Lecture 08:

Lecturer: Fangzhou Xiao

Stochastic Kinetics of Markov Chain and
Computation Biomachines

Ctrl & Comp in Bio Sys - Westlake Univ., Fall 2025

2025-10-30
Scribe: Xia Yao+Jiacheng Wei+Yihan Gong

Contents

1 Equilibrium Physics of Bio-regulation 2
1.1 The Measurement Problem 2
1.2 The Bio-Design Perspective 3
1.3 The Analytical Perspective 3

2 Markov Chains: Stochastic Kinetics and non-equilibrium 5
2.1 Non-Equilibrium Systems 0 L. 5
2.2 Finite Markov Chains & The Master Equation 5
2.3 Mathematical Formalism: The Q-Matrix 6
2.4 Steady States and Ergodicity oo oL 7
2.5 Detailed Balance (Equilibrium vs. Steady State) 8
2.6 The Philosophy of "State": Markovian vs. Non-Markovian 9
2.7 First-Passage Time to an Active State 9
2.8 Distributionand Example 11

3 Computation Biomachine 13
3.1 Today’s Computation biomachine 13

1 Equilibrium Physics of Bio-regulation

1.1 The Measurement Problem

The most practical motivation for equilibrium physics is the difficulty of measuring kinetic
rates compared to thermodynamic energies.

1.The Kinetic Challenge

Consider a standard biological binding reaction, such as a gene (D) binding to a transcription
factor (P), or an enzyme (E) binding to a substrate (S).

The dynamic model is described by the Law of Mass Action:
ko
E+S—ES (1)
k-
To model this dynamically, we need two parameters:
¢ k. : The association rate constant.

e k_: The dissociation rate constant.

Why is this hard to measure? To find k; and k_, you must measure the concentrations
of the free components (E, S) and the complex (ES) in real-time. However, the biological
bond between E and S is usually non-covalent (e.g., hydrogen bonds, Van der Waals forces).
These are weak associations.

The "Shattering" Effect (Mass Spectrometry) Common measurement tools, like Mass
Spectrometry, require imparting energy to the molecules to detect them.

* When you apply energy to measure the system, the weak non-covalent bond breaks.

* You cannot distinguish whether the detected molecules were originally a complex
(ES) or two separate molecules (E + S).

* The act of measurement destroys the structure you are trying to observe.

Measurement Energy

"Shattering"
o= 5 @

Complex (ES) Free E Free S

2.The Equilibrium Solution: Thermodynamics

Instead of trying to measure k, and k_ individually, we look at the system in equilibrium.
Here, we care about the ratio, the Dissociation Constant (Ky):

The Equilibrium Relation

Ka=-—c =7 (2)

Crucially, statistical physics relates this ratio to Energy. The probability of a state is
proportional to the Boltzmann factor:

P X e_Estate/kBT (3)

Therefore, K4 is directly related to the Binding Free Energy (AG):

Energy-Measurement Link

Kd o eAG/kBT (4)

Why is this easier?
¢ Energy changes (AG) correspond to the release or absorption of Heat.

¢ We can measure heat changes very accurately (e.g., Isothermal Titration Calorimetry)
without needing to count individual molecules or preserve fragile bonds during
detection.

¢ Conclusion: Equilibrium is a "Measurement Science." It transforms a hard counting
problem into an easier calorimetry problem.

1.2 The Bio-Design Perspective

If you are an engineer or synthetic biologist trying to build a biological function (e.g., a
genetic switch), equilibrium mechanisms are often superior.

1.Low Energy Cost

¢ Non-Equilibrium: Requires constant energy input (flux) to maintain a steady state
(like keeping a lightbulb on).

¢ Equilibrium: Once the system settles, it stays there forever without consuming fuel
(ATP). It is thermodynamically stable.

2.Low Mechanistic Complexity

* Designing a cycle that forces a reaction in one direction (Non-equilibrium) requires
complex molecular machinery to couple with energy sources.

¢ Designing for equilibrium just requires mixing components that have the right binding
affinity (AG). They will naturally find their way to the desired state.

1.3 The Analytical Perspective

From the perspective of system analysis (Mathematical Modeling), equilibrium provides
powerful constraints that make unsolvable problems solvable.

1.Dynamics are Hard

¢ Deterministic: Systems of coupled differential equations are often non-linear and
hard to solve analytically.

¢ Stochastic: If we treat it as a random process, the Master Equation is usually
infinite-dimensional and impossible to solve exactly.

