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This homework consists of 3 problems. This homework unfortunately tend to take much longer to complete, simply
because analysis of noise tend to be more complicated, and takes more effort to gain interesting conclusions. But I
have done considerable work to streamline the problems, so if you spend extra time, you will for sure be rewarded
by the understanding you gained. If you are short on time, it is fine to come back to this homework later in your
research career...

(Optional.) Gillespie
Write an implementation of the Gillespie algorithm to simulate stochastic trajectories. This helps you to gain intu-
itions about the stochastic models described in this homework. Here is an implementation of Gillespie if you want
one that is ready to use: https://colab.research.google.com/drive/1qL7_Bk8_jVJWgPCUF5voUrIlnElhF8e8?
usp=sharing.

1 Bursty gene expression
Noise becomes important for gene expression when the number of proteins expressed is low and the expression
kinetics is bursty. We investigate how bursty-ness emerge in different mechanistic models of gene expression,
and focus on the unregulated case, and leave regulatory mechanisms such as feedback to the next problem. The
interpretations mainly follow this paper [1] giving a clear review of noise analysis for gene expression. By walking
through this problem, we have covered the main takeaways about what people have learned about bursty gene
expression.

1.1 Poisson from simple production and degradation (Optional)
Let us first establish the fact that the molecule count of a species regulated by simple production and degradation
reactions follow a Poisson distribution. Let us consider the production and degradation of mRNA, for example.

𝐺
𝑘𝑚−−→ 𝐺 + 𝑀, 𝑀

𝛾𝑚−−→ ∅. (1)

1. Show that the chemical master equation is the following.

𝑑

𝑑𝑡
𝑝(𝑀, 𝑡) = [𝑘𝑚𝐺𝑝(𝑀 − 1) − 𝑘𝑚𝐺𝑝(𝑀)] + [𝛾𝑚(𝑀 + 1)𝑝(𝑀 + 1) − 𝛾𝑚𝑀𝑝(𝑀)]. (2)

Here 𝑀 is the copy number of 𝑀 , and 𝐺 denotes the copy number of 𝐺. Note that 𝐺 is constant.

2. Then show that at steady state, the probabilities follow

(𝑀 + 1)𝑝(𝑀 + 1) =(𝜆 + 𝑀)𝑝(𝑀) − 𝜆𝑝(𝑀 − 1), 𝑀 = 1, 2, . . .

𝑝(1) =𝜆𝑝(0),
(3)

where 𝜆 = 𝑘𝑚𝐺
𝛾𝑚

.

3. Use induction to show that the following formula holds for steady state 𝑝(𝑀):

𝑝(𝑀 + 1) = 𝜆

𝑀 + 1𝑝(𝑀), 𝑀 = 0, 1, 2, . . . . (4)

(Hint: Show that it holds for 𝑀 = 0, then show that for a given 𝑀 = 1, 2, . . ., if 𝑝(𝑀 + 1) = 𝜆
𝑀+1𝑝(𝑀), then

𝑝(𝑀 + 2) = 𝜆
𝑀+2𝑝(𝑀 + 1). Then use induction.)

https://colab.research.google.com/drive/1qL7_Bk8_jVJWgPCUF5voUrIlnElhF8e8?usp=sharing
https://colab.research.google.com/drive/1qL7_Bk8_jVJWgPCUF5voUrIlnElhF8e8?usp=sharing
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4. Use the above equation and the fact that
∑︀∞

𝑀=0 𝑝(𝑀) = 1 to show that 𝑝(0) = 𝑒−𝜆, therefore

𝑝(𝑀) = 𝜆𝑀

𝑀 ! 𝑒−𝜆. (5)

This is the probability mass function (PMF) of a Poisson distribution with rate 𝜆, which is also the mean. So
we have established that the distribution of 𝑀 follows a Poisson distribution.

1.2 Translational bursts
Let us first consider the vanilla process of transcription and translation in gene expression, and see how the
signal-amplification due to the transcription and translation process itself can be viewed as bursty-ness and increase
noise. In other words, this model considers gene expression bursty-ness to come from the fact that each mRNA
transcript is expressed several times. This is the model used in [2] in 2002, for example, to explain the noise in
gene expressions measured. This model is also used in [3] when the stochastic expression of the proteome and
transcriptome of E. coli at the single molecule level was first measured in 2010, although this model has caveats
which we will discuss at the end.

1. Consider the following reaction network for a simple transcription-translation process,

𝐺
𝑘𝑚−−→ 𝐺 + 𝑀, 𝑀

𝑘𝑝−→ 𝑀 + 𝑃, 𝑀
𝛾𝑚−−→ ∅, 𝑃

𝛾𝑝−→ ∅. (6)

Since the gene molecule’s number 𝐺 does not change, only the numbers of mRNA and protein molecules
change. Let (𝑀, 𝑃 ) denote the number of mRNA 𝑀 and protein 𝑃 molecules respectively. Let 𝑝(𝑀, 𝑃, 𝑡)
denote the probability that the number of mRNAs and proteins are 𝑀 and 𝑃 respectively at time 𝑡. Note that
since the mRNA is regulated by a simple production and degradation process by itself, independent of 𝑃 , we
know from the previous subproblem that 𝑀 follows a Poisson distribution with mean 𝑘𝑚𝐺

𝛾𝑚
.

Show that the chemical master equation of this reaction system is the following.

𝑑

𝑑𝑡
𝑝(𝑀, 𝑃, 𝑡) =[𝑘𝑚𝐺𝑝(𝑀 − 1, 𝑃 ) − 𝑘𝑚𝐺𝑝(𝑀, 𝑃 )] + [𝑘𝑝𝑀𝑝(𝑀, 𝑃 − 1) − 𝑘𝑝𝑀𝑝(𝑀, 𝑃 )]

+ [𝛾𝑚(𝑀 + 1)𝑝(𝑀 + 1, 𝑃 ) − 𝛾𝑚𝑀𝑝(𝑀, 𝑃 )] + [𝛾𝑝(𝑃 + 1)𝑝(𝑀, 𝑃 + 1) − 𝛾𝑝𝑃𝑝(𝑀, 𝑃 )].
(7)

2. (Optional.) Let ⟨·⟩ denote the average, e.g. ⟨𝑀⟩ denotes the average of 𝑀 . Let Var(·) denote the variance, e.g.
Var(𝑀) =

⟨︀
𝑀2⟩︀ − ⟨𝑀⟩2, and let Cov(·) denote the covariance, e.g. Cov(𝑀, 𝑃 ) = ⟨𝑀𝑃 ⟩ − ⟨𝑀⟩⟨𝑃 ⟩. Show

that the moments of order two or less satisfy

𝑑

𝑑𝑡
⟨𝑀⟩ =𝑘𝑚𝐺 − 𝛾𝑚⟨𝑀⟩,

𝑑

𝑑𝑡
⟨𝑃 ⟩ =𝑘𝑝⟨𝑀⟩ − 𝛾𝑝⟨𝑃 ⟩,

𝑑

𝑑𝑡

⟨
𝑀2

⟩
=2𝑘𝑚𝐺⟨𝑀⟩ + 𝑘𝑚𝐺 − 2𝛾𝑚

⟨
𝑀2

⟩
+ 𝛾𝑚⟨𝑀⟩,

𝑑

𝑑𝑡
⟨𝑀𝑃 ⟩ =𝑘𝑚𝐺⟨𝑃 ⟩ + 𝑘𝑝

⟨
𝑀2

⟩
− 𝛾𝑚⟨𝑀𝑃 ⟩ − 𝛾𝑝⟨𝑀𝑃 ⟩,

𝑑

𝑑𝑡

⟨
𝑃 2
⟩

=2𝑘𝑝⟨𝑀𝑃 ⟩ + 𝑘𝑝⟨𝑀⟩ − 2𝛾𝑝

⟨
𝑃 2
⟩

+ 𝛾𝑝⟨𝑃 ⟩.

