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This homework consists of 3 problems exploring the concept of equilibrium steady states in bioregulation. Problem
1 gets you some hands-on idea about how equilibrium enables models made up of physically measurable quantities.
Then, we venture into discussions about the idea of equilibrium.

Equilibrium is a very powerful concept, yet it is often not fully appreciated in our understanding of biological
systems. On one hand, biologists may out-right say there exists non-equilibrium driving forces everywhere in
biology. This does not prevent the applicability of equilibrium at all, since although biology is driven, it is sparsely
driven, so most parts of biology have to be at equilibrium. And we don’t need everything in life to be equilibrium
for this concept to be (very) useful. This is highlighted in Problem 3, where equilibrium is used to understand
binding reactions, and this is compared with other models we have used so far, i.e. rate equations and chemical
master equations.

On the other hand, biophysicists, in response to the existence of driving forces in biology, over-emphasize the
importance of non-equilibrium concepts. This is discussed in Problem 2, where the point “it takes a lot of driving to
be not like equilibrium” is made. What is worse is that, as a result of this, when indeed nonequilibrium behaviors
become important, there is so much energy spent that theoretical tools of nonequilibrium calculating how much
energy is spent for some cycle fluxes etc become useless. System behavior become almost deterministic, or as
non-equilibrium as you want, and what becomes important instead, is the question of functional design. What
mechanisms, or how to wire parts together, so that a certain function is achieved? The question about energy
spending become rather secondary.

Above is the perspective I would like to convey through this homework’s exploration of equilibrium. Hope you
enjoy it.

1 Equilibrium builds models from measurable quantities – allosteric regulation
One power of equilibrium models is that the parameters are often quantities that can be individually measured
by separate experiments. This resolves a problematic issue of kinetic models we often use, such as chemical
reaction networks, where kinetic rate constants such as catalysis rates, on rates and off rates are often hard to
determine independently. As a result, often when kinetic models are used to explain data, the data is simply fit
to the model with all parameters varied. But this greatly reduces the explanatory power of the kinetic model,
since many models with enough parameters can fit the same set of data. Therefore, it is arguable that reducing
the number of parameters left to fit to data can greatly enhance the explanatory power of a model. Let us have
a taste of this by looking at the models of gene regulation via allostery, as presented in [1]. An allosteric model
of gene expression by the Lac operon is constructed. This model consists of two parts. On one hand, the LacI
repressor is regulated by inducers via allostery, so it has both an activated form and an inactive form, denoted 𝑅𝐴

and 𝑅𝐼 , respectively. These quantities are related to the total concentration of the repressor via the probability that
a repressor is in activated form, 𝑝𝐴(𝑐), by 𝑅𝐴 = 𝑝𝐴(𝑐)𝑅, where 𝑅 is the total concentration of repressors, and 𝑐 is
the inducer concentration. Note that an assumption is made here that either we can directly tune 𝑐, or that 𝑐 ≫ 𝑅
so that the inducer concentration does not change significantly upon binding with repressors. These assumptions
are needed so that each repressor molecules can be considered independent and identically distributed, such that
the probability of one repressor can simply multiply the total concentration of repressors to represent the whole
population of repressors.

On the other hand, the transcriptional activity is determined by the probability that RNAP is bound to the promoter,
𝑝bound(𝑅𝐴, 𝑅𝐼), which changes with the concentration of the repressor in activated form 𝑅𝐴, and that of the
repressor in inactive form 𝑅𝐼 . Note that similar to the consideration for 𝑝𝐴(𝑐) above, an assumption that 𝑅𝐴 𝑅𝐼 ,
and the concentration of RNAP are much larger than the concentration of promoter is made here.
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Combine 𝑝bound(𝑅𝐴, 𝑅𝐼) with 𝑝𝐴(𝑐) and 𝑅𝐴 = 𝑝𝐴(𝑐)𝑅, we can obtain 𝑝bound(𝑐), the transcriptional activity as a
function of inducer concentration 𝑐. This result then serves as a prediction for experimental observations, with
parameters inside that can be separately determined.

We follow [1] to derive the formula for 𝑝bound(𝑐), and then investigate the formula’s predictive power over
data.

