
Ctrl & Comp in Bio Sys - Westlake Univ., Fall 2025

Lecture 7: Equilibrium Physcis of Bioregulation
20251023

Lecturer: Fangzhou Xiao Scribe: Yiqiao Deng, Shaocong Fang, Chengqian Li

Contents
1 What is Ergodicity 2

2 Similarities and differences between Steady State and Equilibrium 3
2.1 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Are Steady State and Equilibrium Equivalent? . . . . . . . . . . . . . . . . . 3

2.2.1 Example 1: Linear Network x1 ↔ x2 ↔ x3 . . . . . . . . . . . . . . . . 3
2.2.2 Example 2: Cyclic Network x1 ↔ x2 ↔ x3 ↔ x1 . . . . . . . . . . . . . 4

2.3 Energy Consumption and Biological Implications . . . . . . . . . . . . . . . 4

3 Consider Equilibrium under Macro and Micro View 4

4 Biological Examples: Enzyme Allosteric Regulation, Gene Regulation 7
4.1 Enzyme Catalytic Reaction: Michaelis-Menten Model . . . . . . . . . . . . . 7

4.1.1 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 States and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.3 Binding Probability Derivation . . . . . . . . . . . . . . . . . . . . . . 7
4.1.4 Concentration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.5 Reaction Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.6 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Allosteric Regulation: MWC Model . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.1 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 States and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.3 Active Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.4 Cooperativity Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.5 Biological Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Gene Regulation: Lac Operon Model . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.1 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.2 States and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.3 Transcription Probability . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.4 Allosteric Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.5 Model Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Beyond Equilibrium: Markov Chain 10

1



5.1 Motivation and Overall Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Markov Chain Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2.1 Definition and Derivation from Chemical Master Equation . . . . . . 10
5.2.2 Biological Example: Phosphorylation Cascades . . . . . . . . . . . . 11

5.3 Handling Non-Markovian Systems . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Dynamic Analysis: Hitting Times . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.4.1 Definition and Computation . . . . . . . . . . . . . . . . . . . . . . . 11
5.4.2 Biological Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.5 Steady State Distribution and Finite State Projection . . . . . . . . . . . . . . 12
5.5.1 Steady State Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5.2 Finite State Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.6 Why We Use Markov Chains for Simulation and Analysis . . . . . . . . . . . 12
5.7 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 What is Ergodicity
Ergodicity is crucial for equilibrium. Ergodicity means that, given sufficient time, a system
can evolve into any possible state. In a closed system with ergodicity, after evolving for a
sufficiently long time, it will inevitably reach an equilibrium state, which unifies temporal
equilibrium and spatial equilibrium. Here, temporal equilibrium refers to the average
value of the trajectory of a single point in the system after evolving for a sufficiently long
time, while spatial equilibrium refers to the average value formed by the superposition
of all states of all points in the system at a specific moment. In an ergodic system, the
equilibrium state ensures that the temporal equilibrium equals the spatial equilibrium.
Such ergodic systems provide us with a simplified method for solving their equilibrium
states. We only need to simulate a single point, starting from a certain initial state, and
let this point evolve for a sufficiently long time. The temporal average obtained from its
trajectory will then equal the equilibrium state of the system. For example, consider the
velocity distribution of ideal gas molecules at a certain temperature. We only need to
simulate one molecule, let it evolve under the system’s conditions for a sufficiently long
time, and the distribution of the velocities it has assumed will correspond to the velocity
distribution of all the ideal gas molecules in the system—that is, the equilibrium state of
the system.

Furthermore, if a system is not ergodic, then its equilibrium state is neither unique nor
determinate, which means we cannot discuss its equilibrium in a definitive manner. For
example, a system loses ergodicity if one of its state variables can go extinct. By "extinct,"
we mean that once this state variable reaches zero, it becomes trapped at zero forever.
Consider a state variable x, where dx/dt depends only on x, and when x equals zero,
dx/dt = 0. In this case, once the system reaches x = 0, x will be permanently trapped at
that point. Therefore, even if the system possesses several stable points (or equilibrium
states) where x ̸= 0, once x reaches zero, it can never access those non-zero stable points,
even over an infinite amount of time. This system thus loses ergodicity. Consequently, the
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equilibrium of such a system is indeterminate. Depending on the initial conditions (i.e.,
the value of x at t = 0), the system might sometimes reach a non-zero stable point, and
other times become trapped at x = 0. In this scenario, the stable points and equilibrium
states are not uniquely determined.