(8)
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From the above, show that the mean and covariances satisfy

𝑑

𝑑𝑡
⟨𝑀⟩ =𝑘𝑚𝐺 − 𝛾𝑚⟨𝑀⟩,

𝑑

𝑑𝑡
⟨𝑃 ⟩ =𝑘𝑝⟨𝑀⟩ − 𝛾𝑝⟨𝑃 ⟩,

𝑑

𝑑𝑡
Var(𝑀) =𝑘𝑚𝐺 + 𝛾𝑚⟨𝑀⟩ − 2𝛾𝑚 Var(𝑀),

𝑑

𝑑𝑡
Cov(𝑀, 𝑃 ) =𝑘𝑝 Var(𝑀) − (𝛾𝑚 + 𝛾𝑝) Cov(𝑀, 𝑃 ),

𝑑

𝑑𝑡
Var(𝑃 ) =𝑘𝑝⟨𝑀⟩ + 2𝑘𝑝 Cov(𝑀, 𝑃 ) + 𝛾𝑝⟨𝑃 ⟩ − 2𝛾𝑝 Var(𝑃 )

(9)

3. Solve the steady state moment equations to obtain the steady state moments, and show that they satisfy the
following:

⟨𝑀⟩ =𝑘𝑚

𝛾𝑚
𝐺,

⟨𝑃 ⟩ =𝑘𝑝

𝛾𝑝

𝑘𝑚

𝛾𝑚
𝐺 = 𝑘𝑝

𝛾𝑝
⟨𝑀⟩,

Var(𝑀) =𝑘𝑚

𝛾𝑚
𝐺 = ⟨𝑀⟩,

Cov(𝑀, 𝑃 ) = 𝑘𝑝

𝛾𝑚 + 𝛾𝑝
Var(𝑀) = 𝛾𝑝

𝛾𝑚 + 𝛾𝑝
⟨𝑃 ⟩,

Var(𝑃 ) =⟨𝑃 ⟩ + 𝑘𝑝

𝛾𝑝
Cov(𝑀, 𝑃 ) = ⟨𝑃 ⟩

(︃
1 + 𝑘𝑝

𝛾𝑚 + 𝛾𝑝

)︃
.

(10)

Here the expressions for Cov(𝑀, 𝑃 ) and Var(𝑃 ) are re-written with the equations for lower moments.

4. Recall that the simple production-degradation process ∅ ⇌ 𝑋 results in a Poisson distribution of 𝑋 such
that its variance is equal to the mean, Var(𝑋) = ⟨𝑋⟩. Therefore, we can use the ratio of variance to mean to
compare a distribution to the Poisson distribution. This is called the Fano factor, 𝐹 (𝑋) = Var(𝑋)

⟨𝑋⟩ .

For the Fano factor of 𝑃 , we see that

𝐹 (𝑃 ) = Var(𝑃 )
⟨𝑃 ⟩

= 1 + 𝑘𝑝

𝛾𝑚 + 𝛾𝑝
. (11)

Typically, the degradation rate of proteins is much slower than the degradation rate of mRNAs, so 𝛾𝑝 ≪ 𝛾𝑚,
we we obtain

𝐹 (𝑃 ) = Var(𝑃 )
⟨𝑃 ⟩

≈ 1 + 𝑏, (12)

where we define 𝑏 = 𝑘𝑝

𝛾𝑚
. Here 𝑏 is the average number of proteins synthesized per transcript, which can be

interpreted as the burst size of protein production caused by each transcription event.

We see that the noise is increased by a factor of 𝑏 due to transcription-translation.

Some moderations of the interpretation above are due. This model’s explanation for bursty gene expression is
rather unsatisfactory for the following reason. It showed that, when mRNAs have short lifetimes 𝛾𝑝 ≪ 𝛾𝑚, the



4 Homework 5 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here]

noise of protein Var(𝑃 ) is increased by a factor 𝑏 = 𝑘𝑝

𝛾𝑚
which is the number of proteins synthesized per mRNA

transcript. However, this increase in noise does not necessarily mean there are actually bursty translational events.
Indeed, when there are hundreds of mRNAs in the cell all expressing proteins, the stochasticity of each mRNA’s
translational events is evened out, and the production of proteins is more like a continuous steady stream, rather
than short bursts. Only when the number of mRNAs in the cell is close to zero or one would this translational
burst interpretation be physically sound. However, most genes do not have such a low mRNA copy number, so the
bursty features of fluorescence observed for gene expression CANNOT be mechanistically explained by the fact
that each mRNA produces multiple proteins.

1.3 Random burst sizes give rise to Gamma or Negative Binomial distributions (Optional)
Instead of starting with a mechanistic explanation about how the bursts happen, we could also start with
experimental observations and focus on the distributional shape. For example, it was observed that the burst
size 𝑏 of protein production is roughly exponentially distributed in [4], the famous paper that was the first to do
single-cell single-molecule measurements of gene expression profiles. To be exact, since the burst size is about
the number of protein molecules, 𝑏 should take integer values. So the exact distribution could be that 𝑏 follows a
geometric distribution, as was considered in [5, 6] in 2000.

Let us investigate the resulting distribution on protein numbers given a geometric or exponentially distributed
burst size 𝑏, while assuming the number of mRNA is roughly constant.

1. In [4], a simple argument was made to show that the distribution of protein number should follow a Gamma
distribution.

Consider again the model in Eqn (6), but with the translation replaced with bursty expression and the burst
size is exponentially distributed with mean 𝑏. In other words, the translation reaction should be

𝑀
𝑘𝑝−→ 𝑀 + 𝐵𝑃,

where 𝐵 is a random variable with distribution Exp(1
𝑏 ) (mean 𝑏).

We first simplify the scenario by assuming mRNA dynamics is fast, therefore its fluctuations can be ignored
when considering the protein’s dynamics. Indeed, since mRNA’s degradation rate 𝛾𝑚 tends to be much larger
than that of protein, 𝛾𝑝, we can assume mRNA is always at a steady state distribution, and the production of
proteins comes from a series of random independent burst events.

Then, let us reason about the mRNAs, i.e. the number of transcription events, that contribute to the current
value of protein number. Since the proteins are degraded at a rate of 𝛾𝑝, the duration that contributes to the
current value is 1

𝛾𝑝
. The number of mRNAs produced in this duration is therefore 𝑘𝑚𝐺 1

𝛾𝑝
. So the effective

number of transcripts that can cause bursty translations and contribute to the current number of proteins is
𝑎 = 𝑘𝑚𝐺

𝛾𝑝
.

Then, assuming the bursty translational events of these mRNA transcripts are independent of each other, the
number of proteins produced per generation is the sum of 𝑎 independent and identically distributed (iid)
random variables of burst size 𝐵, where 𝐵 ∼ Exp(1

𝑏 ).

Now, based on this argument, show that the number of proteins follow a Gamma distribution with
Gamma(𝑎, 𝑏), where 𝑎 is the shape parameter, and 𝑏 is the scale parameter.

(For the exact derivation, see [7] and the book [8] referenced therein.)
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2. Here are some interpretations of the Gamma distribution above, as is used in [4, 3]. Show that the coefficient
of variation (CV) squared is Var(𝑃 )

⟨𝑃 ⟩2 = 1
𝑎 , and the Fano factor is Var(𝑃 )

⟨𝑃 ⟩ = 𝑏.

Note that, from our analysis above, we have 𝑎 = 𝑘𝑚𝐺
𝛾𝑝

, the average number of mRNA transcripts that contribute
to the current number of proteins, and 𝑏 = 𝑘𝑝

𝛾𝑚
is the average number of proteins produced per mRNA

molecule. And they are related by 𝑎𝑏 = ⟨𝑃 ⟩.

Another observation from [3] is that the mRNA number and protein number for a gene seem un-correlated.
Is this in agreement or disagreement with this model? (Hint: Look at Cov(𝑀, 𝑃 ) analyzed in the previous
subproblem.)

(Note that although the same result is used in [3], which is a very famous paper, it had an error in the part
describing the Gamma distribution for protein number. Here, 𝑎 could be interpreted as the number of
mRNAs per cell cycle as described in the paper, but its actual meaning that made the Gamma distribution
argument work in the original derivation of [4, 7] was that 𝑎 is the number of burst events that contribute to
the current value of the protein. This is because it was assumed that mRNA degradation rate is much faster
than that of proteins, therefore fluctuations of mRNA can be integrated out and proteins are produced in
random independent burst events. See Section 3.2 of the Supplementary Information of [1] for more details.
Also, the CV squared of protein count is 𝑎−1, not 𝑎 as described in the paper [3], while the Fano factor is
indeed 𝑏.)