2.Equilibrium is Easy

If we assume the system is at equilibrium, we don’t need to solve the dynamics. We know
the answer immediately because of the Boltzmann Law:

1
P(State;) = ze_Ei/kBT 5)

Where Z is the partition function.
Key Constraints Equilibrium imposes strict physical rules that simplify the math:

1. Detailed Balance: The flux between any two states is zero.

PA : kA—)B = PB : kB—)A (6)

2. No Cycle Fluxes: There is no net rotation around reaction loops.

Summary of Section 1

Even though biology is dynamic, we use equilibrium physics because:
1. We can measure "Energies" (Heat) much easier than "Rates".
2. Equilibrium systems are energy-efficient and simpler to design.
3. Equilibrium math is solvable via the Boltzmann distribution.

2 Markov Chains: Stochastic Kinetics and non-equilibrium

Traditional thermodynamics often focuses on equilibrium—the state of a system after
an infinite amount of time. However, in biological systems (like cells), we are often
interested in kinetics (how fast things happen) and non-equilibrium behaviors (energy
consumption).

The Kinetics Problem

Even if we know the final state of a cell, we often ask: "If a signal changes in the
environment, how long does it take for the cell to switch states?”
¢ This is known as the First Passage Time problem.
¢ Simply adding up the inverse rates of steps (1/k; 4 1/ks . ..) is incorrect because
stochastic systems can transition backward.

2.1 Non-Equilibrium Systems
Energy vs. Non-Equilibrium

A common misconception is that if a system consumes energy (e.g., ATP hydrolysis), it is
automatically "non-equilibrium."

¢ Correction: Many energy-consuming systems still exhibit behaviors that fit equilib-
rium models perfectly.

® True Indicator: A system requires a non-equilibrium model only when it exhibits
behaviors impossible in equilibrium, such as non-monotonicity or net cyclic fluxes .

Example: The Enzymatic Cycle

Consider an enzyme E that converts Substrate S to Product P.

—P (Release) +S (Binding)

Catalysis

¢ Equilibrium: Forward and backward rates balance perfectly. No net rotation.

¢ Non-Equilibrium: High concentration of S drives the cycle continuously in a clockwise
direction (Flux). This is a "current" in the state space.

2.2 Finite Markov Chains & The Master Equation

To model these kinetics, we use Finite State Markov Chains . This is a specific application
of the Chemical Master Equation (CME).

From Concentrations to Probabilities

The lecture demonstrates that for 1st-order reactions , the macroscopic rate equation is
mathematically identical to the single-molecule probability equation.

Consider a simple reversible transition:

k2
A=B8B (7)

ki1
(Note: Notation assumes k; creates A, k; consumes A).

1. Macroscopic View (Rate Equation) Let A(t) and B(t) be the number of molecules. The
total number Ni,¢ = A + B is constant. The rate of change of A is:

dA
— = kB — kA
=Bk ®)

Variable Definitions:
¢ dA/dt: Change in number of molecules of A per unit time.
* k;: Rate constant for A — B (units: time™!).
* ky: Rate constant for B — A (units: time™!).

2. Microscopic View (Probability) We define the probability (or fraction) of being in state A
as:

A B
Pa = Pg = 9
A Ntot’ ® Ntot ()
Since the system is linear, we can divide the rate equation by the constant Nq¢:
1 dA B A
— =k —k 10
Nt dt Niot Niot 10
Substituting the probability definitions:
dPa
—— =koPg — k4P 11
m 2Pg —kiPa (11)

Conclusion on Linearity

Because the reaction is linear (1st order), the math governing billions of molecules
(concentration) is the exact same math governing one molecule’s probability . We
can simply model one molecule hopping between states.

2.3 Mathematical Formalism: The Q-Matrix

We generalize the system to n states using Linear Algebra.

The Probability Vector

Let p(t) be a column vector representing the probability distribution at time t:

pt)=1 . (12)

where Y | Pi(t) = 1.
The Transition Rate Matrix (Q)

The evolution of probability is given by the differential equation:

dp _
T (13)

The matrix Q is constructed as follows:

¢ Off-diagonal terms (qi; where i # j): The rate of transitioning FROM state j TO state
i.

¢ Diagonal terms (qii): The negative sum of all outgoing rates from state i.

Mathematical Detail: Conservation of Probability

Since probability cannot be created or destroyed, the columns of Q must sum to zero.

