given a finite
budget in terms of molecules expended? More generally, how should we understand the relations between means
and covariances generated by the reaction mechanisms underneath?

To answer such questions, it would be cumbersome to solve the chemical master equations (CMEs) on a case by
case basis. Also, when we consider highly nonlinear regulations, we could easily obtain CMEs that does not have
moment closure, so we cannot solve the mean and variance exactly. Due to these reasons, we would like to derive
general relations and formula governing the mean and variance for a given stochastic reaction network, and reveal
the important structures in these relations. Also, we would like to employ approximations so that we can always
solve and get some answers, since an approximate answer or any intuitive understanding is always better than an
exact “no idea”.

For this goal, let us consider general relations between the means and covariances, and employ linear noise
approximation (LNA) to obtain formula that can always be used to solve for answers. This is largely based on
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works from Johan Paulsson lab, from his early work [11] in 2004 deriving fluctuation-dissipation relations for LNA,
to [12, 13] in 2016 deriving general relations for means and covariances. We are going to introduce these results in
the reverse order of how they were discovered, since this fits the intuitive process of zooming in from a general
picture.

General relation between means and covariances (Background)

The following is adapted from Section II.A of [14] (also available at https://chemaoxfz.github.io/assets/
pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf.) It was originally shown
in [13, 12], and used in later works from the Hilfinger lab, such as

For a chemical reaction network with reactions

z—"0 L od, 1)

where & € ZZ is a vector of molecular species’ counts, 7, : R™ — R is the reaction rate function for the kth
reaction, and dj, € Z" is the reaction stoichiometry vector for the kth reaction, £ = 1,...,m, we can write the
dynamics for the mean as

jt<xi>=< > dm<w>>—< > \dik|m<w>>=<R;*<w>>—<R;<m>>7 (22)

k:d;ip >0 k:d;1 <0

where R (x) are the production or degradation rates of ;.

We would like to write the quantities in terms of variables that are intuitive. So we introduce the average lifetime
of x;, denoted 7;, and the average step size of z;’s change due to reactions that also change x;, denoted <si| j>. We
define them in detail below.

At steady state, we have <RZ+ (:13)> = <R— (:13)> So we can define

7

i = L) (23)

()

as the average lifetime of ;.

The average step size is defined as

|djke] (k)
<3i|j> — ijk|dik] sgn{didj},  pjk = m’ (24)
k

where pjy, is the probability that when z; changes, this change comes from reaction k. The sign for the changes to
x; and x; in reaction k is accounted for by sgn{d;.d;i }, which is +1 if they are both increased or decreased, and —1
if the signs of change are opposite.

When i = j, we see <si‘i> = > i|dix|pir, s0 it is an average of step sizes across all reactions that change x;. For
example, if z; has only one production reaction z; — x1 4+ 1 and one degradation reaction x; — x; — 10, then
<sl|1> = 1410 because production and degradation fluxes are always equal at steady state.

Asfori # j, <si‘ j> is nonzero only if there are reactions that simultaneously change z; and ;. For an example, if
the only reaction that have simultaneous changes to z; and z2 is (1, 22) = (21 — 1,22 + 1), i.e. one x; becomes


https://chemaoxfz.github.io/assets/pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf
https://chemaoxfz.github.io/assets/pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf
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one xy, and z2 have no other production reactions so that this reaction accounts for all production fluxes of x>,
then <51‘2> = —%. It is negative because when z; decreases, x5 increases. It is divided by 2 because this reaction
accounts for all of z’s production, therefore half of z5’s changes.

Note that the step sizes and the production and degradation rates are related to each other:
+ +
o) (RE ) = Cous ) (5) @3

Now we have the terminologies that can capture all the variations in a reaction system, so we can tackle the relation
between mean and covariances. If we write the dynamics for the covariances, at steady state we have the following
equation.