3. (Optional.) Considering the discrete nature of the number of proteins, we can also consider the translational
burst size 𝐵 to be a discrete random variable, therefore geometrically distributed Geom(p) with mean 𝑏,
𝑝 = 1

1+𝑏 , which has a probability mass function of

P{𝐵 = 𝑛} = (1 − 𝑝)𝑘𝑝 = (1 − 1
1 + 𝑏

)𝑛 1
1 + 𝑏

.

The interpretation is that the P{𝐵 = 𝑛} is the probability that the first successful trial happened after 𝑛 failed
Bernoulli trials, which are independent and have success probability 𝑝.

Given that the sum of 𝑎 iid geometric random variables with mean 𝑏 yields a negative binomial random
variable NegBinom(𝑎, 1/𝑏), argue that the distribution for the number of proteins should be NegBinom(𝑎, 1/𝑏),
which has a probability mass function as follows,

P{𝑃 = 𝑛} = (1 − 𝑝)𝑛𝑝𝑎

(︃
𝑎 + 𝑛 − 1

𝑛

)︃
= 𝑏𝑛

(1 + 𝑏)𝑎+𝑛

(︃
𝑎 + 𝑛 − 1

𝑛

)︃
.

Note that this is consistent with the Gamma distribution above, since the negative binomial distribution is a
discrete analog of the Gamma distribution. For a detailed explanation of this relations between the Gamma
distribution and the negative binomial distribution, see the following excellent response from DeepSeek
https://chat.deepseek.com/share/s13mmcengfd3aoio2z.

4. (Optional.) Our argument in this subproblem so far is more intuitive and crude than accurate and exact.
In fact, we ignored the noise contribution to protein number from the fluctuations of mRNA copy number.
This can be observed by considering the conditional probability of protein number for a fixed mRNA copy
number, 𝑝(𝑃 |𝑀). Argue that, under Geom(1

𝑏 ) distributed translational bursts, 𝑝(𝑃 |𝑀) should follow a
NegBinom(𝑀, 1

𝑏 ) distribution. This was shown in [5].

https://chat.deepseek.com/share/s13mmcengfd3aoio2z
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As a result of this, if 𝑀 = 𝑎, then we recover our result above. However, since 𝑀 fluctuates with a Poisson
distribution, the noise of protein number 𝑃 should be larger than predicted before. This means, the Fano
factor should be larger than 𝑏. Indeed, as shown in the previous subproblem, we derived a Fano factor of
1 + 𝑏.

1.4 Transcriptional bursts give rise to Poisson with a zero spike
Previously, the non-Poissonian behaviors all happen at the protein level, and mRNAs obeyed a Poisson distribution.
However, it was soon observed that mRNAs have drastically non-Poisson behavior as well. Not only is the noise of
mRNA number much larger than Poisson, it was also observed that quite often the distribution is bimodal, with a
large spike at zero copy number. In 2014, [9] attributed this behavior in bacteria to the fact that the gene needs to
be uncoiled before transcription, so the gene should be considered to have two states, on and off. See the reaction
network below.

𝐺0
𝛼−⇀↽−
𝛽

𝐺1, 𝐺1
𝑘−→ 𝐺1 + 𝑀, 𝑀

𝛾−→ ∅. (13)

This is also sometimes called the telegraph model. We analyze the transcriptional noise in this case.

1. Let us first analyze the distribution of the gene, since its dynamics is independent of 𝑀 . Let 𝐺tot denote the
total number of gene molecules. Show that the chemical master equation for 𝑝(𝐺1, 𝑡), the probability that
there are 𝐺1 copies of the gene molecule in state 𝐺1 at time 𝑡 follows

𝑑

𝑑𝑡
𝑝(𝐺1, 𝑡) = [𝛼(𝐺tot −𝐺1 +1)𝑝(𝐺1 −1, 𝑡)−𝛼(𝐺tot −𝐺1)𝑝(𝐺1, 𝑡)]+[𝛽(𝐺1 +1)𝑝(𝐺1 +1, 𝑡)−𝛽𝐺1𝑝(𝐺1, 𝑡)], (14)

for 𝐺1 = 1, 2, . . . , 𝐺tot − 1, and the boundary cases follow

𝑑

𝑑𝑡
𝑝(0, 𝑡) =𝛽𝑝(1, 𝑡) − 𝛼𝑝(0, 𝑡),

𝑑

𝑑𝑡
𝑝(𝐺tot, 𝑡) =𝛼𝑝(𝐺tot − 1, 𝑡) − 𝛽𝑝(𝐺tot, 𝑡).

(15)

We can directly solve the above to get the solution for 𝑝(𝐺1, 𝑡). Instead, we could also directly get the answer
by intuitive arguments, and check that the answer is true.

Let 𝑝0(𝑡) = 𝐺0
𝐺tot

and 𝑝1(𝑡) = 𝐺1
𝐺tot

denote the fraction (probability) of gene molecules that a gene molecule is
in 𝐺0 or 𝐺1 state at time 𝑡. Since each gene molecule transits between the 𝐺0 and 𝐺1 state independently, we
have

𝑑

𝑑𝑡
𝑝1(𝑡) = 𝛼𝑝0(𝑡) − 𝛽𝑝1(𝑡) = 𝛼(1 − 𝑝1(𝑡)) − 𝛽𝑝1(𝑡).

This can be easily solved explicitly. And the probability 𝑝(𝐺1, 𝑡) satisfies

𝑝(𝐺1, 𝑡) =
(︃

𝐺tot
𝐺1

)︃
𝑝1(𝑡)𝐺1𝑝0(𝑡)𝐺0 ,

a Binomial distribution with probability parameter 𝑝1(𝑡).

Check that indeed this follows the CME for 𝑝(𝐺1, 𝑡) above. So the steady state distribution is

𝑝(𝐺1) =
(︃

𝐺tot
𝐺1

)︃
𝑝𝐺1

1 𝑝𝐺0
0 ,
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where 𝑝1 = 𝛼
𝛼+𝛽 , and 𝑝0 + 𝑝1 = 1. This is the Binom(𝐺tot, 𝑝1) distribution for steady state 𝐺1.

So the noise of the gene follows
Var(𝐺1)

⟨𝐺1⟩2 = 𝑝0
𝑝1𝐺tot

= 𝑝0
⟨𝐺1⟩

.

Note that this noise is smaller than Poisson by a factor of 𝑝0. So by having active and inactive states, and
switching between them, we can have a low molecule number 𝐺tot while having relatively small noise, as
long as most molecules are active, 𝑝1 ≈ 1. However, this model did not account for the noise of 𝐺tot, which
could have noise contributions that make the noise of 𝐺1 larger than Poisson.

2. Now we derive the distribution of 𝑀 . Recall that, from the first subproblem, if 𝐺1 = 𝐺tot always, then steady
state 𝑀 follows Poisson(𝜆), where 𝜆 = 𝑘𝐺tot

𝛾 . Now that 𝐺1 is Binom(𝐺tot, 𝑝1) distributed with 𝑝1 = 𝛼
𝛼+𝛽 ,

we see that 𝑀 ’s steady state distribution should be close to a Poisson distribution with its rate following a
binomial distribution. The actual distribution is slightly different from this since this argument assumes 𝑀
reaches steady state distribution instantly when 𝐺1 changes, while actually the dynamics of 𝑀 and 𝐺1 are
correlated and changing simultaneously.

Still, we can get a good enough answer to glean some intuitions based on this argument that 𝑀 reaches
steady state instantly when 𝐺1 changes, which corresponds to the assumption that 𝛾 ≫ 𝛼 + 𝛽, since the
former is the rate for dynamics of 𝑀 , and the latter is for the dynamics of 𝐺1.

Let us consider individual gene molecules, and consider the mRNAs produced by each gene molecule. In
other words, let us first consider the case that 𝐺tot = 1. Let 𝑀1 denote the number of mRNAs in this case.
Show that, the steady state 𝑀1 follows

𝑀1 ∼
{︃

Poisson(𝜆1), with probability 𝑝1 = 𝛼
𝛼+𝛽 ;

0, with probability 𝑝0 = 1 − 𝑝1;
(16)

where 𝜆1 = 𝑘
𝛾 .