1. Follow the argument in Figure 2A of [1] to show that Equation 1 (copied below) holds.

𝑝bound =
𝑃

𝑁𝑁𝑆
𝑒−𝜀𝑃

1 + 𝑅𝐴
𝑁𝑁𝑆

𝑒−Δ𝜀𝑅𝐴 + 𝑅𝐼
𝑁𝑁𝑆

𝑒−Δ𝜀𝑅𝐼 + 𝑃
𝑁𝑁𝑆

𝑒−𝜀𝑃
(1)

2. Follow the arguments below Equation 2 about the physical estimates on 𝑃 , 𝑁𝑁𝑆 , and Δ𝜀𝑃 , to simplify the
expression for 𝑝bound above, and obtain Equation 3 for fold-change.

3. Follow the arguments in Figure 2B to derive Equation 4 for 𝑝𝐴(𝑐). Then combine this with Equation 3 to
derive Equation 5 for fold change as a function of 𝑐, reproduced below.

foldchange = 𝑝bound(𝑅 > 0)
𝑝bound(𝑅 = 0) =

(︂
1 + (1 + 𝑐/𝐾𝐴)𝑛

(1 + 𝑐/𝐾𝐴)𝑛 + 𝑒−𝜀𝐴𝐼 (1 + 𝑐/𝐾𝐼)𝑛

𝑅

𝑁𝑁𝑆
𝑒−𝜀𝑅𝐴

)︂−1
. (2)

4. Read the section “Experimental Design”, as well as “Inferring Allosteric Parameters from Previous Data”.
Try to describe, in your own words, what are the difficulties involved in estimating the parameters of the
fold-change formula above, and what efforts did the authors make to estimate the parameters independently
from the data, so that they can achieve physical prediction, rather than just fitting to data?

2 It takes a lot of driving to not look like equilibrium
Equilibrium behaviors should be considered the “default” since it does not require incessant energy spending.
Therefore, from a bio-design perspective where our goal is to build a certain function in cells, if we can do
so via equilibrium mechanisms, it is much more preferable than using non-equilibrium mechanisms. And if
non-equilibrium mechanisms can not be avoided, it should be minimized. Similarly, from a bio-science perspective
where our goal is to infer what mechanisms govern a behavior we want to understand, we should always try hard
to build equilibrium models to explain it, since equilibrium models are much easier to analyze. Furthermore, if
both an equilibrium and a non-equilibrium model explain the behavior, the equilibrium one is more likely to hold
since it has less complexity and less cost to the cell.

The view above is supported by the fact that albeit many systems indeed contain non-equilibrium driving here and
there, their behaviors are simply equivalent to equilibrium systems. In other words, although there are certain
driving forces in these systems, if we only look at the overall behavior of the system, (e.g. input-output,) then it
looks just like an equilibrium system! We may give a slogan to this phenomena, that “it takes a lot of driving to not
look like equilibrium.” We investigate this phenomena in this problem.
2.1 On-off switches and chains are always equilibrium-like
Certain networks (chemical reactions or Markov chains), just because of the network topology, their steady states
are always equilibrium ones, for all positive reaction rate constants.

The precise condition is called the Wegscheider condition (see Wikipedia page for example), which basically states
that (1) the reaction network is reversible, i.e. for every reaction in the network, its reverse reaction is also in the
network, and (2) there are no cycle fluxes, so the product of rate constants through each cycle in one direction is
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the same as that in the other direction. Therefore, if a network’s topology automatically forces the reaction rate
constants to always satisfy the no-cycle-flux condition, then all steady states are equilibrium.

We consider one simple example here.

1. Consider an on-off switch where we just have two states 1 and 2, with transition rates 𝑘12 from 2 to 1, and 𝑘21
from 1 to 2. This corresponds to the following rate equation:

𝑋1
𝑘12−−⇀↽−−
𝑘21

𝑋2. (3)

Show that the steady state (𝑥1, 𝑥2) satisfies detailed-balance condition

𝑘12𝑥2 = 𝑘21𝑥1. (4)

So the steady state is an equilibrium steady state in the sense of detailed balance. As a result, we can define
the energy of 𝑥1 as 𝜀1, and the energy of 𝑥2 as 𝜀2, and their energy difference Δ𝜀12 = 𝜀1 − 𝜀2 is related to the
rate constants by 𝑥1

𝑥2
= 𝑘12

𝑘21
= 𝑒−Δ𝜀12 .