This implies the diagonal term is:

G ——) (15)

i#j

Physical meaning: The rate of leaving state j (qj;) is exactly the sum of rates going to
all other states.

2.4 Steady States and Ergodicity

Steady State Distribution ()
At steady state, the probability distribution does not change with time.

dp
L = 1
It 0 = Qm=0 (16)

Here, 7t is the Steady State Distribution . Mathematically, it is the Right Eigenvector of
matrix Q corresponding to the eigenvalue A = 0.

7

Ergodicity

Definition: Strong Connectivity

A graph is strongly connected if there is a path from every state to every other state.

If the state transition graph is strongly connected (Irreducible):
1. The steady state 7 is Unique .
2. The system is Ergodic .

Implication for Simulation: Due to ergodicity, the Time Average equals the Ensemble
Average .

Time Average of 1 trajectory = Average over infinite populations

You only need to simulate one single molecule trajectory for a long time to calculate the
distribution of the entire population.

2.5 Detailed Balance (Equilibrium vs. Steady State)

A system can be in a steady state (constant concentrations) without being in thermodynamic
equilibrium (e.g., a battery powering a circuit).

Detailed Balance Condition

For a system to be in true Equilibrium , the flux between any two specific states must
balance out to zero.
Flqu_>1" = FIUXi_”' (17)

T54qy = Tidji (18)
Cycle Condition (Kolmogorov Criterion)

An easier way to check for equilibrium is to look at loops in the graph. For any closed cycle
(eg,1—=2—=3—=1)

Product of Clockwise Rates = Product of Counter-Clockwise Rates (19)

Equilibrium Requirement:
k12 : k23 : k'31 = k13 : k32 : k-21 (20)

If this equation does not hold, there is a net flux, and the system is "Non-Equilibrium".

8

2.6 The Philosophy of "State": Markovian vs. Non-Markovian

There is a debate in biology that biological systems depend on history (memory) and are
therefore "Non-Markovian."

The Lecturer’s Counter-Argument

The lecturer argues that all dynamical systems are Markovian if you define the "State"
correctly.

Definition: State

A State is a collection of variables that summarizes all necessary information from
the past to predict the future evolution of the system.

Example: Hidden Variables

If a system appears to depend on history (x; depends on x;_; and x;_»), it is only because
we defined the state too narrowly.

* Narrow View (Non-Markovian): State = [x.]. The future depends on the past history.

¢ Expanded View (Markovian): State = [th] . Now, the current vector contains all the
t—1
information needed for the next step.

Analogy: In Newtonian mechanics, position x alone is not a state (need velocity). But (x,v)
is a state.

Conclusion: When modeling cell biology, assuming a Markov chain is not a restrictive
assumption about "lack of memory." It is simply an assumption that the variables we chose
(e.g., gene expression levels) are sufficient to define the system’s future.

2.7 First-Passage Time to an Active State

Consider a CTMC with discrete states. One state is designated as active (state A). We want
to compute: How long does it take to reach A starting from some initial state i?

Notation:
e X(t): state of the system at time t
* Q = (q4j): generator matrix
- gij = 0 for i # j (transition rate i — j)

- qii = —)_;; gy (total exit rate from 1)

First-passage time: T; = inf{t > 0: X(t) = A | X(0) =1}

Mean first-passage time: m; = E[T;]

Mean First-Passage Time Calculation

Intuitive Derivation: Starting from state i # A:

1. Wait in state 1 for exponentially distributed time with rate —q;;. Mean waiting time =
1/(—qii)-
2. Jump to state j # i with probability <.
3. After arriving at j:
e Ifj = A: done (extra time = 0)

¢ If j # A: need additional mean time m;

Thus:)
mi=—— 4y oy, 1)
qu £ qu
Multiply by —qi:
—qymy =1+ Z gi;my (22)
jAL
Since ma = 0, we separate terms:
—qumi =1+) qym (23)
jA
JAA

This is a system of linear equations for m; (i # A).

Matrix Formulation: Make state A absorbing: set qa; = 0 for all j.

Partition states: transient states T and absorbing state A. Reorder so transient states come
first:

e Q: nr x nt matrix for transient states
e r: exit rates from transient to absorbing state
e 0: row for A

Let m = vector of m; fori € T, and 1 = column vector of ones.