Then show that, the mean and variance of 𝑀1 are

⟨𝑀1⟩ =𝑝1𝜆1 = 𝛼

𝛼 + 𝛽

𝑘

𝛾
,

Var(𝑀1) =𝑝1𝜆1(1 + 𝑝0𝜆1).
(17)

Conclude that, since 𝑀 is the result of 𝐺tot copies of the gene molecule, each independently producing
mRNAs, we have 𝑀 is the sum of 𝐺tot coplies of 𝑀1, therefore satisfies

⟨𝑀⟩ =𝑝1𝜆 = 𝛼

𝛼 + 𝛽

𝑘𝐺tot
𝛾

,

Var(𝑀) =𝑝1𝜆(1 + 𝑝0𝜆1).
(18)

So we see that the distribution of 𝑀 is a “spike” at zero mixed with a Poisson distribution.

From the above, we see that in the telegraph model, the Fano factor satisfies

𝐹 = Var(𝑀)
⟨𝑀⟩

= 1 + 𝑝0𝜆1 = 1 + 𝛽

𝛼 + 𝛽

𝑘

𝛾
.

So the noise of transcription is amplified by the factor 𝑝0𝜆1. This comes from the noise of 𝐺1, since 𝐺1 has a
Fano factor of 𝑝0, and this is amplified by the production rate 𝜆1 per 𝐺1 molecule.
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3. (Optional.) Now let us solve the mean and variance exactly. Write down the chemical master equation for
𝑝(𝑀, 𝐺1, 𝑡), the probability that there are 𝑀 copies of mRNA and 𝐺1 coplies of the gene molecule in state 𝐺1
at time 𝑡. Then calculate the steady state mean and variances, and show that

Var(𝑀)
⟨𝑀⟩

= 1 + 𝑝0𝜆1
𝜏𝐺

𝜏𝐺 + 𝜏𝑀
, (19)

where 𝜏𝐺 = 1
𝛼+𝛽 is the timescale of 𝐺, and 𝜏𝑀 = 1

𝛾 is the timescale of 𝑀 .

So we see that compared to the result assuming fast 𝑀 kinetics, the noise is slightly smaller, accounting for
the timescale difference between 𝑀 and 𝐺. When 𝜏𝐺 ≫ 𝜏𝑀 , we recover the fast 𝑀 limit. When 𝜏𝐺 ≪ 𝜏𝑀 ,
we have fast 𝐺1 dynamics, so 𝐺1 practically fixed at the time scale that 𝑀 varies, and there is no noise
contribution to 𝑀 from 𝐺1.

1.5 Eukaryote transcriptional bursts give rise to plateaus and long-tails (Optional)
Later on, observations of transcript number distribution in mammalian cells seem to deviate even from the
telegraph model, and call for a third state for the gene. For example, as shown in the data and argued by parameter
inference in [10] from 2024, the number of mRNA transcripts tend to be long-tailed, bi-modal, or have a plateau near
zero. This relate to further chromosomal and methylation mechanisms of transcriptional regulation in mammalian
cells. Intuitively, due to the multitude of regulations, we can consider genes in mammalian cells to be “off by
default”. Then, upon removal of the super-coiling, methylations, etc, the gene enters a “weakly accessible” state,
but is not actively transcribed. Lastly, when activating components such as transcription factors bind, the gene
enters a highly active state.

To model this, we can consider the reaction network below.

𝐺0
𝑘1−⇀↽−
𝑘2

𝐺1
𝑘4−⇀↽−
𝑘3

𝐺2, 𝐺1
𝑘𝑝1−−→ 𝐺1 + 𝑀, 𝐺2

𝑘𝑝2−−→ 𝐺2 + 𝑀, 𝑀
𝛾−→ ∅. (20)

Here 𝐺0 is completely off, 𝐺1 is weakly on, and 𝐺2 is strongly on, so 𝑘𝑝2 is significantly larger than 𝑘𝑝1 .

Explore the behavior of this model of bursty transcription through either analysis or simulations. Find scenarios
where distributions from this model is unlikely to be explained by the telegraph model where the gene only has
two states.

2 Summing up the noise in biomolecular systems
In the previous problem, we considered gene expression noise in an un-regulated setting. What happens if the
gene is regulated? Could the noise be suppressed? Would there be a limit to noise suppression given a finite
budget in terms of molecules expended? More generally, how should we understand the relations between means
and covariances generated by the reaction mechanisms underneath?

To answer such questions, it would be cumbersome to solve the chemical master equations (CMEs) on a case by
case basis. Also, when we consider highly nonlinear regulations, we could easily obtain CMEs that does not have
moment closure, so we cannot solve the mean and variance exactly. Due to these reasons, we would like to derive
general relations and formula governing the mean and variance for a given stochastic reaction network, and reveal
the important structures in these relations. Also, we would like to employ approximations so that we can always
solve and get some answers, since an approximate answer or any intuitive understanding is always better than an
exact “no idea”.

For this goal, let us consider general relations between the means and covariances, and employ linear noise
approximation (LNA) to obtain formula that can always be used to solve for answers. This is largely based on
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works from Johan Paulsson lab, from his early work [11] in 2004 deriving fluctuation-dissipation relations for LNA,
to [12, 13] in 2016 deriving general relations for means and covariances. We are going to introduce these results in
the reverse order of how they were discovered, since this fits the intuitive process of zooming in from a general
picture.
General relation between means and covariances (Background)
The following is adapted from Section II.A of [14] (also available at https://chemaoxfz.github.io/assets/
pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf.) It was originally shown
in [13, 12], and used in later works from the Hilfinger lab, such as

For a chemical reaction network with reactions

𝑥
𝑟𝑘(𝑥)−−−−−−−→ 𝑥 + 𝑑𝑘, (21)

where 𝑥 ∈ Z𝑛
≥0 is a vector of molecular species’ counts, 𝑟𝑘 : R𝑛 → R≥0 is the reaction rate function for the 𝑘th

reaction, and 𝑑𝑘 ∈ Z𝑛 is the reaction stoichiometry vector for the 𝑘th reaction, 𝑘 = 1, . . . , 𝑚, we can write the
dynamics for the mean as

𝑑

𝑑𝑡
⟨𝑥𝑖⟩ =

⟨ ∑︁
𝑘:𝑑𝑖𝑘>0

𝑑𝑖𝑘𝑟𝑘(𝑥)
⟩

−
⟨ ∑︁

𝑘:𝑑𝑖𝑘<0
|𝑑𝑖𝑘|𝑟𝑘(𝑥)

⟩
=
⟨
𝑅+

𝑖 (𝑥)
⟩

−
⟨
𝑅−

𝑖 (𝑥)
⟩
, (22)

where 𝑅±
𝑖 (𝑥) are the production or degradation rates of 𝑥𝑖.

We would like to write the quantities in terms of variables that are intuitive. So we introduce the average lifetime
of 𝑥𝑖, denoted 𝜏𝑖, and the average step size of 𝑥𝑖’s change due to reactions that also change 𝑥𝑗 , denoted

⟨
𝑠𝑖|𝑗
⟩

. We
define them in detail below.

At steady state, we have
⟨
𝑅+

𝑖 (𝑥)
⟩

=
⟨
𝑅−

𝑖 (𝑥)
⟩
. So we can define

𝜏𝑖 = ⟨𝑥𝑖⟩⟨
𝑅±

𝑖

⟩ (23)

as the average lifetime of 𝑥𝑖.

The average step size is defined as

⟨
𝑠𝑖|𝑗
⟩

=
∑︁

𝑘

𝜌𝑗𝑘|𝑑𝑖𝑘| sgn{𝑑𝑖𝑘𝑑𝑗𝑘}, 𝜌𝑗𝑘 = |𝑑𝑗𝑘|⟨𝑟𝑘⟩∑︀
𝑘′
⃒⃒
𝑑𝑗𝑘′

⃒⃒
⟨𝑟𝑘′⟩

, (24)

where 𝜌𝑗𝑘 is the probability that when 𝑥𝑗 changes, this change comes from reaction 𝑘. The sign for the changes to
𝑥𝑖 and 𝑥𝑗 in reaction 𝑘 is accounted for by sgn{𝑑𝑖𝑘𝑑𝑗𝑘}, which is +1 if they are both increased or decreased, and −1
if the signs of change are opposite.