2. We could add a driving force on top. For example, we could imagine coupling the 𝑋1 to 𝑋2 transition with
a non-equilibrium driving force, such as ATP hydrolysis, so that 𝑋1 to 𝑋2’s transition rate is larger. Let
𝑞21 = 𝑘21 + Δ𝑘21 be the new transition rate under driving. Let us also denote 𝑞12 = 𝑘12 as the new transition
rate from 2 to 1, although it has not changed.

Show that the new steady state also satisfies detailed balance condition,

𝑞12𝑥′
2 = 𝑞21𝑥′

1, (5)

where 𝑥′
1 and 𝑥′

2 are the new steady states. As a result, we can again define an energy 𝜀′
1 for state 1 and 𝜀′

2 for
state 2, so their energy difference Δ𝜀′

12 = 𝜀′
1 − 𝜀′

2 is related to the new rate constants by

𝑥′
1

𝑥′
2

= 𝑞12
𝑞21

= 𝑒−Δ𝜀′
12 . (6)

Note, however, Δ𝜀′
12 is not the same as Δ𝜀12 anymore. So although we can still define an effective energy,

and consider the steady state as an effectively equilibrium steady state, it is no longer a physical equilibrium
where the equilibrium energy is uniquely defined.

3. The same idea that all steady states are effectively equilibrium steady states extends to networks beyond
a simple on-off switch. This holds true for a chain, for example, including infinitely long ones, as long as
there are no loops in the chain. Consider a production-degradation chain for example, where we have states
𝑋0, 𝑋1, 𝑋2, . . ., with a rate 𝑘+

𝑖 for transitioning from 𝑋𝑖 to 𝑋𝑖+1, and a rate 𝑘−
𝑖 for transitioning from 𝑥𝑖 to

𝑥𝑖−1. Show that its steady state distribution always satisfy detailed balance condition, i.e. 𝑘+
𝑖 𝑥𝑖 = 𝑘−

𝑖+1𝑥𝑖+1,
𝑖 = 0, 1, 2, . . ..

2.2 Non-equilibrium enables non-monotonic gene expression under strong driving
The work [2] give a great study looking into the phenomena about the generality of equilibrium behaviors.
Considering non-equilibrium driving over gene expression modeled as a 4-state transition, the authors looked at
behaviors that only non-equilibrium can have.
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1. Look at Figure 1 of [2]. This is the model we consider. The promoter is assumed to have 4 states, 𝑆, the
empty genome state, 𝑋 , the state with transcription factor 𝑋 bound, 𝑃 , the state with RNAP bound, and 𝑋𝑃 ,
the state with both transcription factor 𝑋 and RNAP bound. The input is of course the concentration of the
transcription factor 𝑋 . The output, or activity, of gene expression, is considered a non-negative combination
over the probability of each state, ⟨𝑟⟩ =

∑︀
𝑖 𝑟𝑖𝑝𝑖, where 𝑖 ∈ {𝑆, 𝑋, 𝑃, 𝑋𝑃} and 𝑟𝑖 is the activity of state 𝑖, and

𝑝𝑖 is the probability to be in state 𝑖.

Consider the system’s equilibrium steady state. Let us show that the equilibrium behavior is always of the
following form, which is Equation 2 in the paper.

⟨𝑟⟩equ = 𝐴′ + 𝐵′𝑋

𝐶 ′ + 𝐷′𝑋
, (7)

where 𝐴′, 𝐵′, 𝐶 ′, 𝐷′ are positive parameters independent of 𝑋 . This form eliminates the possibility of
non-monotonic behaviors. Always, ⟨𝑟⟩equ gradually increases or decreases with 𝑋 .

