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1 Course Overview and Review
CCBS Lecture 06 Noise in Bio & Equilibrium Physics of Bioregulation.

1.1 Review from Last Time
• Noise: Intro.

• Chemical master equation.

1.2 This Time’s Content
• Gillespie algorithm.

• Noise analysis (simple, at steady state).

• Some stochastic phenomena.

References: Kardar’s book; Erban, Chapman, Maini (2007), “Practical guide to stoch. sim
of reaction diffusion processes”; Phillips, PBOC, etc.; Molecular Switch.

2 Equilibrium Physics of Bioregulation
2.1 Energy and Equilibrium: A Physics Perspective
Systems tend towards equilibrium.

• Equilibrium in physics – entropy, etc.

• Microscopic world – Boltzmann distr.

• Detailed balance.

This is the fundamental idea of equilibrium.

2.2 Applied to Enzymatic and Gene Regulation
Focus on single molecule’s states.

• Michaelis-Menten.

• Allostery (MWC).

• Lac operon.

2.3 Beyond Equilibrium: Markov Chains
For molecular state transitions.

• e.g. Metabolism, phosphorylation cascades.

2.4 Steady State Distr. and Hitting Times
Steady state distr. and hitting times.
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3 Gillespie Algorithm (or SSA – Stochastic Simulation Al-
gorithm)

3.1 Simulation First, Because...
1. Deterministic already hard to analyze for general case. This is much harder for

stochastic case.

2. Distribution vs Trajectory. Exact analysis, even when doable, is often only possi-
ble for steady state distribution, or distribution dynamics. But that’s different from
trajectory dynamics.

3. e.g.

[Sketch: Smooth distribution over time vs fluctuating trajectory]

4. Usually analysis can be done after approximation, such as linearization. Analysis
can give the full picture, but approximate. So, always helpful to check with simula-
tions.

3.2 Distribution vs Trajectory
Can’t directly simulate the distribution→ inf. dim ODE. Pn(t). We can simulate trajecto-
ries, then distr. can be obtained from averages over lots of traj.

3.3 Simplest Idea: Just Like ODE Sim.
dx
dt

= f(x) (Euler integration)→ X(t+ dt) = X(t) + f(X(t))dt.

For X v=kX−−−→ X− 1,

NX(t+ dt) =

{
NX(t) − 1 w/ prob adt = kNX(t)dt

NX(t) w/ prob 1 − adt

3.4 But Need dt Small to Have a Good Approx...
Could be very costly. Could we simulateNX(t) exactly? Yes, by transforming randomness
from whether an event happens in an interval to when does an event happen.

3.5 Start at t, Want τ. s.t. t+ τ is Next Reaction.
Let f(NX(t), s)ds← an infinitesimal pdf for τ.

pdf for τ:
f(NX(t), s)ds = P{NX(t)

molecules at time t, and the next reaction occurs in time interval [t+s, t+s+ds) } (1)
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g(NX(t), s) = P{No reaction in interval [t, t+ s)}

Denote reaction with rate v(NX). (e.g. v = kNX)

⇒ f(NX(t), s)ds = g(NX(t), s) · v(NX(t+ s))ds = g(NX(t), s) · v(NX(t))ds.

(Since no reaction→ NX(t+ s) = NX(t)).

3.6 Let’s Solve for g(NX(t), s).
(Memoryless or independent)

g(NX(t), s+ ds) = g(NX(t), s)[1 − v(NX(t))ds] (2)

dg

ds
= −vg ⇒ g = e−vs (3)

⇒
f(NX(t), s)ds = ve−vsds (4)

⇐ pdf (prob density function) for exponential distr. τ ∼ Exp(v). pdf: ve−vτ. cdf: 1 −
e−vτ.

We want τ s.t. t+ τ is time for next reaction. For a reaction with rate v. Then τ ∈ [0,∞) is
a random number τ ∼ Exp(v).

This is exact! e.g. X v=kX−−−→ X − 1 At t: draw τ ∼ Exp(kNX(t)). Then NX(t + τ) = NX(t) −
1.