When 𝑖 = 𝑗, we see
⟨
𝑠𝑖|𝑖
⟩

=
∑︀

𝑘|𝑑𝑖𝑘|𝜌𝑖𝑘, so it is an average of step sizes across all reactions that change 𝑥𝑖. For
example, if 𝑥1 has only one production reaction 𝑥1 → 𝑥1 + 1 and one degradation reaction 𝑥1 → 𝑥1 − 10, then⟨
𝑠1|1

⟩
= 1+10

2 , because production and degradation fluxes are always equal at steady state.

As for 𝑖 ̸= 𝑗,
⟨
𝑠𝑖|𝑗
⟩

is nonzero only if there are reactions that simultaneously change 𝑥𝑖 and 𝑥𝑗 . For an example, if
the only reaction that have simultaneous changes to 𝑥1 and 𝑥2 is (𝑥1, 𝑥2) → (𝑥1 − 1, 𝑥2 + 1), i.e. one 𝑥1 becomes

https://chemaoxfz.github.io/assets/pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf
https://chemaoxfz.github.io/assets/pdf/xiao,doyle-2019-coupled-reaction-networks-for-noise-suppression.pdf
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one 𝑥2, and 𝑥2 have no other production reactions so that this reaction accounts for all production fluxes of 𝑥2,
then

⟨
𝑠1|2

⟩
= −1

2 . It is negative because when 𝑥1 decreases, 𝑥2 increases. It is divided by 2 because this reaction
accounts for all of 𝑥2’s production, therefore half of 𝑥2’s changes.

Note that the step sizes and the production and degradation rates are related to each other:⟨
𝑠𝑗|𝑖
⟩⟨

𝑅±
𝑖

⟩
=
⟨
𝑠𝑖|𝑗
⟩⟨

𝑅±
𝑗

⟩
. (25)

Now we have the terminologies that can capture all the variations in a reaction system, so we can tackle the relation
between mean and covariances. If we write the dynamics for the covariances, at steady state we have the following
equation.

Cov
(︁
𝑥𝑖, 𝑅+

𝑗 − 𝑅−
𝑗

)︁
+ Cov

(︁
𝑥𝑗 , 𝑅+

𝑖 − 𝑅−
𝑖

)︁
+
∑︁

𝑘

𝑑𝑖𝑘𝑑𝑗𝑘⟨𝑟𝑘⟩. (26)

One major achievement of the theoretical investigations in [13] is the re-writing of the above equation using the
physically interpretable quantities of lifetimes and step sizes. The re-written equation is as follows:

𝑈 + 𝑈⊺ + 𝐷 = 0, (27)

where

𝑈𝑖𝑗 = 1
𝜏𝑗

Cov
(︁
𝑥𝑖, 𝑅+

𝑗 − 𝑅−
𝑗

)︁
⟨𝑥𝑖⟩

⟨
𝑅±

𝑗

⟩ , 𝐷𝑖𝑗 =
∑︀

𝑘 𝑑𝑖𝑘𝑑𝑗𝑘⟨𝑟𝑘⟩
⟨𝑥𝑖⟩⟨𝑥𝑗⟩

= 1
𝜏𝑖

⟨
𝑠𝑗|𝑖
⟩

⟨𝑥𝑗⟩
+ 1

𝜏𝑗

⟨
𝑠𝑖|𝑗
⟩

⟨𝑥𝑖⟩
. (28)

Here 𝜏𝑖 is the average life time of an 𝑥𝑖 molecule, and
⟨
𝑠𝑖|𝑗
⟩

is the average step size of 𝑥𝑖’s change from reactions
that also change 𝑥𝑗 .

𝐷 is the “diffusion” matrix, capturing the randomizing changes due to reactions, and 𝑈 captures the correlations
between concentrations and production degradation fluxes.

(Caution about notation:
⟨
𝑠𝑖|𝑗
⟩

in our notation here is the same as 𝑠𝑗𝑖 in [13] and other related papers. Similarly,
in the definition of 𝑈𝑖𝑗 , the term 𝑅+

𝑗 − 𝑅−
𝑖 is changed to 𝑅−

𝑗 − 𝑅+
𝑗 in these other papers. We use production

minus degradation to be consistent with notations for linearization of deterministic systems. See the next
subsection.)

Eqn (27) is very powerful because of its generality. Note that this formula is applicable to all possible chemical
reaction networks, and we have made no assumptions at all so it is exact! All we have done thus far is re-writing
the quantities in the steady state equations for the first two moments of CMEs in terms of physically interpretable
quantities. It may be questioned that since this is just a rewrite, why would it be useful at all? The power comes
from exactly the fact that the quantities we express the relation in terms of are all physically relevant, and often
experimentally determinable. Even in cases with little information, we have rough ranges on these numbers.
Therefore, relations on these physical quantities are very powerful, since they can guide our intuition in asking
questions, coming up with hypothesis, and designing experiments. Indeed, this is exactly where this result shines
at: eliminates possible mechanisms and generates new hypothesis based on variations in data.

Let us note the physical and intuitive quantities we used: average abundances ⟨𝑥𝑖⟩, steady state production
degradation fluxes R±

𝑖 , the average lifetimes 𝜏𝑖, the average step sizes
⟨
𝑠𝑖|𝑗
⟩
.
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2.1 General relation of noise in gene expression
To test your understanding of this formula (Eqn (27)) and get a sense of its power, let us consider its application for
noise in gene expression. This is adapted from [12], which applied this formula to the dataset from [3].

Consider the following model that allows all possible dynamics for transcription-translation, with the only
assumption that proteins are produced at a rate proportional to mRNA, and proteins have first-order degradation
(or dilution.) This yields the following network:

𝑥2
𝛼𝑥1−−−−−−−→ 𝑥2 + 1, 𝑥2

𝛽𝑥2−−−−−−−→ 𝑥2 − 1. (29)

Here we consider two species, 𝑥1 is mRNA, and 𝑥2 is protein. Note that we have only specified the dynamics of 𝑥2,
and have left the dynamics of 𝑥1 and an arbitrary number of other species and their interactions un-specified.

Show that, using Eqn (27), we have

CC12 = CV2
CV1

(︃
1 − 1

⟨𝑥2⟩
1

CV2
2

)︃
≈ CV2

CV1
, (30)

where CC𝑖𝑗 = Cov(𝑥𝑖,𝑥𝑗)√
Var(𝑥𝑖) Var(𝑥𝑗)

is the Pearson correlation coefficient between 𝑥𝑖 and 𝑥𝑗 , and CV𝑖 =
√︂

Var(𝑥𝑖)
⟨𝑥𝑖⟩2 is the

coefficient of variation of 𝑥𝑖.

To simplify the notation relating correlation coefficients, coefficient of variations, and the terms in Eqn (27), let us
define 𝜂𝑖𝑗 = Cov(𝑥𝑖,𝑥𝑗)

⟨𝑥𝑖⟩⟨𝑥𝑗⟩ , so 𝜂𝑖𝑖 = CV2
𝑖 , and CC𝑖𝑗 = 𝜂𝑖𝑗√

𝜂𝑖𝑖𝜂𝑗𝑗
. The approximation at the end is because for most genes

in the data of [3], ⟨𝑥2⟩CV2
2 ≫ 1, so we can ignore this term.

(Hint: look at the equation for 2𝑈22 + 𝐷22 = 0, which should yield 𝜂22 − 𝜂12 = 1
⟨𝑥2⟩ .)

Note that this gives a very powerful prediction, since it holds for a class of biomolecular systems! No matter what
is the transcriptional regulation of this gene, just by knowing that the production of the protein by mRNA is
first order, and the protein degrades by first order, then we know the correlation coefficient MUST be equal to
the ratio of the coefficient of variations of the protein and the mRNA! Of course, without knowing the detailed
mechanisms of transcriptional regulation, we cannot calculate CV2 or CC12. However, we can measure these
quantities experimentally! Just like we observed ⟨𝑥2⟩CV2

2 ≫ 1 to simply the relation based on data! So this can
be used to rule out possible mechanisms. In [12], it was shown that the data from [3] does not match this result.
Indeed, [3] observed that there is no correlation between mRNA number and protein number, while this result
shows CC12 is always positive, and due to large protein noise it should be quite large! [13] also eliminated several
other mechanisms based on such arguments, and hypothesized that the production rate of proteins must vary from
one mRNA transcript to another. For example, maybe transcripts that have longer lifetimes also have decreased
translational activity.
Fluctuation-dissipation for linear noise approximation (Background)
While the general relation in (27) is powerful, it tend to give equalities and inequalities that need experimental
input to be useful. In other words, because 𝑈𝑖𝑗 is the covariance between 𝑥𝑖 and the production and degradation
fluxes of 𝑥𝑗 , which could involve arbitrary high order moments, the system of equations in Eqn (27) is not closed,
therefore not solvable to give concrete results. Therefore, we would like to perform approximations such that at
least Eqn (27) becomes something that is solvable to give an answer.