Denote 𝜌𝑖 = 𝑝𝑖
𝑝𝑆

, for 𝑖 ∈ {𝑋, 𝑃, 𝑋𝑃}. Show that

⟨𝑟⟩equ = 𝑟𝑆 + 𝑟𝑃 𝜌𝑃 + 𝑟𝑋𝜌𝑋 + 𝑟𝑋𝑃 𝜌𝑋𝑃

1 + 𝜌𝑃 + 𝜌𝑋 + 𝜌𝑋𝑃
. (8)

2. Show that, at equilibrium,

𝜌𝑃 = 𝑘𝑃 𝑆𝑃

𝑘𝑆𝑃
, 𝜌𝑋 = 𝑘𝑆𝑋𝑋

𝑘𝑋𝑆
, 𝜌𝑋𝑃 = 𝑘𝑋,𝑋𝑃 𝑃

𝑘𝑋𝑃,𝑋

𝑘𝑆𝑋𝑋

𝑘𝑋𝑆
= 𝑘𝑃,𝑋𝑃 𝑋

𝑘𝑋𝑃,𝑃

𝑘𝑃 𝑆𝑃

𝑘𝑆𝑃
. (9)

where the rate constant notation is that 𝑘𝑖𝑗 is going from state 𝑖 to 𝑗, following the convention in the paper.

3. Insert out expression for 𝜌𝑖 above into ⟨𝑟⟩equ, and show that it can be written as Eqn (7).

Argue that, this means the gene expression’s response to changing transcription factor concentration can
only be monotonically increasing or decreasing.

4. Now we consider non-equilibrium behavior. The general solution is rather hard, as is almost always with
non-equilibrium, even for this case of just 4 states forming a square. The solution method in this paper uses
the Matrix Tree Theorem, where the nonequilibrium steady state probabilities are expressed in terms of trees
that are subgraphs of the 4-state square state transition graph.

(If the reader is interested, a simple case to consider is the extremely nonequilibrium case where only the
clockwise rates are nonzero, with the addition of rate 𝑘𝑃,𝑋𝑃 𝑋 from 𝑃 to 𝑋𝑃 , and solve the steady state
by looking at the null space of the state transition matrix. This is one of the simplest cases that yields
non-equilibrium behavior. In fact, if only clockwise rates are nonzero, even though this is an nonequilibrium
extreme, its behavior is just like equilibrium...)

The reader is referred to the original paper for derivation of the general case. The result is Equation 1 of the
paper:

⟨𝑟⟩ = 𝐴 + 𝐵𝑋 + 𝐶𝑋2

𝐷 + 𝐸𝑋 + 𝐹𝑋2 , (10)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are positive constants. So this allows non-monotonic behavior.

Look at Figure 5A of the paper, where the dependence of the non-monotonicity to the driving force is
depicted. How much driving force is needed to exhibit non-monotonic behavior that simply cannot be
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explained by equilibrium models? Is this driving force realistic for this biological setting? (Note that X is
transcription factor, and the driving force is measured from the cycling flux produced, which could be a
significant underestimate of chemical fuel burned when driving the cycle.) Does this depend on the direction
of driving (i.e. increasing or decreasing a rate constant)?

What would be your conclusion overall about whether it is easy or hard to produce behaviors that look
distinctively different from equilibrium ones?

3 Stochastic, discrete, and statistical mechanics of binding reactions
Our analysis and arguments are in the bulk scenario where concentrations of molecules are used, rather than
discrete counts. For biophysics students this might be unacceptable, since distributions on states accounting for
every molecule seem important. To show that the deterministic results from concentrations are intimately related
to the stochastic, discrete case, in this problem we walk through the full calculation for steady state distribution
of molecule counts in the simple binding network, and show that the highest probability state becomes the
deterministic case when molecule numbers are high.

Let us consider the binding reaction

𝐸 + 𝑆
𝑘+
−−⇀↽−−
𝑘−

𝐶 (11)

when the number of molecules are discrete and the binding and unbinding reactions are stochastic. The discreteness
and stochasticity become important when the molecule amount is small. We want to obtain the steady state
distribution of variables (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶), which are the number of free enzymes, free substrates, and complexes.