Cov(w:, Bf — Ry ) + Cov(aj, Bf — By ) + Y. dincyi(ri). (26)
k

One major achievement of the theoretical investigations in [13] is the re-writing of the above equation using the
physically interpretable quantities of lifetimes and step sizes. The re-written equation is as follows:

U+UT+D=0, (27)

where
o lCov(a:i,Rj - R;)

Tj <xl><Rji> ’

_ Sudadglrg) _ 1 (500) 41 (o) (28)

D=0y n @) T @m)

Here 7, is the average life time of an z; molecule, and <sl-| j> is the average step size of z;’s change from reactions
that also change ;.

D is the “diffusion” matrix, capturing the randomizing changes due to reactions, and U captures the correlations
between concentrations and production degradation fluxes.

(Caution about notation: <si| j> in our notation here is the same as s;; in [13] and other related papers. Similarly,

(3
minus degradation to be consistent with notations for linearization of deterministic systems. See the next

subsection.)

in the definition of Ujj, the term R;r — R, is changed to R — Rj in these other papers. We use production

Eqn (27) is very powerful because of its generality. Note that this formula is applicable to all possible chemical
reaction networks, and we have made no assumptions at all so it is exact! All we have done thus far is re-writing
the quantities in the steady state equations for the first two moments of CMEs in terms of physically interpretable
quantities. It may be questioned that since this is just a rewrite, why would it be useful at all? The power comes
from exactly the fact that the quantities we express the relation in terms of are all physically relevant, and often
experimentally determinable. Even in cases with little information, we have rough ranges on these numbers.
Therefore, relations on these physical quantities are very powerful, since they can guide our intuition in asking
questions, coming up with hypothesis, and designing experiments. Indeed, this is exactly where this result shines
at: eliminates possible mechanisms and generates new hypothesis based on variations in data.

Let us note the physical and intuitive quantities we used: average abundances (z;), steady state production
degradation fluxes R;t, the average lifetimes 7;, the average step sizes <Si| j >
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2.1 General relation of noise in gene expression

To test your understanding of this formula (Eqn (27)) and get a sense of its power, let us consider its application for
noise in gene expression. This is adapted from [12], which applied this formula to the dataset from [3].

Consider the following model that allows all possible dynamics for transcription-translation, with the only
assumption that proteins are produced at a rate proportional to mRNA, and proteins have first-order degradation
(or dilution.) This yields the following network:

) L}xg-f—l, T2 Lm—l. (29)

Here we consider two species, x1 is mRNA, and x5 is protein. Note that we have only specified the dynamics of x5,
and have left the dynamics of 21 and an arbitrary number of other species and their interactions un-specified.

Show that, using Eqn (27), we have

CV, 11 CV,
CCqa = 1-— = , 30
2oV ( (z2) cv;) CV, (30)
where CC;; = % is the Pearson correlation coefficient between z; and z;, and CV; = \QL(;E;) is the
ar(z;) Var(z; T4

coefficient of variation of ;.

To simplify the notation relating correlation coefficients, coefficient of variations, and the terms in Eqn (27), let us

define n;; = %{JCT;), SO 15 = CV?, and CC;; = \/721:777” The approximation at the end is because for most genes

in the data of [3], <$2>CV% > 1, s0 we can ignore this term.
(Hint: look at the equation for 2Us; + D2y = 0, which should yield 722 — 112 = ﬁ.)

Note that this gives a very powerful prediction, since it holds for a class of biomolecular systems! No matter what
is the transcriptional regulation of this gene, just by knowing that the production of the protein by mRNA is
first order, and the protein degrades by first order, then we know the correlation coefficient MUST be equal to
the ratio of the coefficient of variations of the protein and the mRNA! Of course, without knowing the detailed
mechanisms of transcriptional regulation, we cannot calculate CV; or CCi2. However, we can measure these
quantities experimentally! Just like we observed (z2)CV3 >> 1 to simply the relation based on data! So this can
be used to rule out possible mechanisms. In [12], it was shown that the data from [3] does not match this result.
Indeed, [3] observed that there is no correlation between mRNA number and protein number, while this result
shows CC; is always positive, and due to large protein noise it should be quite large! [13] also eliminated several
other mechanisms based on such arguments, and hypothesized that the production rate of proteins must vary from
one mRNA transcript to another. For example, maybe transcripts that have longer lifetimes also have decreased
translational activity.