To do so, we make the linear noise approximation (LNA), which assumes that the noise is not too large
compared to the nonlinearities such that the production and degradation rates can be well-approximated by their
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linearization,

𝑅±
𝑖 (𝑥) ≈ 𝑅±

𝑖 (𝑥*) +
𝑛∑︁

𝑗=1

𝜕𝑅±
𝑖

𝜕𝑥𝑗
(𝑥*)Δ𝑥𝑗 , (31)

where 𝑥* is the operating point around which the linearization is done. This is just like the linearization of a
nonlinear control systems when studying the deterministic dynamics of a biomolecular system. Also, if we recall,
a linearized deterministic control system can perfectly capture the behavior of the actual nonlinear system if the
dynamics is controlled to happen close to the operating point. Similarly, the linearized stochastic system can also
perfectly capture the behavior of the actual nonlinear stochastic system if the concentration is controlled to be close
to the operating point AND the noise is controlled to be small enough so random variations does not go far from
the operating point.

Let us assume there is a point 𝑥* such that 𝑅±
𝑖 (𝑥*) =

⟨
𝑅±

𝑖

⟩
, and this point is the mean ⟨𝑥⟩, so that 𝑅±

𝑖 (⟨𝑥⟩) ≈
⟨
𝑅±

𝑖

⟩
,

then we can perform linearization around ⟨𝑥⟩, and Eqn (27) becomes

𝑀𝜂 + 𝜂𝑀⊺ + 𝐷, (32)

where
𝜂𝑖𝑗 = 𝜂𝑗𝑖 = Cov(𝑥𝑖, 𝑥𝑗)

⟨𝑥𝑖⟩⟨𝑥𝑗⟩
, 𝑀𝑖𝑗 = 𝐻𝑖𝑗

𝜏𝑖
, (33)

and
𝐻𝑖𝑗 = 𝜕 log 𝑅+

𝑖

𝜕 log 𝑥𝑗
(⟨𝑥⟩) − 𝜕 log 𝑅−

𝑖

𝜕 log 𝑥𝑗
(⟨𝑥⟩) = 𝜕𝑅+

𝑖 (⟨𝑥⟩)
𝜕𝑥𝑗

⟨𝑥𝑗⟩⟨
𝑅−

𝑖

⟩ − 𝜕𝑅−
𝑖 (⟨𝑥⟩)
𝜕𝑥𝑗

⟨𝑥𝑗⟩⟨
𝑅+

𝑖

⟩ . (34)

Here 𝜂𝑖𝑗 is the normalized covariance as defined before, with 𝜂𝑖𝑖 = CV2
𝑖 as the squared coefficient of variation of 𝑥𝑖,

and 𝐻𝑖𝑗 is the production-degradation order defined as the order of production minus the order of degradation
of 𝑥𝑖 with respect to 𝑥𝑗 . We encountered the production-degradation order 𝐻𝑖𝑗 in our study of adaptation in
homework 4, which encodes the structure of bioregulations. It is interesting to see it appears here again. In
different contexts, 𝐻𝑖𝑗 is also referred to as reaction orders (e.g. for mass-action kinetics), logarithmic gains (e.g.
from a controller perspective), sensitivities (e.g. when viewing concentrations as perturbations) or elasticities (e.g.
in metabolic control analysis about how catalysis rates change with enzyme concentrations.)

(Caution: in our notation, 𝐻𝑖𝑗 is the order of production minus the order of degradation, while in most works
from Paulsson and Hilfinger groups such as [13], this is defined as the order of degradation minus the order of
production, so Eqn (32) becomes 𝑀𝜂 + 𝜂𝑀⊺ = 𝐷.)

The Eqn (32) is also called the fluctuation-dissipation theorem, since it takes the same form as the fluctuation-
dissipation theorem governing Brownian motion, diffusion processes, or continuous random walks. In fact, after
linearization, we can see that all moments collapse to just moments of order two or less. Therefore, the relation
between the means and covariances in Eqn (32) can always be implemented via a continuous stochastic process
with Gaussian noise, which is also called the chemical Langevin equation (CLE.) However, it should be noted that
Eqn (32) is just a moment equation, and there are many stochastic processes, including ones with discrete states,
that can implement it. So making a linear noise approximation does not mean we have made Gaussian noise
assumption. The noise can take arbitrary distribution, and Eqn (32) only specifies the mean-covariance relation
that it has to satisfy.

Eqn (32) is also called the (continuous time) Lyapunov equation in matrix analysis and control theory. In fact, for a
linear dynamical system 𝑥̇ = 𝐴𝑥, it is stable, i.e. the real parts of 𝐴’s eigenvalues are all negative, if and only if
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there exists a positive definite matrix 𝑃 such that 𝐴𝑃 + 𝑃 𝐴⊺ < 0, i.e. 𝐴𝑃 + 𝑃 𝐴⊺ = 𝑄 and 𝑄 is negative definite.
In this case, the function 𝑉 (𝑥) = 𝑥⊺𝑃 𝑥 is called the Lyapunov function. It certifies the stability of the system since
it decreases over time and it is positive everywhere except at 𝑥 = 0. Compared to Eqn (32), we see that if we take
𝐴 = 𝑀 , then 𝑄 = −𝐷. By definition of 𝐷, we see that it is always positive definite. Therefore, if the normalized
covariance matrix 𝜂 exists, this is a certificate that the dynamical system 𝑧̇ = 𝑀𝑧 is stable. Recall from homework
4, 𝑧̇ = 𝑀𝑧 is the linearization of the deterministic dynamics of the reaction network in the fold-change variables,
with 𝑧𝑖 = 𝑥𝑖−𝑥*

𝑖
𝑥*

𝑖
. So the fact that covariances exist and stability of the linearized system are tightly related. We will

use this fact in the next problem.
2.2 Summing up the noise in gene expression
With the linear noise approximation, we can study noise of gene expression in relatively arbitrary settings, as was
done in [11] in 2004. Let us consider a generic transcription-translation process.

𝑥1
𝑅+

1 (𝑥1)
−−−−−−−→ 𝑥1 + 1, 𝑥1

𝑅−
1 (𝑥1)

−−−−−−−→ 𝑥1 − 1, 𝑥2
𝑅+

2 (𝑥1,𝑥2)
−−−−−−−→ 𝑥2 + 1, 𝑥2

𝑅+
2 (𝑥1,𝑥2)

−−−−−−−→ 𝑥2 + 1. (35)

Here we can consider 𝑥1 as the gene, and 𝑥2 as the mRNA for a transcription process, or 𝑥1 as mRNA and 𝑥2 as
proteins for a translation process. We assumed 𝑥1’s production and degradation only depends on itself, and 𝑥2’s
production and degradation can depend on both 𝑥1 and 𝑥2. Note that all of the models considered in Problem 1
are examples of this network.

1. Show that Eqn (32) in this case becomes

⎡⎣𝐻11𝜂11 + 1
⟨𝑥1⟩

𝐻21
𝜏2

𝜂11 +
(︁

𝐻11
𝜏1

+ 𝐻22
𝜏2

)︁
𝜂12

𝐻21𝜂12 + 𝐻22𝜂22 + 1
⟨𝑥2⟩

⎤⎦ = 0 (36)

(Hint: the structure of the network implies 𝐻12 = 0, and 𝐷𝑖𝑖 = 2
𝜏𝑖⟨𝑥𝑖⟩ , 𝐷12 = 𝐷21 = 0. Also note the symmetry

𝜂𝑖𝑗 = 𝜂𝑗𝑖.)

Solve the above equation to obtain

𝜂11 =Var(𝑥1)
⟨𝑥1⟩2 = 1

⟨𝑥1⟩
1

−𝐻11
,

𝜂22 =Var(𝑥2)
⟨𝑥2⟩2 = 1

⟨𝑥2⟩
1

−𝐻22
+ 𝜂11

𝐻2
21

𝐻2
22

𝐻22/𝜏2
𝐻22/𝜏2 + 𝐻11/𝜏1

.