3.1 Deterministic steady state solution
Let us solve for the deterministic solution first.

1. Show that the deterministic rate equation of the binding reaction is

𝑑

𝑑𝑡
𝑥𝐶 = 𝑘+𝑥𝐸𝑥𝑆 − 𝑘−𝑥𝐶 , (12)

where (𝑥𝐸 , 𝑥𝑆 , 𝑥𝐶) are continuous variables representing concentrations for free enzyme 𝐸, free substrate 𝑆,
and the complex 𝐶. Here the association rate constant 𝑘+ has unit per nM per second, and 𝑘− has unit per
second.

2. Show that the steady state equation is
𝑥𝐶 = 𝑥𝐸𝑥𝑆

𝐾
, (13)

where 𝐾 = 𝑘−

𝑘+ .

3. Define 𝑞𝐸 = 𝑥𝐸 + 𝑥𝐶 as the total concentration of 𝐸, and 𝑞𝑆 = 𝑥𝑆 + 𝑥𝐶 as the total concentration of 𝑆. Show
that, to solve for steady state 𝑥𝐶 in terms of (𝑞𝐸 , 𝑞𝑆 , 𝐾), we can derive the following equation from the steady
state condition.

𝑥𝐶𝐾 = (𝑞𝐸 − 𝑥𝐶)(𝑞𝑆 − 𝑥𝐶). (14)

4. Solve the above to obtain

𝑥𝐶 = 1
2

(︂
(𝑞𝐸 + 𝑞𝑆 + 𝐾) −

√︁
(𝑞𝐸 + 𝑞𝑆 + 𝐾)2 − 4𝑞𝐸𝑞𝑆

)︂
. (15)
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3.2 Chemical master equation of simple binding
In the discrete, stochastic case, the state of the system is the number of free enzyme, free substrate, and bound
complexes, denoted (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶). There are two reactions, corresponding to two types of transitions between states.
The binding reaction describes the transition rate from state (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) to (𝑁𝐸 − 1, 𝑁𝑆 − 1, 𝑁𝐶 + 1), with rate
𝑘+𝑁𝐸𝑁𝑆 . The unbinding reaction describes the transition rate from state (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) to (𝑁𝐸 + 1, 𝑁𝑆 + 1, 𝑁𝐶 − 1)
with rate 𝑘−𝑁𝐶 .

For a given initial condition, the total number of enzymes 𝑁𝐸
tot = 𝑁𝐸 +𝑁𝐶 and substrates 𝑁 tot

𝑆 = 𝑁𝑆 +𝑁𝐶 are fixed,
since they are not changed by the reactions. Define 𝑁max

𝐶 = min
{︀
𝑁 tot

𝐸 , 𝑁 tot
𝑆

}︀
. Because the number of complexes is

always less than the total of enzyme and the total of substrates, i.e. 𝑁𝐶 ≤ 𝑁max
𝐶 , the states that 𝑁𝐶 can jump to are

{0, 1, . . . , 𝑁max
𝐶 }. The states that 𝑁𝐸 and 𝑁𝑆 can jump to can be obtained from the fact that 𝑁𝐸 = 𝑁 tot

𝐸 − 𝑁𝐶 . For
example, if 𝑁 tot

𝑆 ≥ 𝑁 tot
𝐸 , then 𝑁𝑆 can reach states

{︀
𝑁 tot

𝑆 − 𝑁 tot
𝐸 , 𝑁 tot

𝑆 − 𝑁 tot
𝐸 + 1, . . . , 𝑁 tot

𝑆

}︀
.

Because of the constraints that 𝑁 tot
𝑆 and 𝑁 tot

𝐸 are constant, we can simplify the state of the system by considering
just one variable, 𝑁𝐶 . Then the other two variables can be obtained from 𝑁𝑆 = 𝑁 tot

𝑆 − 𝑁𝐶 , and 𝑁𝐸 = 𝑁 tot
𝐸 − 𝑁𝐸 .

So the system becomes a one-dimensional stochastic jump process on the state space 𝑁𝐶 ∈ {0, 1, . . . , 𝑁max
𝐶 }.

Transition 𝑁𝐶 → 𝑁𝐶 + 1 has rate 𝑘+(𝑁 tot
𝐸 − 𝑁𝐶)(𝑁 tot

𝑆 − 𝑁𝐶), and transition 𝑁𝐶 → 𝑁𝐶 − 1 has rate 𝑘−𝑁𝐶 .