Then:

m=(—Q) "1 (24)

10

Proof: From —q;ym;=1+ ZieT,isﬁi qijm;, rewrite as:
—qumi— Y quym; =1
JETj#1
This is the i-th row of (—Q)m = 1.
2.8 Distribution and Example

Distribution of First-Passage Time
Let Fi(t) = P(T1 < t).

Backward Equation: Condition on first jump:

() J qn eCIu [Z ql] F t—S]dS

- q it
= J equs [Z ql)]
j#
Differentiate with respect to t:
dF;
at = quiFi(t) + Z qi;F (25)
j#L

Boundary Conditions:
e Fa(t)=1fort>0
e Fi(0)=0fori#A
Matrix Form: Let F(t) = vector of Fi(t) fori € T. Then:

dF ~
= QF(t) + (26)
with F(0) = 0.
Solution using matrix exponential:
t
F(t) = J eQrds (27)
0
If Q is invertible:)
F(t) = (th - 1) Ol (28)

11

Example: Three-State System
System Description: States: 1 (initial), 2, A (active).

Transition rates:

1—=2
9 Koo q
155 A
Generator Matrix:
—(ky + kr) k4 k¢
Q= Kb —(kp + ko) ko
0 0 0

Mean First-Passage Times: Transient states: {1, 2}.

Q [—(kq + k) ky
N Ky —(kp + ka)

_Q:(k1+kf —k1>
—ko kp + ke

m= (- ;)

det(—Q) = (ki + k¢)(kp + k2) — kiky
- kle + kfkb + kka

The explicit solution:

1 (kb + Ko +k1>

m = =
det(—Q) \kb + k1 + k¢
So:
kp + ko + kg
my; =
kiks + kekp + keko
ky + ki + k¢
my

T XKs + kekp + Keks

12

3 Computation Biomachine

Again like in adaptation biomachine, when we consider biological systems, we often
consider they have distinct functions, like computation. To achieve such functions, we have
built engineered machines, eg, computer. Since biological systems also need to achieve the
same tasks, the structures and design principles of engineered machines could be used to
better understand why biological systems are built in that way.

3.1 Today’s Computation biomachine

Biological systems need to process information to respond to environments.

¢ Example:

activate a gene expression

to take up new nutrient

start a stringent response when harsh conditions hit

become a new cell type when growth factors say “differentiate”

So cells for sure need to do computation, but how is it done? How complex a computation
does the cell achieve in that way? In ENgineered machines, we built computational units,
and then linked them up for the larger and larger computation.

And now let us search for the existing biological computational unit.
logic gates

We built computers consisting of binary logic gates to perform computation. Maybe cells
do the same?

e Example:
- AND Gate
- OR gate
- NOT gate

Cells have chemical reactions inside, maybe implement gates via chemical reactions
(catalysis)? Input and output turn out to be the concentration of species.

¢ ‘0" corresponds to low conc relative to the total conc
* "1’ corresponds to high conc relative to the total conc

¢ Example:
— The variable Y is represented in two forms, YO and Y1. (e.g., like phosphorylation
and dephosphoorylation)
Y0 < Y1

— Then "transition’ of a signal can be done by catalysis of production and degrada-
tion.

How to build an universal turing machine out of logic gate? Namely, we can do whatever
computation we want. The answer is NAND gate.

¢ NAND gate

13

X Y|z
Xo+ Yo+ 2y —= Xo+ Yo+ Z4 0 0|1
Xo+Yi+Zo— Xo+ Y1+ Z4 0 1|1
Xi+Yo+Zo = Xi+Yo+ 27, 1 01
X, + Yy 4+ 21— Xe+ Yy + Zg 1 170

So Chemical reaction (catalysis) networks are Turing universal!

Cells can perform logic gate computations via catalytic chemical reactions. In fact, they can
perform arbitrarily complex computations!

¢ Points to worry:
- Signal may get corrupted in a cascade (repeat / restore).

— Such reactions may be hard to implement (e.g. not trimolecular; need to make
them first- or second-order).

- Reactions are stochastic / discrete / noisy (in fact that’s even better . . .).
- Maybe reactions are more powerful:

* Use mass—action catalytic reactions themselves as computational units
(similar, maybe a bit better).

e WAIT! But how complex can a cell be in this way?
— Number of catalytic reactions ~ number of enzyme types.

— This is about 10? (e.g.~ 5 x 10° reactions in databases for all known enzymes,
~ 10% in a human cell).