3.7 What if Multiple Reactions?
The reactions are independent, each with rate v1, . . . , vm.

Let τ0 be time til’ any reaction happens. ⇒ τ0 ∼ Exp(v1 + · · ·+ vm).

Which reaction? P{it’s reaction j} =
vj

v1+···+vm
.

This completes the Gillespie algorithm, or SSA. Exact simulation of stochastic trajectories
by sampling event times.

4 Analysis of Steady State Distributions
4.1 Simulations Can’t Give the Full Picture, Over All Parameters
⇒ Analysis via moments, from CME. Mean, Var.

4.2 Exact Analysis. Example. of Moments.
X

µ−→ X+ 1 X
kx−→ X− 1

dPn

dt
= k(n+ 1)Pn+1 + µPn−1 − (kn+ µ)Pn

5



Mean: M(t) =
∑∞

n=0 nPn

Variance: V(t) =
∑∞

n=0(n−M)2Pn =
∑

n2Pn −M2

dM

dt
=

d

dt

∞∑
n=0

nPn

= k

∞∑
n=0

n(n+ 1)Pn+1 + µ

∞∑
n=0

nPn−1 − k

∞∑
n=0

n2Pn − µ

∞∑
n=0

nPn

= k

∞∑
n=1

(n− 1)nPn + µ

∞∑
n=1

n(n− 1)Pn−1 − k
∑

n2Pn − µ
∑

nPn (reindex)

After calculation: = µ−kM. (This is just like deterministic rate eqn. dx
dt

= µ−kx. Warning:
Not always so.)

Similarly, observe
∑∞

n=0 n
2Pn = V +M2

d

dt
(V +M2) =

d

dt

∑
n2Pn

= k
∑

n2(n+ 1)Pn+1 + µ
∑

n2Pn−1 − k
∑

n3Pn − µ
∑

n2Pn

= k
∑

(n− 1)2nPn + µ
∑

(n+ 1)2Pn+1 − k
∑

n3Pn − µ
∑

n2Pn

=
∑

[k((n2 − 2n+ 1)n)Pn + µ(n2 + 2n+ 1)Pn − kn3Pn − µn2Pn] (reindex for sums)

=
∑

[k(n3 − 2n2 + n)Pn + µ(n2 + 2n+ 1)Pn − kn3Pn − µn2Pn]

=
∑

[kn3 − 2kn2 + kn+ µn2 + 2µn+ µ− kn3 − µn2]Pn

=
∑

[−2kn2 + kn+ 2µn+ µ]Pn

= −2k
∑

n2Pn + (k+ 2µ)
∑

nPn + µ

= −2k(V +M2) + (k+ 2µ)M+ µ

Then
d(V +M2)

dt
= −2k(V +M2) + (k+ 2µ)M+ µ

dV

dt
+ 2MdM

dt
= −2kV − 2kM2 + kM+ 2µM+ µ

But dM
dt

= µ− kM, so 2MdM
dt

= 2M(µ− kM) = 2µM− 2kM2

⇒ dV

dt
= −2kV − 2kM2 + kM+ 2µM+ µ− 2µM+ 2kM2

= −2kV + kM+ µ

= µ+ kM− 2kV
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dM
dt

= µ− kM

At s.s. M = µ

k
, from µ + kM − 2kV = 0⇒ V = µ+kM

2k , and with M = µ

k
, V = µ+µ

2k = 2µ
2k =

µ

k
= M.

So. Mean = Variance. (Poisson! In fact, it is...) You can solve Pn at s.s. explicitly...

4.3 But This Doesn’t Always Work.
That themoments form a finite number of equations is calledMoment Closure. Not closed
if, e.g. E(X) depends on E(X2) depends on E(X3)... this happens when X

v=x2
−−−→ X− 1

4.4 For Example.

Write reactions in net change form x
v(x)−−→ x+ ν. x is a vector of species, molecular counts.

x = (xj)mj=1. x = (xj). j = 1, . . . ,m.