2 Similarities and differences between Steady State and Equi-
librium

Next, we will discuss the similarities and differences between steady state and equilibrium.
First, we need to clarify how steady state and equilibrium are described mathemati-
cally.

2.1 Mathematical Definitions
Steady state refers to a situation where all state variables in a system do not change with
time, i.e.,

dxi

dt
= 0 for all state variables xi. (1)

Equilibrium (specifically, detailed balance) refers to a condition where the transitions
between different state variables are balanced. That is, for any state xi, the total rate of
transitions into xi from all directly connected states xj equals the total rate of transitions
out of xi to all directly connected states xk. Mathematically,∑

j

vji =
∑
k

vik, (2)

where vji denotes the rate from state xj to xi, and vik denotes the rate from state xi to xk.
This condition is known as detailed balance.

2.2 Are Steady State and Equilibrium Equivalent?
Now, is steady state equivalent to equilibrium? For linear (chain) networks, yes; but for
cyclic (ring) networks, not necessarily. We will discuss two examples separately.
2.2.1 Example 1: Linear Network x1 ↔ x2 ↔ x3

In a linear network, the endpoints are x1 and x3. If the system is in a steady state, then for
the endpoints, we have:

For x1:
dx1

dt
= v21 − v12 = 0 ⇒ v21 = v12. (3)

For x2:
dx2

dt
= (v12 + v32) − (v21 + v23) = (v12 − v21) + (v32 − v23) = 0. (4)
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Since v12 − v21 = 0 from the steady state condition of x1, it follows that v32 − v23 = 0. Thus,
the steady state condition propagates along the chain, ensuring that detailed balance holds
at every node. Therefore, in a linear network, steady state implies equilibrium.
2.2.2 Example 2: Cyclic Network x1 ↔ x2 ↔ x3 ↔ x1

In a cyclic network, there are no endpoints. Consider the steady state condition for x1:

dx1

dt
= (v21 + v31) − (v12 + v13) = (v21 − v12) + (v31 − v13) = 0. (5)

This equation can be satisfied without requiring v21 − v12 = 0 and v31 − v13 = 0 individually.
For example, if v21 − v12 < 0 and v31 − v13 > 0, their sum can still be zero. This corresponds
to a net flow in the cycle: for instance, x1 → x2 → x3 → x1, with more flow from x3 to x1
than from x1 to x3, and more flow from x1 to x2 than from x2 to x1. Thus, steady state does
not necessarily imply equilibrium in a cyclic network.

2.3 Energy Consumption and Biological Implications
Achieving a steady state without equilibrium in a cyclic network requires energy input.
This is due to the second law of thermodynamics: in a closed system, a net flow would
increase entropy, so maintaining a non-equilibrium steady state requires external energy.
Biological systems often exploit such non-equilibrium steady states in cyclic networks to
perform functions.

Two classic examples are the Citric Acid Cycle (Krebs cycle) and the Calvin-Benson
Cycle:

• In the Citric Acid Cycle, metabolites remain at approximately constant concentra-
tions under stable conditions (steady state), but the cycle is not at equilibrium. It
continuously consumes acetyl-CoA and produces CO2, NADH, and FADH2. If it were
at equilibrium, no net production of these energy carriers would occur, preventing
aerobic respiration and ATP synthesis.

• In the Calvin-Benson Cycle, metabolites are also in steady state, but the cycle
consumes CO2 and produces organic carbon for biomass synthesis. Equilibrium
would halt carbon fixation. This cycle is driven by energy from light reactions, via
NADPH.

The ability of these cycles to maintain steady-state concentrations despite external pertur-
bations reflects their robustness.

3 Consider Equilibrium under Macro and Micro View
In the macroscopic perspective, equilibrium is described using equilibrium constants. In
the microscopic perspective, equilibrium is described using statistical mechanics. We will
now consider how to connect these two approaches.
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We begin by outlining the tools we will use. In the macroscopic perspective, we will use
the van’t Hoff equation, which relates the Gibbs free energy change to the equilibrium
constant. Its mathematical form is:

∆G = −kT lnKeq (6)

where∆G is the Gibbs free energy change, k is the Boltzmann constant, T is the temperature,
and Keq is the equilibrium constant for the reaction.