Now, we write down the dynamics of this jump chain and solve for the steady state distribution of 𝑁𝐶 .

1. Check that the following ODE describes the dynamics of 𝑝(𝑁𝐶 , 𝑡), the probability that the system is in state
𝑁𝐶 at time 𝑡:

𝑑

𝑑𝑡
𝑝(𝑁𝐶 , 𝑡) =𝑘−

𝑑 (𝑁𝐶 + 1)𝑝(𝑁𝐶 + 1, 𝑡) + 𝑘+
𝑑 (𝑁 tot

𝐸 − 𝑁𝐶 + 1)(𝑁 tot
𝑆 − 𝑁𝐶 + 1)𝑝(𝑁𝐶 − 1, 𝑡)

−
(︁
𝑘−

𝑑 𝑁𝐶 + 𝑘+
𝑑 (𝑁 tot

𝐸 − 𝑁𝐶)(𝑁 tot
𝑆 − 𝑁𝐶)

)︁
𝑝(𝑁𝐶 , 𝑡),

(16)

when 𝑁𝐶 ∈ {0, . . . , 𝑁max
𝐶 }. Here 𝑝(𝑁𝐶 , 𝑡) is assumed zero always for 𝑁𝐶 < 0 or 𝑁𝐶 > 𝑁max

𝐶 . Here
𝑘+

𝑑 = 𝑘+/𝑉 is the reaction rate constant for discrete changes of molecule counts, which is the continuous
reaction rate constant 𝑘+ divided by the reaction volume 𝑉 (assumed constant.) Therefore, 𝑘+

𝑑 has the unit of
per molecule per second. The discrete change reaction rate constant for dissociation is 𝑘−

𝑑 , which has the unit
of per second. This is the same unit as the continuous version, so 𝑘−

𝑑 = 𝑘−
𝑐 .

2. At steady state, because this chain is one-dimensional, the forward and backward jump rates are equal. In
other words, this chain satisfies detailed balance. This corresponds to the following equation:

𝑘+
𝑑 (𝑁 tot

𝐸 − 𝑁𝐶)(𝑁 tot
𝑆 − 𝑁𝐶)𝑝(𝑁𝐶) = 𝑘−

𝑑 (𝑁𝐶 + 1)𝑝(𝑁𝐶 + 1), 𝑁𝐶 = 0, . . . , 𝑁max
𝐶 − 1. (17)

where 𝑝(𝑁𝐶) is the steady state probability at state 𝑁𝐶 . Show this detailed balance condition holds. (Hint:
begin with the boundary case 𝐶 = 0.)

3. Using the above detailed balanced condition, show that this implies the steady state distribution satisfies

𝑝(𝑁𝐶) ∝
𝐾−𝑁𝐶

𝑑

𝑁𝐸 !𝑁𝑆 !𝑁𝐶 ! , 𝑁𝐸 = 𝑁 tot
𝐸 − 𝑁𝐶 , 𝑁𝑆 = 𝑁 tot

𝑆 − 𝑁𝐶 , 𝐾𝑑 = 𝑘−
𝑑

𝑘+
𝑑

= 𝑘−

𝑘+ 𝑉 = 𝐾𝑉. (18)

Here the proportional sign ∝ omits all factors that do not depend on 𝑁𝐶 . In other words, the steady state
distribution is a product of Poisson distributions truncated to state space 𝑁𝐶 ∈ {0, . . . , 𝑁max

𝐶 }.