Example: X f+(x)−−−→ X+ 1 X
f−(x)−−−→ X− 1

⇒ dp(x, t)
dt

= f+(x− 1)p(x− 1, t) − f+(x)p(x, t) + f−(x+ 1)p(x+ 1, t) − f−(x)p(x, t)

⟨X⟩ = E(X).

Just another notation
d⟨X⟩
dt

= ⟨f+(x)⟩− ⟨f−(x)⟩

e.g. f+(x) = µ, f−(x) = x2. then d⟨x⟩
dt

= µ− ⟨x2⟩.

4.5 Cases with Moment Closure
– Linear, i.e. 1st order or 0th order reactions. vj are all degree 1 polynomials of x. e.g. C,
c+ x1, x2, but not x1x2.

– Feedforward structure ẋ1 = µ− x1, ẋ2 = x2
1 − x2, ẋ3 = x1x2 − x3.

This excludes many interesting cases though...

4.6 More Generally, How to Analyze Steady State Moments?
⇒ Linear noise approximation (LNA).

– Just like using linearization to analyze nonlinear dynamical systems. We can also do
linearization for stochastic processes.

– approximate, vi(x) ≈ vi(x
∗) +

∑
j
∂vi

∂xj (x− x∗).
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– For the example, but with x∗ = ⟨x⟩.
d⟨x⟩
dt

= ⟨f+(x)⟩− ⟨f−(x)⟩

≈ f+(⟨x⟩) + ∂f+

∂x
⟨x− ⟨x⟩⟩− f−(⟨x⟩) − ∂f−

∂x
⟨x− ⟨x⟩⟩

= f+(⟨x⟩) − f−(⟨x⟩)

– General solution and application of LNA, see homework.

5 Stochasticity in Biological Systems
How biological noise arises from molecular mechanisms and impacts cellular processes
like gene expression and cell fate decisions.

5.1 Gene Expression Noise Burstiness
Gene expression is often ”bursty” or ”noisy,” meaning protein/mRNA levels fluctuate
significantly over time in identical cells. This noise is largely attributed to transcriptional
bursting—genes switching between active (ON) and inactive (OFF) states, producing a
”burst” of mRNA molecules when ON. Understanding this noise is crucial for explaining
phenotypic variability in genetically identical cell populations.

5.2 Modeling Transcriptional Bursting
Attempt 1: Simple Burst Model
Reaction:

G
k−→ G+ bP (5)

(where b is the average burst size, i.e., number of proteins producedper activation event).
Limitations:
Assumes a constant, fixed burst size b.
Attempt 2: Random Burst Size:
Improvement:
Model burst size b itself as a random variable (e.g., drawn from a geometric distribu-
tion).
Limitation:
Still a phenomenological model; doesn’t explain the origin of the variability in b.
Attempt 3: Mechanistic Two-State (ON/OFF) Model
Mechanism:
Explicitly models the gene’s promoter switching.

Goff ⇌ Gon (6)
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(stochastic switching between states)

Gon

K+x−−→ Gon + P (7)

(protein production only in the ON state)

The observed ”burst size” emerges naturally from the time the gene spends in theON state
and the rate of transcription. Different genes have different switching kinetics, explaining
gene-specific noise profiles.

This model illustrates how the structure of a mechanism (ON/OFF switching) directly
organizes the features of observed variation (burstiness).

5.3 From Multistability to Multimodality: The Role of Noise in Dy-
namical Systems

In dynamical systems theory, particularly in biological and chemical contexts, the relation-
ship between deterministic structure and stochastic behavior is fundamental. This docu-
ment formalizes the connection: multistability combined with noise yields multimodal
probability distributions.

Deterministic Model
dx

dt
= f(x), where f(x) has a cubic (N-shaped) form (8)

This model has the following behavior:

• Two stable fixed points: ”ON” (xon) and ”OFF” (xoff)

• One unstable saddle point (xsaddle) in between

• Basins of attraction partition the state space

Interpretation: Initial condition determines final state⇒ perfect bistability. Cells are per-
manently in one fate or the other.