In the microscopic perspective, statistical mechanics uses the Boltzmann distribution as
a fundamental postulate. The Boltzmann distribution is suitable for describing any non-
quantum (or classical) system in thermodynamic equilibrium. The Boltzmann distribution
states that the probability Pi of a system being in state i is:

Pi =
1
Z
e−Ei/kT (7)

where k is the Boltzmann constant, T is the temperature, and Z is the partition function.
Here, the partition function serves primarily as a normalization factor to ensure that the
probabilities sum to one. In my view, the Boltzmann distribution essentially tells us that as
the energy of a state increases, its likelihood of existence decreases exponentially.

Macroscopic Thermodynamic Starting Point
Thermodynamics provides the relationship between the standard Gibbs free energy change
∆G◦ and the equilibrium constant Keq (van ’t Hoff isotherm):

∆G◦ = −RT lnKeq (8)

For the reaction A ⇌ B, the equilibrium constant is defined as:

Keq =
[B]

[A]
(9)

Statistical Mechanics Interpretation
In the framework of statistical mechanics, the concentration ratio can be interpreted as
the probability ratio of the system being in different macroscopic states. For a randomly
selected molecule:

[B]

[A]
=

PB

PA

(10)

where PA and PB represent the probabilities of the molecule being in state A and B,
respectively.

According to the Boltzmann distribution, the probability of the system being in a particular
macroscopic state is proportional to its partition function:

PA ∝ ZA, PB ∝ ZB (11)
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Therefore, the probability ratio equals the partition function ratio:
PB

PA

=
ZB

ZA

(12)

Microscopic Nature of the Partition Function
The microscopic definition of the partition function Z is the sum of Boltzmann factors over
all possible microstates. For macroscopic state B:

ZB =
∑

all microstates i belonging to B

e−EB
i /kT (13)

We can group microstates by energy. Assuming that at energy EB,j, state B has ΩB(EB,j)
degenerate microstates, then:

ZB =
∑
j

ΩB(EB,j) · e−EB,j/kT (14)

Similarly, for state A:
ZA =

∑
j

ΩA(EA,j) · e−EA,j/kT (15)

Complete Derivation Chain
Combining equations (8) through (15), we obtain the complete derivation:

∆G◦ = −RT lnKeq (Macroscopic thermodynamic relation)

= −RT ln
(
[B]

[A]

)
(Equilibrium constant definition)

= −RT ln
(
PB

PA

)
(Statistical interpretation)

= −RT ln
(
ZB

ZA

)
(Boltzmann distribution)

= −RT ln
(∑

jΩB(EB,j) · e−EB,j/kT∑
jΩA(EA,j) · e−EA,j/kT

)
(Microscopic nature of partition functions)

Final Conclusion
We thus arrive at the microscopic statistical expression for the equilibrium constant:

Keq =
ZB

ZA

=

∑
jΩB(EB,j) · e−EB,j/kT∑
jΩA(EA,j) · e−EA,j/kT

(16)
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This result reveals the microscopic nature of the macroscopic equilibrium constant Keq: it
is determined by the ratio of statistical weights of competing states A and B, which in turn
depend on their respective energy level structures (E) and state degeneracies (Ω).

4 Biological Examples: Enzyme Allosteric Regulation, Gene
Regulation

Based on lecture notes (pages 7-14), this section applies equilibrium physical theory
from previous parts to specific biological processes, demonstrating how to analyze sin-
gle molecule states and directly calculate probability distributions using energies and
weights.

4.1 Enzyme Catalytic Reaction: Michaelis-Menten Model
4.1.1 Model Framework
Consider enzyme E catalyzing substrate S to product P:

E + S ⇌ ES (17)

Using a lattice model with one enzyme and multiple substrate sites.
4.1.2 States and Weights

• Free state (E + S): weight wfree ∝ Nse
−Ef

• Bound state (ES): weight wbound ∝ e−Eb

where Ns is the number of substrate molecules, Ef and Eb are energies of free and bound
states.
4.1.3 Binding Probability Derivation
Binding probability:

pbound =
wbound

wfree +wbound
=

Nse
−∆E

1 +Nse−∆E
(18)

where ∆E = Ef − Eb.
4.1.4 Concentration Parameters
Define:

• Solution volume V , site volume Ω

• Substrate concentration Cs = Ns/V

• Dissociation constant Kd = C0e
∆E (C0 is standard concentration, 1M)

Rewriting binding probability:

pbound =
Cs/Kd

1 + Cs/Kd

(19)
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4.1.5 Reaction Rate
Reaction rate is given by:

v = kEtotpbound =
kEtotCs

Km + Cs

(20)

where Km ≈ Kd, yielding the classical Michaelis-Menten equation.
4.1.6 Physical Interpretation

• Energy difference ∆E < 0 indicates favorable binding

• Multiplicity Ns represents entropy contribution

• Chemical potential: µ ≈ Ef + kT ln(Ns/Ω)

• Free energy change: ∆G = ∆E− T∆S

4.2 Allosteric Regulation: MWC Model
4.2.1 Model Framework
MWC (Monod-Wyman-Changeux) model describes enzyme allosteric regulation:

• Two conformations: Active (A) and Inactive (I)

• Each conformation can bind substrate
4.2.2 States and Weights
Considering substrate concentration Cs, bound state weights are multiplied by factor
Cs/C0.
4.2.3 Active Probability
Probability of active conformation:

pactive =
e−EA

(
1 + Cs

KA

)
e−EA

(
1 + Cs

KA

)
+ e−EI

(
1 + Cs

KI

) (21)

where KA = C0e
EA−Eab , KI = C0e

EI−Eib .
4.2.4 Cooperativity Effects
When KA ≪ KI (tighter binding in active state), pactive changes significantly with Cs.

Introducing intersite interaction energy Eint < 0, binding probability for dimer system:

p2 ∝
(
Cs

K

)2

e−Eint (22)

producing steeper transition curves (Hill coefficient n > 1).
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4.2.5 Biological Significance
• Allostery enables enzymes to respond to substrate concentration changes

• Implements biological switching behavior

• Example: Hemoglobin oxygen binding curve

4.3 Gene Regulation: Lac Operon Model
4.3.1 Model Framework
Consider Lac operon transcriptional regulation with repressor and RNA polymerase
competing for promoter binding.
4.3.2 States and Weights

• No repressor state (RNA polymerase bound):

wpol ∝ e−∆Ep
P

NNS
(23)

• With repressor state (repressor bound):

wrep ∝ e−∆Er
R

NNS
(24)

where:

• ∆Ep, ∆Er: binding energy differences

• P, R: RNA polymerase and repressor numbers

• NNS: number of non-specific sites (multiplicity)
4.3.3 Transcription Probability
Transcription probability (RNA polymerase bound):

pbound =
e−∆EpP/NNS

e−∆EpP/NNS + e−∆ErR/NNS + · · ·
(25)

4.3.4 Allosteric Extension
In homework problem 1, LacI repressor has active/inactive forms:

• Active form binds DNA, preventing transcription

• Inactive form does not bind DNA

• Inducer concentration c affects active form probability pactive(c)

Deriving fold-change formula:

fold-change =
1

1 + pactive(c)
R

NNS
e−∆Er

(26)
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4.3.5 Model Advantages
• Parameters (∆Ep, ∆Er) can be measured from independent experiments

• No need for detailed kinetic mechanisms

• Provides quantitative predictive power

5 Beyond Equilibrium: Markov Chain
5.1 Motivation and Overall Logic
While equilibrium statistical mechanics provides powerful tools for analyzing biological
systems at steady state, many crucial biological processes operate beyond equilibrium
due to continuous energy input and driving forces. Biological systems are not closed–they
exchange energy and matter with their environment, leading to behaviors that cannot be
captured by equilibrium descriptions alone.

• Key insight: Biological systems utilize equilibrium in most components but are
sparsely driven at critical control points

• Examples: Protein degradation with precise timing, phosphorylation cascades,
metabolic networks with sustained fluxes

• Challenge: When detailed balance is broken, we need new tools to analyze steady
states and dynamics

The Markov chain framework provides the mathematical foundation for analyzing
these non-equilibrium systems, bridging the gap between equilibrium statistics and
non-equilibrium dynamics.