Fluctuation-dissipation for linear noise approximation (Background)

While the general relation in (27) is powerful, it tend to give equalities and inequalities that need experimental
input to be useful. In other words, because U;; is the covariance between z; and the production and degradation
fluxes of x;, which could involve arbitrary high order moments, the system of equations in Eqn (27) is not closed,
therefore not solvable to give concrete results. Therefore, we would like to perform approximations such that at
least Eqn (27) becomes something that is solvable to give an answer.

To do so, we make the linear noise approximation (LNA), which assumes that the noise is not too large
compared to the nonlinearities such that the production and degradation rates can be well-approximated by their
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linearization,
RE(x) ~ )+ E 0 i Az, (31)
t ax] k

where x* is the operating point around which the linearization is done. This is just like the linearization of a
nonlinear control systems when studying the deterministic dynamics of a biomolecular system. Also, if we recall,
a linearized deterministic control system can perfectly capture the behavior of the actual nonlinear system if the
dynamics is controlled to happen close to the operating point. Similarly, the linearized stochastic system can also
perfectly capture the behavior of the actual nonlinear stochastic system if the concentration is controlled to be close
to the operating point AND the noise is controlled to be small enough so random variations does not go far from
the operating point.

Let us assume there is a point #* such that R (z*) = <RZjE >, and this point is the mean (), so that R ((z)) ~ <R,jt >,
then we can perform linearization around (z), and Eqn (27) becomes

Mn+nMT+ D, (32)
h
where o Cov(a:i,xj) Mo — Hij (33)
WET e 0 YT
and
~ Olog Rf dlog R, _ORf((®) (x;)  OR; ((x)) (x)
H;j = M«@) - m(@» = ou, <RZ> T o, <R;> (34)

Here 7;; is the normalized covariance as defined before, with 7;; = CV? as the squared coefficient of variation of x;,
and H;; is the production-degradation order defined as the order of production minus the order of degradation
of x; with respect to ;. We encountered the production-degradation order H;; in our study of adaptation in
homework 4, which encodes the structure of bioregulations. It is interesting to see it appears here again. In
different contexts, H;; is also referred to as reaction orders (e.g. for mass-action kinetics), logarithmic gains (e.g.
from a controller perspective), sensitivities (e.g. when viewing concentrations as perturbations) or elasticities (e.g.
in metabolic control analysis about how catalysis rates change with enzyme concentrations.)

(Caution: in our notation, H;; is the order of production minus the order of degradation, while in most works
from Paulsson and Hilfinger groups such as [13], this is defined as the order of degradation minus the order of
production, so Eqn (32) becomes Mn +nMT = D.)

The Eqn (32) is also called the fluctuation-dissipation theorem, since it takes the same form as the fluctuation-
dissipation theorem governing Brownian motion, diffusion processes, or continuous random walks. In fact, after
linearization, we can see that all moments collapse to just moments of order two or less. Therefore, the relation
between the means and covariances in Eqn (32) can always be implemented via a continuous stochastic process
with Gaussian noise, which is also called the chemical Langevin equation (CLE.) However, it should be noted that
Eqn (32) is just a moment equation, and there are many stochastic processes, including ones with discrete states,
that can implement it. So making a linear noise approximation does not mean we have made Gaussian noise
assumption. The noise can take arbitrary distribution, and Eqn (32) only specifies the mean-covariance relation
that it has to satisfy.

Eqgn (32) is also called the (continuous time) Lyapunov equation in matrix analysis and control theory. In fact, for a
linear dynamical system & = Aw, it is stable, i.e. the real parts of A’s eigenvalues are all negative, if and only if
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there exists a positive definite matrix P such that AP + PAT < 0,i.e. AP + PAT = @Q and Q is negative definite.
In this case, the function V(x) = 7 Pz is called the Lyapunov function. It certifies the stability of the system since
it decreases over time and it is positive everywhere except at x = 0. Compared to Eqn (32), we see that if we take
A = M, then Q = —D. By definition of D, we see that it is always positive definite. Therefore, if the normalized
covariance matrix 1 exists, this is a certificate that the dynamical system 2 = Mz is stable. Recall from homework
4, z = M z is the linearization of the deterministic dynamics of the reaction network in the fold-change variables,

X
Ti—T]

with z; = =. So the fact that covariances exist and stability of the linearized system are tightly related. We will

use this fact in the next problem.
2.2 Summing up the noise in gene expression

With the linear noise approximation, we can study noise of gene expression in relatively arbitrary settings, as was
done in [11] in 2004. Let us consider a generic transcription-translation process.