(37)

What are some of conclusions you can draw from this result? For example, what happens if 𝐻22 → 0? This
happens when 𝑥2 auto-activates, for example. Also, we see that lifetimes matter. So what happens if 𝑥1’s
dynamics is very fast, and 𝜏1 → 0? What happens if 𝑥1’s dynamics is very slow, and 𝜏1 → ∞? What happens
if 𝑥1 regulates 𝑥2 in an ultra-sensitive fashion, so that |𝐻21| is very large?

What about auto-repression? If 𝐻11 or 𝐻22 are more negative, what happens? Does auto-repression also
suppresses noise?

2. Let us compare this to the cases we have analyzed before in Problem 1.

Let us first consider the simple transcription-translation model where 𝑥1 is the mRNA, and 𝑥2 is protein. In
this case, 𝐻11 = −1, 𝐻21 = 1, and 𝐻22 = −1. Show that you have the same result as Eqn (10).
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3. Then consider the case where 𝑥1 is the active state of the gene 𝐺1, and 𝑥2 is mRNA. This case needs special
treatment when converting to the production-degradation reactions, since the state-transition reactions of
the gene 𝐺0

𝛼−⇀↽−
𝛽

𝐺1 is not production-degradation by themselves. But since 𝐺tot = 𝐺0 + 𝐺1 is conserved,

we can denote 𝑥max
1 = 𝐺tot to make the reaction rates depend on 𝑥1 only, and obtain the following

production-degradation reactions

𝑥1
𝑅+

1 =𝛼(𝑥max
1 −𝑥1)

−−−−−−−→ 𝑥1 + 1, 𝑥1
𝑅−

1 =𝛽𝑥1−−−−−−−→ 𝑥1 − 1, (38)

Show that

𝐻11 = − 𝑥max
1

𝑥max
1 − 𝑥1

= − 1
𝑝0

in the notation of Problem 1, with 𝑝0 = 𝛽
𝛼+𝛽 .

Then show that you obtain

𝜂11 = 1
⟨𝑥1⟩

𝑝0,

𝜂22 =Var(𝑥2)
⟨𝑥2⟩2 = 1

⟨𝑥2⟩
+ 𝜂11

1/𝜏2
1/𝜏2 + 1/(𝑝0𝜏1) .

(39)

Here 1
𝜏1

= 𝛽, and 1
𝜏2

= 𝛾. Compared to the notations in Eqn (19), the natural timescales are 𝜏𝐺 = 1
𝛼+𝛽 , and

𝜏𝑀 = 1
𝛾 . Although 𝜏𝑀 = 𝜏2, we see that 𝜏𝐺 and 𝜏1 are different.

Show that, written in terms of 𝜏𝐺 and 𝜏𝑀 , we have

𝜂22 = Var(𝑥2)
⟨𝑥2⟩2 = 1

⟨𝑥2⟩
+ 𝜂11

𝜏𝐺

𝜏𝐺 + 𝜏𝑀
. (40)

So this is the same result as Eqn (19).

Note that, in both of these cases, the linear noise approximation is exact, since the production and degradation
rates are linear.

2.3 Limits on noise suppression versus coupling (Optional)
So far, beyond auto-regulations that directly change 𝐻𝑖𝑖, we have not considered how feedback regulations can
suppress noise. For example, if we make 𝑥1’s production rate 𝑅+

1 dependent on 𝑥2 and repressed by 𝑥2, so that
𝐻12 < 0, would this suppress noise?

Intuitively, if 𝑥2 is positively correlated with 𝑥1, then the repression of 𝑥1 should suppress noise, since larger 𝑥1
cause larger 𝑥2 and represses 𝑥1, while smaller 𝑥1 causes smaller 𝑥2 and activates 𝑥1. On the other hand, 𝑥2 is
noisy by itself, so this noise may increase the variation of 𝑥1.

Let us investigate this noise suppression problem below. We will show that indeed noise suppression by such
feedback is possible, but it has fundamental limits that is much worse than the typical case. However, if we get rid
of the feedback requirement and instead let 𝑥1 and 𝑥2 be coupled with each other through reactions to change
them simultaneously, then such limits on noise suppression can be broken again!
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1. Consider the following network of net-change reactions,

𝑥1
𝑅+

1 (𝑥2)
−−−−−−−→ 𝑥1 + 1,

𝑥1
𝑥1/𝜏1−−−−−−−→ 𝑥1 − 1,

𝑥2
𝛼𝑥1−−−−−−−→ 𝑥2 + 1,

𝑥2
𝑥2/𝜏2−−−−−−−→ 𝑥2 − 1.

(41)

Here, 𝑥2’s production is catalyzed by 𝑥1, so 𝑥2 acts like a sensor on 𝑥1, and 𝑥2 in turn is used to regulate the
production of 𝑥1, and both 𝑥1 and 𝑥2 have first-order degradations. We assumed there is no auto-regulation
of 𝑥1 or 𝑥2 to simplify the problem, since we already know the roles of auto-regulation from the previous
problems.

Show that, the fluctuation-dissipation equation Eqn (32) becomes the following in this case,[︃
𝐻12𝜂12 − 𝜂11 + 1

⟨𝑥1⟩
1
𝜏1

𝐻12𝜂22 + 1
𝜏2

𝜂11 − ( 1
𝜏1

+ 1
𝜏2

)𝜂12
𝜂12 − 𝜂22 + 1

⟨𝑥2⟩

]︃
= 0. (42)

(Hint: 𝐻11 = 𝐻22 = −1, 𝐻21 = 1, 𝐷12 = 𝐷21 = 0, and 𝐷𝑖𝑖 = 2
𝜏𝑖⟨𝑥𝑖⟩ .)

Note that the above already implies the following:

𝜂11 = 1
⟨𝑥1⟩

+ 𝐻12𝜂12

𝜂22 = 1
⟨𝑥2⟩

+ 𝜂12.
(43)

So we see that, if 𝑥1 and 𝑥2 are positively correlated, therefore 𝜂12 > 0, and if 𝐻12 < 0, then 𝜂11 can be
suppressed. Note that this comes at a cost of 𝜂22 increases.

2. Now we solve the noise 𝜂11, 𝜂12, 𝜂22. Rearrange into a linear system of equations for the covariances, and
show that the following holds. ⎡⎢⎣ 1 −𝐻12 0

1
𝜏2

−( 1
𝜏1

+ 1
𝜏2

) 1
𝜏1

𝐻12
0 −1 1

⎤⎥⎦
⎡⎢⎣𝜂11

𝜂12
𝜂22

⎤⎥⎦ =

⎡⎢⎣
1

⟨𝑥1⟩
0
1

⟨𝑥2⟩

⎤⎥⎦ (44)

Solve the above to obtain that

𝜂12 = 1
1 − 𝐻12

(︂
𝜏1

𝜏1 + 𝜏2

1
⟨𝑥1⟩

+ 𝐻12
𝜏2

𝜏1 + 𝜏2

1
⟨𝑥2⟩

)︂
. (45)

Assume 𝐻12 < 0, and denote 𝜆1 = 𝜏1
𝜏1+𝜏2

, and 𝜆2 = 1 − 𝜆1, then

𝜂12 = 1
1 + |𝐻12|

(︂
𝜆1

1
⟨𝑥1⟩

− 𝜆2
|𝐻12|
⟨𝑥2⟩

)︂
,

𝜂11 = 1
⟨𝑥1⟩

− |𝐻12|
1 + |𝐻12|

(︂
𝜆1

1
⟨𝑥1⟩

− 𝜆2
|𝐻12|
⟨𝑥2⟩

)︂
,

(46)



16 Homework 5 for Ctrl Comp Bio Sys, Fall 2025, Name: [your name here]

Interpret the above regarding noise suppression of 𝑥1 via 𝑥2’s inhibition of 𝑥1’s production. When is noise
suppressed? If we consider 𝐻12 = −1, what conclusions would you draw?

Then, consider the expression for 𝜂11. Could we suppress noise indefinitely in this case? Is there any lower
bound or limit on the noise suppression by this mechanism? If we assume we can arbitrarily tune the
parameters 𝜆1 ∈ [0, 1], and |𝐻12| > 0, what’s the conclusion? What if we assume 𝜆1 is fixed, and we can only
vary |𝐻12|?