5.2 Markov Chain Fundamentals
5.2.1 Definition and Derivation from Chemical Master Equation
For a continuous-time Markov chain describing molecular state transitions:

dP
dt

= QP (27)

Qij = transition rate from state j to state i (i ̸= j) (28)

Qjj = −
∑
i̸=j

Qij (conservation of probability) (29)

Properties:

• Probability conservation: 1TP = 1

• Column sum zero: 1TQ = 0
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• Steady state: QΠ = 0 (find null space of Q)

• Ergodicity: Irreducible chain ⇒ unique steady state Π

Detailed Balance Condition:

QijΠj = QjiΠi iff no cyclic fluxes (equilibrium) (30)

5.2.2 Biological Example: Phosphorylation Cascades
Consider kinase-phosphatase cycles with states representing phosphorylation levels
(0, 1, 2, . . . ). The Markov chain captures stochastic phosphorylation/dephosphorylation
events:

Process Transition Rate
Phosphorylation Sn → Sn+1 kn[K]

Dephosphorylation Sn → Sn−1 γn[P]

5.3 Handling Non-Markovian Systems
Many biological processes exhibit memory effects, violating the Markov assumption. We
can embed these systems into Markov chains by extending the state space:

X(t) → (X(t),X(t− ∆t),X(t− 2∆t), . . . ) (31)

Application: Protein degradation with precise timing control, where current degradation
probability depends on previous states.

5.4 Dynamic Analysis: Hitting Times
5.4.1 Definition and Computation
The hitting time τji represents the expected time to first reach state i starting from state
j:

τji =
1

|qjj|
+
∑
k̸=i

qjk

|qjj|
τki (32)

Matrix formulation: Remove row/column i from Q to obtain Q(i), then solve:

Q(i)τ(i) = −1 (33)

where τ(i) is the vector of hitting times to state i from all other states.
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5.4.2 Biological Application
In phosphorylation cascades, hitting times quantify:

• Signal propagation speed from unphosphorylated to fully phosphorylated state

• Response time to external stimuli

• Temporal precision of signaling pathways

5.5 Steady State Distribution and Finite State Projection
5.5.1 Steady State Calculation
For finite-state systems, solve QΠ = 0 subject to

∑
i Πi = 1.

Homework Example: Binding reaction E+ S ⇌ C yields steady state:

Π ∝ K−NC

d

NE!NS!NC! (Poisson-like distribution) (34)

At high molecular numbers, the most probable state approaches the deterministic equilib-
rium.
5.5.2 Finite State Projection
For systems with large or infinite state spaces, project the Chemical Master Equation onto
a finite Markov chain:

Infinite CME → Finite Markov Chain → Approximate Π and dynamics (35)

Application: Metabolic cascades with non-equilibrium fluxes that cannot be captured by
equilibrium thermodynamics.

5.6 Why We Use Markov Chains for Simulation and Analysis
1. Unified Framework: Markov chains provide a consistent mathematical structure for

analyzing both equilibrium and non-equilibrium systems

2. Computational Tractability: The matrix Q enables efficient numerical computation
of steady states and dynamic properties

3. Connection to Physical Laws: Markov chains naturally emerge from the Chemical
Master Equation, which derives from fundamental stochastic reaction kinetics

4. Bridge Between Scales: Captures molecular stochasticity while connecting to macro-
scopic observables through ergodicity

5. Experimental Validation: Hitting times and steady state distributions provide
testable predictions for single-molecule and bulk experiments
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5.7 Key Takeaways
• Markov chains extend equilibrium statistical mechanics to driven biological systems

• The framework captures essential non-equilibrium features: cyclic fluxes, broken
detailed balance, and energy dissipation

• Both steady-state properties (distributions) and dynamic properties (hitting times)
are accessible

• Finite state projection makes experimentally relevant computations feasible

• Biological implementation requires careful consideration of Markovian assumptions
and potential state space extensions

Final Insight: "It takes a lot of driving to not look like equilibrium" – weak driving forces
often yield behaviors indistinguishable from equilibrium, but biological systems exploit
strong, sparse driving at critical control points.
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Table 1 MWC Model State Weights

State Energy Weight
Active free (EA) EA e−EA

Active bound (EA·S) EA + Eab e−(EA+Eab)

Inactive free (EI) EI e−EI

Inactive bound (EI·S) EI + Eib e−(EI+Eib)
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