Rf(xl) R (x1) R;L(zhmg)

R;(xhxg) (35)
1 ——— a1+ 1,3y ———— 11— 1,29 — s x4+ 1.

T2+ 1,29
Here we can consider x; as the gene, and 2 as the mRNA for a transcription process, or 1 as mRNA and z3 as
proteins for a translation process. We assumed z’s production and degradation only depends on itself, and z5’s
production and degradation can depend on both 21 and x3. Note that all of the models considered in Problem 1
are examples of this network.

1. Show that Eqn (32) in this case becomes

Hyymi + ﬁ HT?UH + (%l + %2)7712 -0 (36)
Ho1mi2 + Haanoo + <le>

(Hint: the structure of the network implies H12 = 0, and D;; = %, D13 = Dy = 0. Also note the symmetry
Nij = Nji-)
Solve the above equation to obtain

Var(xy) 1 1
mi =

(z1)?  (w1) —Hu'
Var(zo) 1 1 N H2, Hao /o
(w2)2  (w2) —Hzy | "WHZ, HyoJrs + Hu /1

(37)

What are some of conclusions you can draw from this result? For example, what happens if Hyy — 0? This
happens when z, auto-activates, for example. Also, we see that lifetimes matter. So what happens if z1’s
dynamics is very fast, and 7 — 0? What happens if z1’s dynamics is very slow, and 7 — co? What happens
if 21 regulates z3 in an ultra-sensitive fashion, so that |H»;| is very large?

What about auto-repression? If Hq; or Hyy are more negative, what happens? Does auto-repression also
suppresses noise?

2. Let us compare this to the cases we have analyzed before in Problem 1.

Let us first consider the simple transcription-translation model where z; is the mRNA, and z; is protein. In
this case, H11 = —1, Hy; = 1, and Hyy = —1. Show that you have the same result as Eqn (10).
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3. Then consider the case where z; is the active state of the gene G, and x5 is mRNA. This case needs special
treatment when converting to the production-degradation reactions, since the state-transition reactions of

the gene G = G is not production-degradation by themselves. But since Giot = G + G is conserved,
B

we can denote z"** = Giq to make the reaction rates depend on z; only, and obtain the following

production-degradation reactions

R+: max __ R =
fo%l +1, a1 14'811> r1 — 1, (38)
Show that
xmax 1
Hll = mai -
1 — 1 Po

in the notation of Problem 1, with pg = aLiﬁ

Then show that you obtain

1
mi1 =7—=Po,
T
(1) (39)
Var(zz) 1 n 1/79
22 = = 11 .
1 <l‘2>2 <$2> n 1/7’2+1/<po7'1)
Here 7—11 = f,and ;12 = . Compared to the notations in Eqn (19), the natural timescales are 7¢ = oTer' and
™ = % Although 7); = 75, we see that 7 and 7y are different.
Show that, written in terms of 7 and 7,4, we have
Var(xs) 1 TG
= = 4+ — 40
122 <x2>2 (z2) M1 o+ T (40)

So this is the same result as Eqn (19).

Note that, in both of these cases, the linear noise approximation is exact, since the production and degradation
rates are linear.

2.3 Limits on noise suppression versus coupling (Optional)

So far, beyond auto-regulations that directly change H;;, we have not considered how feedback regulations can
suppress noise. For example, if we make z1’s production rate R;” dependent on x5 and repressed by z2, so that
Hi2 < 0, would this suppress noise?

Intuitively, if x5 is positively correlated with x;, then the repression of x; should suppress noise, since larger z;
cause larger =5 and represses 1, while smaller x; causes smaller x> and activates ;. On the other hand, z» is
noisy by itself, so this noise may increase the variation of ;.