Adding Stochasticity (Noise)
The equation becomes:

dX = f(X)dt+ σdW (Stochastic Differential Equation) (9)

whereW is aWiener process (Brownianmotion) and σ quantifies noise intensity. Noise en-
ables transitions between basins⇒ stochastic switching betweenONandOFF states.

Steady-state distribution (SSD): At t → ∞, probability distribution Pss(x) becomes bi-
modal, with peaks at the two stable states.

Population view: A heterogeneous population emerges, with fractions in each state corre-
sponding to the peaks of Pss(x).
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5.4 Extinction and Zero
Autocatalysis in Biological Growth
Many biological processes involve autocatalysis:

X
K−→ X+ X or X

f(X)−−→ X+ 1 (10)

Key feature: You need X to make more X.

The Extinction Problem:

• If X = 0, the system cannot produce more X

• This creates an absorbing state at X = 0

• Once the system reaches X = 0, it remains there forever

Deterministic Model
For a simple autocatalytic system:

dx

dt
= kx− rx = (k− r)x (11)

Fixed points:

• x∗ = 0 (unstable if k > r)

• Growth occurs for any x(0) > 0

With External Disturbances
Adding external mortality/removal:

dx

dt
=

kx

K+ x
− (r+ µ)x (12)

• Can create a stable extinction state if µ is large enough

• But still deterministic: either always extinct or never extinct

5.5 Ergodicity
Definition: A system is ergodic if, starting from any point, over time it can visit every
point in the state space.

For a Markov process, ergodicity requires:

1. Irreducible: For any states i and j, there exists t > 0 such that:

P(X(t) = j | X(0) = i) > 0 (13)
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2. Positive recurrent: The expected return time to any state is finite

A stochastic process {X(t)}t⩾0 is ergodic if:

lim
T→∞

1
T

∫T

0
1{X(s)∈A} ds = π(A) (14)

where π is the stationary distribution.

Obtaining Distributions from Trajectories
Ensemble Approach (Many Trajectories)
Take N independent trajectories {Xi(t)}

N
i=1:

p̂t(x) =
1
N

N∑
i=1

1{Xi(t)=x} (15)

As N→∞:
p̂t(x)→ P(X(t) = x) (16)

Steady-State Distribution
If the system has a stationary distribution π:

π(x) = lim
t→∞P(X(t) = x) = lim

t→∞ lim
N→∞

1
N

N∑
i=1

1{Xi(t)=x} (17)

Time-Average Approach (Single Trajectory)
For an ergodic system, follow one trajectory X(t):

π(x) = lim
T→∞

1
T

∫T

0
1{X(t)=x} dt (18)

6 Equilibrium physics of bioregulation
The world is connected, and our “eye” to see such connections are orders of magnitude
reasoning. Seemingly unrelated observations could be in fact deeply constraining each
other. To practice this “vision”, we explore some calculations below, with contexts grad-
ually shifting from the macroscopic world we are more familiar with to the microscopie
world of molecules and cells.
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6.1 Energy and Equilibrium in statistical physics
Energy is a concept from physics that a closed system (i.e without energy input) would
dissipate energy and

• Energy is a concept from physics that a closed system (i.e without energy input)
would dissipate energy and

• Side note: But Bio is not closed, so not in equilibrium!

◦ Answer:

- But energy In other words, equilibrium is ”easier to implement”.

- Also, driven processes can still have several behaviors that “look like” equilibrium,
i.e., they balance just like an equilibrium system due to other constraints. e.g. net-
work topology (no cycles).

◦ How to use equilibrium?

– Statistical Mechanics. A system consists of lots of particles, so we only need to
care about statistics of particles.