4. We can connect this steady state distribution 𝑝(𝑁𝐶) to the deterministic steady state solution 𝑥𝐶 = 𝑥𝐸𝑥𝑆
𝐾 ,

where (𝑥𝐸 , 𝑥𝑆 , 𝑥𝐶) are steady state concentrations for free enzyme 𝐸, free substrate 𝑆, and the complex 𝐶.
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Let us look at the mode of the steady state distribution, i.e. 𝑁𝐶 that achieves the maximum of 𝑝(𝑁𝐶), in the
limit that molecule numbers 𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶 are large, so that we can consider the variables as continuous. Use
Stirling’s formula that log 𝑁 ! ≈ 𝑁 log 𝑁 − 𝑁 when 𝑁 is large to show that when 𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶 are large,

log 𝑝(𝑁𝐶) ≈ const − 𝑁𝐶 log 𝐾𝑑 − 𝑁𝐸 log 𝑁𝐸 + 𝑁𝐸 − 𝑁𝑆 log 𝑁𝑆 + 𝑁𝑆 − 𝑁𝐶 log 𝑁𝐶 + 𝑁𝐶 , (19)

where const denotes an additive constant independent of 𝑁𝐶 . Then take derivative of this expression with
respect to 𝑁𝐶 to show that

𝑑

𝑑𝑁𝐶
log 𝑝(𝑁𝐶) = log (𝑁 tot

𝐶 − 𝑁𝐶)(𝑁 tot
𝑆 − 𝑁𝐶)

𝑁𝐶𝐾𝑑
. (20)

Conclude that the maximum of 𝑝(𝑁𝐶) is achieved at

𝑁*
𝐶 = (𝑁 tot

𝐸 − 𝑁𝐸)(𝑁 tot
𝑆 − 𝑁𝐶)

𝐾𝑑
= 𝑁𝐸𝑁𝑆

𝐾𝑑
, (21)

which is the deterministic steady state solution. Indeed, using the fact that the discrete dissociation constant
relates to the continuous dissociation constant by 𝐾𝑑 = 𝑘−

𝑘+ 𝑉 = 𝐾𝑉 , and 𝑥𝐸 = 𝑁𝐸
𝑉 , we have

𝑥*
𝐶 = (𝑞𝐸 − 𝑥𝐸)(𝑞𝑆 − 𝑞𝐶)

𝐾
= 𝑥𝐸𝑥𝑆

𝐾
. (22)

3.3 Equilibrium distribution from statistical physics
We can equivalently derive the equilibrium distribution via statistical mechanical arguments. This gives a direct
derivation of the equilibrium distribution, independent of the chemical reaction network and the rate constants,
and offers an energy interpretation of all the parameters.

1. Consider a lattice model, where there are Ω lattice sites, and each enzyme molecule 𝐸 or a substrate molecule
𝑆 occupies one lattice site. The enzyme and substrate molecules can be present in the form of a free enzyme
𝐸, a free substrate 𝑆, or a complex 𝐶 combining one enzyme and one substrate. Let (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) denote the
number of free enzyme, free substrate, and complexes, and 𝑁 tot

𝐸 , 𝑁 tot
𝑆 as the total number of enzyme and

substrate molecules.

Argue that the system state with 𝑁𝐶 molecules of complexes has energy

𝑁𝐶𝜀𝑏 + (𝑁 tot
𝑆 − 𝑁𝐶)𝜀𝑆

𝑓 + (𝑁 tot
𝐸 − 𝑁𝐶)𝜀𝐸

𝑓 , (23)

where 𝜀𝑏 is the energy of enzyme-substrate binding, 𝜀𝑆
𝑓 is the energy of a free substrate, and 𝜀𝐸

𝑓 is the energy
of a free enzyme.

Then argue that the multiplicity of this state is approximately the following, assuming Ω is large:

Ω𝑁𝐸+𝑁𝑆+𝑁𝐶

𝑁𝐸 !𝑁𝑆 !𝑁𝐶 ! = Ω𝑁tot
𝐸 +𝑁tot

𝑆
Ω−𝑁𝐶

(𝑁 tot
𝐸 − 𝑁𝐶)!(𝑁 tot

𝑆 − 𝑁𝐶)!𝑁𝐶 ! . (24)

2. Put the energy and the multiplicity together to show that the equilibrium probability in state 𝑁𝐶 is
proportional to

𝑝(𝑁𝐶) ∝ (Ω𝑒−Δ𝜀)𝑁𝐶

𝑁𝐸 !𝑁𝑆 !𝑁𝐶 ! (25)

where Δ𝜀 = 𝜀𝑏 − 𝜀𝑆
𝑓 − 𝜀𝐸

𝑓 .