Let us investigate this noise suppression problem below. We will show that indeed noise suppression by such
feedback is possible, but it has fundamental limits that is much worse than the typical case. However, if we get rid
of the feedback requirement and instead let 1 and x5 be coupled with each other through reactions to change
them simultaneously, then such limits on noise suppression can be broken again!
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1. Consider the following network of net-change reactions,
R (22)
Ty ————— w1+ 1,

x1/71
T —————— 31 — 1, (41)

ar
py — sy 4 1,

x2/T2
Ty ————— 19 — 1.
Here, x2’s production is catalyzed by x1, so x5 acts like a sensor on 1, and x5 in turn is used to regulate the
production of 1, and both z; and z have first-order degradations. We assumed there is no auto-regulation
of z1 or x5 to simplify the problem, since we already know the roles of auto-regulation from the previous
problems.

Show that, the fluctuation-dissipation equation Eqn (32) becomes the following in this case,

Hianio — m1 + ﬁ %Hw?m + %"711 - (% + %)7712 —0 (42)
M2 — N2z + @ '

(Hil’lt: H11 = HQQ = —1, Hgl = 1, D12 = D21 = 0, and Dii = 2 )

7i(xi)
Note that the above already implies the following:

1
mi1 =— + Hiamo

(1)

; (43)
N2 =— + N12.
(z2)

So we see that, if x; and x5 are positively correlated, therefore 712 > 0, and if Hi» < 0, then 71, can be
suppressed. Note that this comes at a cost of 722 increases.

2. Now we solve the noise 711, 712, 722. Rearrange into a linear system of equations for the covariances, and
show that the following holds.

% —11'—‘1121 ) 0 N ﬁ
% G t5) SHi||me| = (1) (44)
0 -1 1 1722 Tz2)
Solve the above to obtain that
1 Ty 1 T 1 )
_ + — . 45
2 =71 His (71 + 7o (1) 127'1 + 72 (z2) (45)
Assume His < 0, and denote A\ = Tli—lm, and Ay = 1 — A\, then
1 ( 1 \H12|)
= A - )
T T H R \ M ) 7 ()

(46)

mi = 1 __|Hol (M ! —)\2|H12|>
(1) 14 |Hif\  (21) (2) /)’
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. Let us consider the cost of noise suppression. Let us define N =

Interpret the above regarding noise suppression of x; via z2’s inhibition of x1’s production. When is noise
suppressed? If we consider Hj2 = —1, what conclusions would you draw?

Then, consider the expression for 7;;. Could we suppress noise indefinitely in this case? Is there any lower
bound or limit on the noise suppression by this mechanism? If we assume we can arbitrarily tune the
parameters A\; € [0, 1], and |H;2| > 0, what’s the conclusion? What if we assume \; is fixed, and we can only
vary |H 12 ’7

%, where Ny = (z1) and Ny = a(x1)7 are
the effective signaling rates, defined as the number of production events of 1 and x5 respectively during the
lifetime of ;. Then N = a7y is the number of x9 production events used per x; production event, which is a
per-z1 molecule cost in signaling.

Let us denote |H12| = h. Also, we can use the fact that (z2) = am(z1),s0 N = %% This can be used to

write ) h h
=—(1-X—(1—- = 47
where we used A1 = 71 \a.

Now, let us consider all but & is fixed, and minimize 7, by varying h > 0. Show that the minimizer is

h*=-1++vV1+N. (48)
Then, plug this into the expression, rearrange, we have

mi(h*) = (49)

! (A e )
— | A2 -
(1) 1+V1+ N
Since A\ + A9 = 1, we see that 711 is in between two values, ﬁ which is the Poisson noise, and ﬁ ﬁ
which is the suppressed noise. Since for N > 0, the suppressed noise is always smaller, we have that the
lower bound for 7,1 is achieved when A; = 1 and the bound is

1 2

> . 50
7711_<x1>1+m (50)

Consider the large-signaling limit where N — +o00. Show that in this case,
1 1 (51)

mi1 ~ @ﬁ

Therefore, to suppress noise significantly, we need to start with a small enough \;, i.e. 72 < 71, and then use
a large N to suppress noise.