Microstate
(
all particle states

) Multiplicity−−−−−−−→ Macrostate
(
statistical states

)
x E(x) (energy)

weight w(x) energy E(x) distribution P(x)

⟨X⟩ (observation)

- Equilibrium: a distribution over microstates with expected property. equilibrium
distribution. Namely, the following are equivalent characterizations:

1. Boltzmann distribution

Every (micro) state has an energy E(x), and the equilibrium distribution is

p(x) ∝ e−βE(x), β =
1
kT

.

where β = 1
kBT

, that we often omit it.

2. Detailed balance
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For every transition between two microstates,

pAkA→B ⇌ pBkB→A.

Detailed balance says forward flux = reverse flux, for every state transition.

k1PA = JA→B = JB→A = k2PB

⇒ pA

PB

=
k2

k1

So we can define EA, EB, s.t. pA ∝ e−EA , pB ∝ e−EB , then pA

pB
= e−(EA−EB) =

k2
k1

- Transition rates and energies are related.

3. No cyclic flux

Detailed balance:

k12p1 = k21p2

⇒ J⟳ = (k12p1 + k23p2 + k31p3) − (k21p2 + k13p1 + k32p3) = 0

Equilibrium constrains transition rates:

p1 =
k21

k12
p2 =

k21

k12

k32

k23
p3 =

k21

k12

k32

k23

k13

k31
p1
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In a system with states X1 ↔ X2 ↔ X3, the absence of cyclic flux implies

k1→2 k2→3 k3→1

k2→1 k3→2 k1→3
= 1.

i.e
k1→2 k2→3 k3→1 = k2→1 k3→2 k1→3 (19)

which is called ”Cycle condition”.

6.2 Equilibrium in bioregulation
◦ Equilibrium is very powerful

– Distribution directly obtained. Only need to know the states, no need to know
reaction mechanisms!

Example 1 (Enzymatic reaction). S
v⇝ P, catalyzed by enzyme E. Consider the reversible

reaction
E+ S ⇌ ES.

We focus on a single enzyme molecule. Here S denotes the substrate. Assume the enzyme
has two possible macrostates:

◦ free state: E

◦ bound state: ES
Energy.

E(E) = 1, E(ES) = ∆Gb.

Multiplicity (number of microstates). Multiplicity is the number of microstates corre-
sponding to each macrostate:

ΩE = 1, ΩES =
Stot

C0
,

where Stot/C0 is the dimensionless concentration factor.
Statistical weight.

wE = 1, wES =
Stot

C0
e−∆Gb .

Probability of being in a bound state. From equilibrium statistical mechanics:

pbound =
wES

wE +wES

=
(Stot/C0) e

−∆Gb

1 + (Stot/C0) e−∆Gb
.

This matches the Michaelis–Menten occupancy formula. If Stot = Etot, one may define

C =
Stot

Etot
, K = Ce−∆Gb .
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Note that. This simplified derivation considers only one enzyme molecule. Therefore, the
system only has 2 macro states while a full systemwith many enzymes has many possible
microstates.

Then, this can be applied to several enzyme molecules by assuming each enzyme is
i.i.d(independent and identically distribution), so E = pbEtot = Etot

Stote
−∆Gb

Stote
−∆Gb+1

For example, if
NE, NS, NES

denote molecular counts, then they satisfy the constraint

NE +NS +NES = NE,tot,

and the number of microstates can become very large.

△

Example 2 (MWC Model: The Second Secret of Life — Allostery). Enzyme activities can
be regulated by ligands or substrates. The MWC (Monod–Wyman–Changeux) model de-
scribes allostery: enzymes have multiple conformations and binding states.

◦ Allostery: an enzyme may have multiple conformations.

◦ Multiple conformations + binding: an enzyme can bind ligands in different confor-
mational states.

◦ Independent contributions: conformational state and ligand-binding state contribute
multiplicatively to statistical weight.

We consider two conformations:

active (A) and inactive (I).

Each conformation can be either ligand-free or ligand-bound.
State Energies and Weights The four macrostates are:

A, A+ bound, I, I+ bound.