— If we need about 2-8 reactions per gate, that gives ~ 3 x 10? logic gates.
e Compare:

— 1972: first pocket calculators, ~ 3 x 102 transistors, with about 2-8 transistors per
gate (e.g. 4 for a NAND gate) = roughly 4-bit data bandwidth (one decimal digit
at a time).

— Moon landing computers (1970s): ~ 5 x 10® gates (~ 20x more than a cell in this
estimate).

- Nowadays: microcontroller chips have ~ 10° gates.
— Intel laptop chips typically have ~ 10° gates (~ 10* x more than a cell).

Maybe cells do computations in smarter ways? More efficient computing than logic
gates?

Neural networks

In recent years (2010 on wards), artificial neural networks (ANNs) have taken over in
the complexity of certain computational tasks, e.g. computer vision (image recognition),

14

language models and translation, robotics, etc.

ANNSs are made more powerful by their depth. Instead of just linking computational
units in simple cascades, we put them into layers, so that the network can achieve an
exponential-in-layers growth in representational complexity. The idea is to use layers to
build a very complex input—output map that represents the solutions of a computational
task, and then let the ANN learn/represent this map.

* The computational units of ANNSs are linear threshold units (LTUs, perceptrons). For
an input vector x = (x, ..., xn) and a weight vector w = (wy, ..., wy), the outputy is

L, whix=3 wix; >0,
‘y frnd
0, wix=3 wix; <8,

where 0 is the threshold.

¢ Example: an LTU network can implement the XOR function z = XOR(x,y) with two
binary inputs x,y € {0, 1}. Its truth table is

X Y|z
0 0/0
1 011
0 1|1
1 1|0

¢ How to implement an LTU in cells? We need many inputs to be combined and
weighted. A natural candidate mechanism is gene regulation: multiple activators and
repressors bind to DNA and jointly control the expression level of a gene.

Gene regulatory networks (GRNs) as an implementation:
¢ Transcription
G % G+ T
where G; is gene i and Tj is its transcript.

¢ Translation

t1,4

3
T — T + Ry,
where R; is the regulatory species (e.g. a transcription factor).

¢ Degradation

¢ Typical rates
Kixi, ket ~ 1072 87" (per molecule),

Keais Kpai ~ 10727 (e.g. ~ 20 min timescale).

15

* Regulation of transcription by regulator R;:

Rj + G(l) = Gijy
ji
where GY is the unbound promoter state and Gi; the promoter bound by regulator j.
Typically
o1
M-

with binding constant (dissociation constant) K in the range 0.1-10° nM.

- _ +

* Regulation among transcription factors:

kit
ij
Ri + L] é Dija
kij
pd
Di)‘ — ,
k;rjk
Di)' + Gk ? Gijk-

ijk

These reactions allow transcription factors to form dimers D;; and regulate different
genes Gy, effectively changing their transcription rates.
* LTU in titration GRN:

Represent inputs by normalized variables

—
—.

Xy =

I

= |
—.

where [; is the concentration of input j and j is a reference value.
Assumptions:

- I act as repressors, so they only affect transcription rates through binding (no
extra production term, ki, = 0).

— Tight binding between transcription factors R; and Ry/, i.e. K{{ — 0.

— Dimers Dj;i- do not bind promoters G; or Gi/, so promoter states with dimers
(e.g. Giir, Gisi) can be ignored.

Idea: competitive binding among transcription factors R;, Ri: forms a decision unit
that behaves like a linear threshold unit.

¢ Binding equilibrium with inputs:
For repressor I; binding to promoter G;, let

Gj; = promoter i bound by input j.

16

At equilibrium,
;G4

c _
M

The total amount of promoter for gene 1 is

G =G{+) Gi=Gi+>
J J
I
:Gi<1+]ZK)
G%Ot

j
ji
M
N 1+Zj I)’/K?\i/L'

LGy
KA

M

Hence

i

Gene expression of regulator R;:
Let
Ritot = Ri + Diwvr

be the total amount of R; (free plus dimer). Its production-degradation dynamics are

Ri,tot - ktlTi - krdRi,tot-

At steady state,
Ky

krd

Ti.

Ri,tot =

For the transcript T;,

Kix
Ti = gikixGi — kpalh = Ti= —%4:G;

Kpa
at steady state. Combining the two expressions gives
k X]<’t1
Ritot = mgiGi = 9iGy,

where the prefactor is absorbed into an effective gain g; (typically of order 1 per copy
of Gi°"). Using the expression for Gj,

G@ot
gi1+Zj Ij/KJ;\i/l‘

Ri,tot -

Competitive binding / titration between R; and R;:

For very tight binding between R; and R/, the dimer concentration and the remaining
free R; can be approximated by

Diir = min{Ry tot, Ri’ tot),

17

and
{07 Ri,tot < Ri’,tot;
Ry =

Ritot — Rirtot; Otherwise.