However, notice that the noise decreases very slowly with N. In fact, the decay of noise we are most familiar
with comes from the law of large numbers, that as the number of signaling events NN increase, the noise
decreases as square root of N, i.e. CV ﬁ, where CV is the coefficient of variation. However, since
mi = CV%, we see that in this case we obtain a quartic root noise decay, i.e. CVy oc N 1/41 This is significantly
worse than a square root, and suggests that noise suppression would be very costly in biomolecular reactions.

Intuitively, this comes from the fact that to suppress the noise of z1, we needed to use another species
x2, which is noisy in itself, therefore introducing additional noise when x, senses z; via z; catalyzing
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x9’s production, and when z, actuates on x; by inhibiting x;’s production. The noise propagation and
enhancement within the loop therefore make noise suppression much harder.

In fact, [15] in 2010 took this fact into consideration and used information theoretic methods to analyze
arbitrary non-stationary memory-containing suppression of noise, by replacing Ry (z2) with u[Z;(x2)], so the
production rate of z1 can be regulated by an arbitrary non-anticipatory functional allowing dependence on
all of the information Z;(x2) of z2’s past trajectory. They derived the following bound:

1 2
> .
e (x1)1+V1+ N

We see that this is the same bound as the one we derived, with a quartic-root bound when N is large!
Therefore the observation we had from our case study above is generally true.

(52)

(This bound is in fact more general than presented here, as [15] also allowed R;, R and R; to take more
general forms, as long as R; depends on z; only, R, depends on 3 only, and Ry can be arbitrary forms
of signaling channel. The complication is that in these more general cases, the signaling rate [V is not as
well-defined, and channel capacity, the measure of information transmission, needs to be used in the bound.
So the only assumption is the system architecture: z, first senses x1’s concentration by z; influencing the
production of x9, and then z actuating on x; by influencing z’s production rate.)

. Based on the above results, it may seem that noise suppression is indeed hopeless in biomolecular systems!
The fundamental limit on noise suppression is really severe, and it is so general that all biological scenarios
cannot escape it.

However, although it feels natural and without loss of generality to consider the feedback architecture, or the
sensing-and-then-actuate architecture, as in our above example and in [15], biomolecular reactions do not
necessarily obey such architecture. For example, reactions of the form X; — X, or (z1,22) — (1 — 1,22+ 1)
in net change notation, happens very often in biology. Here z; is transformed into x5, such as via catalysis
reactions. Also, the simultaneous production or degradation of x; and x5 is also very common, such as
(z1,22) = (21 + 1,22 + 1). This happens when z; and z; are two genes in the same operon, for example, or
they are the protein products from a cleavage reaction.

Biomolecular systems containing reactions of the above form, where x; and z»’s production and degradation
are coupled in one reaction, is termed a coupled reaction system, and used in [14] to show that the quartic-root
noise suppression bound from [15] can be easily broken when coupling is utilized, as is done in nature.

Consider the following coupled variant of the reaction network in Eqn (41)

Rf (x2)
rp —— 1+ 1,

x1/71

(r1,29) —— (1 — 1,22 + n), (53)

x2/T2
Ty ————% 19 — 1.

Here the degradation of z; and the production of x5 are coupled into one reaction transforming x; into n
molecules of 5. Note that o = Tﬂl in this case, so N = am = n.

Use linear noise approximation to show that the fluctuation dissipation equation Eqn (32) is the following in

this case: " B L1o1g L1 _(L+L) _1_ 1 _ 1 _n
122 =M1 T Gy 72022 T 50 )2 e Hez)  m220@) | — (54)
me — 722 + 272;2>




18 Homework 5 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here]

e _ n+l1 _ 1 _ n _ 1 1 1 n
(Hint: Doz = 205, <31\2> -T2 <32I1> =—3,80 D12 = —Zrony — oaiy)
Solve the above to obtain
1 h N hAN+1
=——(1-=2\ 1— == —— 55
mi1 (:1:1>< 11+h( 5 5N >>, (55)

where h = |Hj2|, assuming Hys < 0.

Now optimize over h, and compare with the fundamental limit on noise suppression. Show that the noise
can indeed get lower than the bound!
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