3. Let us consider the cost of noise suppression. Let us define 𝑁 = 𝑁2
𝑁1

, where 𝑁1 = ⟨𝑥1⟩ and 𝑁2 = 𝛼⟨𝑥1⟩𝜏1 are
the effective signaling rates, defined as the number of production events of 𝑥1 and 𝑥2 respectively during the
lifetime of 𝑥1. Then 𝑁 = 𝛼𝜏1 is the number of 𝑥2 production events used per 𝑥1 production event, which is a
per-𝑥1 molecule cost in signaling.

Let us denote |𝐻12| = ℎ. Also, we can use the fact that ⟨𝑥2⟩ = 𝛼𝜏2⟨𝑥1⟩, so 𝑁 = ⟨𝑥2⟩
⟨𝑥1⟩

𝜏1
𝜏2

. This can be used to
write

𝜂11 = 1
⟨𝑥1⟩

(︂
1 − 𝜆1

ℎ

1 + ℎ
(1 − ℎ

𝑁
)
)︂

, (47)

where we used 𝜏2𝜆1 = 𝜏1𝜆2.

Now, let us consider all but ℎ is fixed, and minimize 𝜂11 by varying ℎ > 0. Show that the minimizer is

ℎ* = −1 +
√

1 + 𝑁. (48)

Then, plug this into the expression, rearrange, we have

𝜂11(ℎ*) = 1
⟨𝑥1⟩

(︂
𝜆2 + 𝜆1

2
1 +

√
1 + 𝑁

)︂
. (49)

Since 𝜆1 + 𝜆2 = 1, we see that 𝜂11 is in between two values, 1
⟨𝑥1⟩ which is the Poisson noise, and 1

⟨𝑥1⟩
2

1+
√

1+𝑁

which is the suppressed noise. Since for 𝑁 > 0, the suppressed noise is always smaller, we have that the
lower bound for 𝜂11 is achieved when 𝜆1 = 1 and the bound is

𝜂11 ≥ 1
⟨𝑥1⟩

2
1 +

√
1 + 𝑁

. (50)

Consider the large-signaling limit where 𝑁 → +∞. Show that in this case,

𝜂11 ≈ 1
⟨𝑥1⟩

1√
𝑁

. (51)

Therefore, to suppress noise significantly, we need to start with a small enough 𝜆2, i.e. 𝜏2 ≪ 𝜏1, and then use
a large 𝑁 to suppress noise.

However, notice that the noise decreases very slowly with 𝑁 . In fact, the decay of noise we are most familiar
with comes from the law of large numbers, that as the number of signaling events 𝑁 increase, the noise
decreases as square root of 𝑁 , i.e. CV ∝ 1√

𝑁
, where CV is the coefficient of variation. However, since

𝜂11 = CV2
1, we see that in this case we obtain a quartic root noise decay, i.e. CV1 ∝ 𝑁1/4! This is significantly

worse than a square root, and suggests that noise suppression would be very costly in biomolecular reactions.

Intuitively, this comes from the fact that to suppress the noise of 𝑥1, we needed to use another species
𝑥2, which is noisy in itself, therefore introducing additional noise when 𝑥2 senses 𝑥1 via 𝑥1 catalyzing
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𝑥2’s production, and when 𝑥2 actuates on 𝑥1 by inhibiting 𝑥1’s production. The noise propagation and
enhancement within the loop therefore make noise suppression much harder.

In fact, [15] in 2010 took this fact into consideration and used information theoretic methods to analyze
arbitrary non-stationary memory-containing suppression of noise, by replacing 𝑅+

1 (𝑥2) with 𝑢[ℐ𝑡(𝑥2)], so the
production rate of 𝑥1 can be regulated by an arbitrary non-anticipatory functional allowing dependence on
all of the information ℐ𝑡(𝑥2) of 𝑥2’s past trajectory. They derived the following bound:

𝜂11 ≥ 1
⟨𝑥1⟩

2
1 +

√
1 + 𝑁

. (52)

We see that this is the same bound as the one we derived, with a quartic-root bound when 𝑁 is large!
Therefore the observation we had from our case study above is generally true.

(This bound is in fact more general than presented here, as [15] also allowed 𝑅−
1 , 𝑅+

2 and 𝑅−
2 to take more

general forms, as long as 𝑅−
1 depends on 𝑥1 only, 𝑅−

2 depends on 𝑥2 only, and 𝑅+
2 can be arbitrary forms

of signaling channel. The complication is that in these more general cases, the signaling rate 𝑁 is not as
well-defined, and channel capacity, the measure of information transmission, needs to be used in the bound.
So the only assumption is the system architecture: 𝑥2 first senses 𝑥1’s concentration by 𝑥1 influencing the
production of 𝑥2, and then 𝑥2 actuating on 𝑥1 by influencing 𝑥1’s production rate.)

4. Based on the above results, it may seem that noise suppression is indeed hopeless in biomolecular systems!
The fundamental limit on noise suppression is really severe, and it is so general that all biological scenarios
cannot escape it.

However, although it feels natural and without loss of generality to consider the feedback architecture, or the
sensing-and-then-actuate architecture, as in our above example and in [15], biomolecular reactions do not
necessarily obey such architecture. For example, reactions of the form 𝑋1 → 𝑋2, or (𝑥1, 𝑥2) → (𝑥1 − 1, 𝑥2 + 1)
in net change notation, happens very often in biology. Here 𝑥1 is transformed into 𝑥2, such as via catalysis
reactions. Also, the simultaneous production or degradation of 𝑥1 and 𝑥2 is also very common, such as
(𝑥1, 𝑥2) → (𝑥1 + 1, 𝑥2 + 1). This happens when 𝑥1 and 𝑥2 are two genes in the same operon, for example, or
they are the protein products from a cleavage reaction.

Biomolecular systems containing reactions of the above form, where 𝑥1 and 𝑥2’s production and degradation
are coupled in one reaction, is termed a coupled reaction system, and used in [14] to show that the quartic-root
noise suppression bound from [15] can be easily broken when coupling is utilized, as is done in nature.

Consider the following coupled variant of the reaction network in Eqn (41)

𝑥1
𝑅+

1 (𝑥2)
−−−−−−−→ 𝑥1 + 1,

(𝑥1, 𝑥2) 𝑥1/𝜏1−−−−−−−→ (𝑥1 − 1, 𝑥2 + 𝑛),

𝑥2
𝑥2/𝜏2−−−−−−−→ 𝑥2 − 1.

(53)

Here the degradation of 𝑥1 and the production of 𝑥2 are coupled into one reaction transforming 𝑥1 into 𝑛
molecules of 𝑥2. Note that 𝛼 = 𝑛

𝜏1
in this case, so 𝑁 = 𝛼𝜏1 = 𝑛.

Use linear noise approximation to show that the fluctuation dissipation equation Eqn (32) is the following in
this case: [︃

𝐻12𝜂12 − 𝜂11 + 1
⟨𝑥1⟩

1
𝜏1

𝐻12𝜂22 + 1
𝜏2

𝜂11 − ( 1
𝜏1

+ 1
𝜏2

)𝜂12 − 1
𝜏1

1
2⟨𝑥2⟩ − 1

𝜏2
𝑛

2⟨𝑥1⟩
𝜂12 − 𝜂22 + 𝑛+1

2⟨𝑥2⟩

]︃
= 0. (54)
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(Hint: 𝐷22 = 𝑛+1
𝜏2⟨𝑥2⟩ ,

⟨
𝑠1|2

⟩
= −1

2 ,
⟨
𝑠2|1

⟩
= −𝑛

2 , so 𝐷12 = − 1
𝜏1

1
2⟨𝑥2⟩ − 1

𝜏2
𝑛

2⟨𝑥1⟩ .)

Solve the above to obtain
𝜂11 = 1

⟨𝑥1⟩

(︂
1 − 𝜆1

ℎ

1 + ℎ

(︂
1 − 𝑁

2 − ℎ

2
𝑁 + 1

𝑁

)︂)︂
, (55)

where ℎ = |𝐻12|, assuming 𝐻12 < 0.

Now optimize over ℎ, and compare with the fundamental limit on noise suppression. Show that the noise
can indeed get lower than the bound!
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