This titration mechanism implements a nonlinear, threshold-like dependence of the
free regulator R; on the inputs, which is what allows the GRN to behave like an LTU.

Decision boundary.
There are regulators R; that can bind to the output gene Go. If R{ ; > Rt (and
binding is tight), R{ represses G, and the output is 0. In this case we require
9i — > gi
L+ Y L/ T 1+ X /Ky

as the condition for output = 0.

Rearranging gives

g{<1+Z ;jji/) > gi(1+Z KIjji>
> Z (Kll/ - K].l)

Introducing normalized inputs

I
Xj = —,
m
we obtain))
gi — 91 gi gi
T 2% <Kji' Rk) '
~— j M M
i ﬁ’_/
)
Thus, for output 0,

Z wjX; < 91,
J
which is exactly the decision rule of a linear threshold unit (LTU).

That’s great: we can build an LTU out of just three genes. Cells can in principle
achieve much more efficient computation using neural networks built from such
genetic units.

But wait — the complexity of an ANN scales with the number of weights.

For a gene regulatory network (GRN), the effective number of weights is roughly

#connections in GRN =~ #TFs per gene x #genes.

A rough comparison:

18

E. coli Yeast Human

#TFs <300 (7%) ~ 200 (3%) <1800
TFs per gene 1-2 (0-10) 1-2(0-20) 10-12 (0-100)
Estimated #weights ~ 102 ~ 103 ~ 101

For ANNSs, the number of weights has grown dramatically:

1990s 2010s 2020s
AlexNet,
LeNet, VGG-16, Transformers
Example models MLP on MNIST ResNet on ImageNet (GPT-14)
#weights ~ 103 ~ 104109 ~107-10'°

So even human cells, with only O(10%) effective weights, would correspond to just a
small fraction of a classic CNN such as LeNet doing handwritten digit recognition.

Something seems off: cells must be processing information much more efficiently
than a naive weight-count comparison with ANNs would suggest.

Side note: binding is much more efficient Binding can implement a rectified—linear
(ReLU)-type operation much more efficiently than catalysis or gene expression.

Define
x, x>0,

0, otherwise.

ReLU(x) = {

Consider tight binding between two species X and Y:
X+Y=D.

Let X0t and Y, be their total amounts. Under strong binding, the free X concentration
satisfies

X — Xtot — Yiots Xtot > Yiots
free = .
e 0, otherwise,

SO
Xiree = F(Xiot, Yiot) = ReLU(Xior — Yeot)-
Composition of such functions f can achieve arbitrarily complex behaviour, e.g.
* any piecewise-linear function,
* any logic gate,
e any LTU, etc.

The number of binding reactions in cells is huge. Very roughly:

19

E. coli Yeast Mammalian

protein—protein 10t 10°-10° 105-107
enzyme-substrate / cofactor 10°

protein-DNA 10%-10°
protein—-RNA

protein-lipid / ion ...

Total 10°-10° 109-10" 107-10%

Computational tasks in Bio vs Engineered

¢ Logic gates in computers.

— Task: logical deduction / symbolic computation.

— Question: do cells need to do logical deduction?
® LTUs in ANNSs.

— Task: represent / fit / learn complex input—output maps.

— Question: do cells need to do this kind of generic function approximation?
* One task we clearly see cells doing;:

- In response to changing environments, cells perform different actions, often via
changes in gene expression.

— So at least, a cell needs to encode one complex input—output map (though not an
arbitrary one) that maps environmental conditions to appropriate actions.

20

	Equilibrium Physics of Bio-regulation
	The Measurement Problem
	The Bio-Design Perspective
	The Analytical Perspective

	Markov Chains: Stochastic Kinetics and non-equilibrium
	Non-Equilibrium Systems
	Finite Markov Chains & The Master Equation
	Mathematical Formalism: The Q-Matrix
	Steady States and Ergodicity
	Detailed Balance (Equilibrium vs. Steady State)
	The Philosophy of "State": Markovian vs. Non-Markovian
	First-Passage Time to an Active State
	Distribution and Example

	Computation Biomachine
	Today's Computation biomachine