Compare this with the steady state distribution we derived in the previous case. How is the binding constant
𝐾 related to energies?
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Binding networks’ equilibrium distributions are always Poisson-like (Further references)
In the previous calculation, we saw that the steady state distribution of (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) of the binding reaction satisfies
that it is Poisson-like, i.e. it is a Poisson distribution under the stoichiometric constraint that 𝑁𝐸 + 𝑁𝐶 = 𝑁 tot

𝐸 and
𝑁𝑆 + 𝑁𝐶 = 𝑁 tot

𝑆 . This result turns out to hold in general for binding networks. See [3] for example, especially
Theorem 4.5 from an earlier work by Whittle in 1986.

The specific reasoning is the following. A binding network is reversible, in the sense that for every chemical
reaction in the network, this reaction’s reverse reaction is also in the network. It is a known result that (Theorem 4.5
in [3] mentioned above) for a reversible chemical reaction network, if its rate constants satisfies that its deterministic
rate equation has a detailed balance steady state, i.e. an equilibrium steady state in our words, then its chemical
master equation has an equilibrium steady state distribution 𝜋. Here a distribution is equilibrium, or detailed
balanced, is in the sense of a reversible distribution of Markov chains. In other words, for any two states 𝑥 and 𝑦,
denote 𝑞𝑥𝑦 as the rate of transiting from 𝑦 to 𝑥 in this Markov chain, then 𝑞𝑥𝑦𝜋𝑦 = 𝑞𝑦𝑥𝜋𝑥.

As a result of this, if 𝑥 ∈ R𝑛
≥0 is the deterministic equilibrium steady state of the system, then the equilibrium

steady state distribution is always of the form

𝜋(𝑁) =
∑︁

Γ
𝛼Γ𝜋Γ(𝑁), 𝜋Γ(𝑁) =

⎧⎨⎩𝑀Γ
∏︀𝑛

𝑖=1
𝑥

𝑁𝑖
𝑖

𝑁𝑖! , 𝑁 ∈ Γ
0, 𝑁 /∈ Γ,

(26)

where 𝑁 ∈ Z𝑛
≥0 is the count vector of the molecular species, 𝛼Γ ≥ 0,

∑︀
Γ 𝛼Γ = 1, and the sum is over the closed,

irreducible subsets Γ of the state space. Here 𝑀Γ is a normalizing constant.

For our example of one binding reaction 𝐸 + 𝑆 ⇌ 𝐶, each (𝑁 tot
𝐸 , 𝑁 tot

𝑆 ) defines one Γ. So using the formula, the
equilibrium distribution is

𝜋(𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) ∝ 𝑥𝑁𝐸
𝐸 𝑥𝑁𝑆

𝑆 𝑥𝑁𝐶
𝐶

𝑁𝐸 !𝑁𝑆 !𝑁𝐶 ! ,

if (𝑁𝐸 , 𝑁𝑆 , 𝑁𝐶) is in the irreducible subset Γ defined by 𝑁 tot
𝐸 and 𝑁 tot

𝑆 . Now, since 𝐾 = 𝑥𝐸𝑥𝑆/𝑥𝐶 , and
𝑁𝐸 = 𝑁 tot

𝐸 − 𝑁𝐶 , we can write the numerator as 𝑥
𝑁tot

𝐸
𝐸 𝑥

𝑁tot
𝑆

𝑆 𝐾−𝑁𝐶 , which can be simplified to just 𝐾−𝑁𝐶 since
the other factors can be absorbed into the proportional sign. So we recover the formula we derived in this
problem.

Knowing the exact steady state distribution of a detailed balance network is very powerful. In [4], it is shown
that chemical reaction networks can be designed to have equilibrium steady state distributions that have exhibit
an arbitrary 2D pattern, where the two axis are the counts of two species, 𝑋 and 𝑌 , and each pixel’s grayscale
corresponds to the probability that the count of (𝑋, 𝑌 ) is (𝑁𝑋 , 𝑁𝑌 ). It is funny that their work showed the power
of their construction by exhibiting a pattern like a photo of Darth Vader from Star Wars, but they withdrew those
due to potential copyright issues from Disney...
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