Their energies and statistical weights are:

15



State Energy Weight Bio Notation
Active EA e−EA

Active + bound EA + EA,b e−(EA+EA,b)
Stot

C0
e−ϵA Stot

KA

Inactive EI e−EI

Inactive + bound EI + EI,b e−(EI+EI,b)
Stot

C0
e−ϵI Stot

KI

Here Stot/C0 is themultiplicity factor (number of accessible microstates of ligand binding).
Microstate Counting When the “Single-enzyme” Assumption is Removed If the as-
sumption of a single enzymemolecule is removed, the number of microstates can become
very large or even infinite.

For example, the system may include:

NE, NS, NES,

with the constraint
NE +NS +NES = NE,tot.

The combinatorial number of microstates grows rapidly with molecule counts. This is
why equilibrium statistical mechanics is useful — it allows us to compute distributions
without enumerating all microstates.

Interpretation The MWC model explains how enzymes can switch activity states de-
pending on ligand concentration, through changes in relative statistical weights of con-
formational states.

△

Activation Probability in the MWC Model From the statistical weights of the four states
(A, A+bound, I, I+bound), the probability of being in the active conformation is

Pactive =

e−EA

(
1 +

Stot

KA

)
e−EA

(
1 +

Stot

KA

)
+ e−EI

(
1 +

Stot

KI

) .

Limit as Stot → 0.
Pactive(0) =

e−EA

e−EA + e−EI
=

1
1 + eEA−EI

.

If the inactive state is lower in energy (e.g. EI < EA by 2–3kBT , about a hydrogen bond),
then

Pactive(0) ≈ 1
10 .
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Figure 1 PactivevsStot

Limit as Stot →∞.

Pactive(∞) =
e−EA

Stot

KA

e−EA
Stot

KA

+ e−EI
Stot

KI

=
e−EA/KA

e−EA/KA + e−EI/KI

=
1

1 + eEA−EI
KA

KI

.

If KA < KI, the ligand binds tighter in the active state. For example, if KI/KA ≈ 100,
then

Pactive(∞) ≈ 1
1 + 10−2 ≈ 0.9.

Cooperativity: Example of a Dimer
Consider a dimeric enzyme where each binding site becomes active/inactive indepen-
dently and can bind/free ligand independently.

In this case, the active-state weight is squared:

Pactive =

e−EA

(
1 +

Stot

KA

)2

e−EA

(
1 +

Stot

KA

)2

+ e−EI

(
1 +

Stot

KI

)2 .
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Figure 2 Caption

High-ligand limit.

Pactive(∞) =

e−EA

(
Stot

KA

)2

e−EA

(
Stot

KA

)2

+ e−EI

(
Stot

KI

)2 =
1

1 + eEA−EI

(
KA

KI

)2 .

This yields a sharper transition in Pactive as a function of ligand concentration, characteristic
of cooperativity.

Example 3 (Gene Expression). Consider the states pf the gene under repression: We enu-
merate the possible promoter states, their energies, and statistical weights.

State Energy Weight
Promoter free 0 1

RNA polymerase (RNAP) bound ∆εp e−∆εp
P

NNS

Repressor bound ∆εr e−∆εr
R

NNS

Where:

- P: number of RNA polymerase molecules - R: number of repressor molecules - NNS:
number of nonspecific DNA binding sites - ∆εp: RNAP binding energy - ∆εr: repressor
binding energy
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These statistical weights can be used to compute promoter occupancy and the probability
of transcription initiation.

△

6.3 Beyond Equilibrium – Markov chains
◦ Equilibrium has the powerful property that we don’t need to know the detailed ki-

netic mechanisms, just the thermodynamics (i.e. interacting energies...).

◦ But what if I encounter a behavior?

– my behavior of interest can only be achieved out of equilibrium...

– e.g. Kinetics proofreading... (super precise)

How to analyze that?

◦ For the special case of finite number of states, if we know the state transition rates,
this is a Markov Chain. (A special case of chemical master equation where we can get
the full distribution.)
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