
Ctrl & Comp in Bio Sys - Westlake Univ., Fall 2025

Lecture 08: Stochastic Kinetics of Markov Chain and
Computation Biomachines

2025-10-30
Lecturer: Fangzhou Xiao Scribe: Xia Yao+Jiacheng Wei+Yihan Gong

Contents
1 Equilibrium Physics of Bio-regulation 2

1.1 The Measurement Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Bio-Design Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Analytical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Markov Chains: Stochastic Kinetics and non-equilibrium 5
2.1 Non-Equilibrium Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Finite Markov Chains & The Master Equation . . . . . . . . . . . . . . . . . . 5
2.3 Mathematical Formalism: The Q-Matrix . . . . . . . . . . . . . . . . . . . . . 6
2.4 Steady States and Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Detailed Balance (Equilibrium vs. Steady State) . . . . . . . . . . . . . . . . . 8
2.6 The Philosophy of "State": Markovian vs. Non-Markovian . . . . . . . . . . 9
2.7 First-Passage Time to an Active State . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Distribution and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Computation Biomachine 13
3.1 Today’s Computation biomachine . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



1 Equilibrium Physics of Bio-regulation
1.1 The Measurement Problem
The most practical motivation for equilibrium physics is the difficulty of measuring kinetic
rates compared to thermodynamic energies.
1.The Kinetic Challenge
Consider a standard biological binding reaction, such as a gene (D) binding to a transcription
factor (P), or an enzyme (E) binding to a substrate (S).

The dynamic model is described by the Law of Mass Action:

E+ S
k+−⇀↽−
k−

ES (1)

To model this dynamically, we need two parameters:

• k+: The association rate constant.

• k−: The dissociation rate constant.

Why is this hard to measure? To find k+ and k−, you must measure the concentrations
of the free components (E,S) and the complex (ES) in real-time. However, the biological
bond between E and S is usually non-covalent (e.g., hydrogen bonds, Van der Waals forces).
These are weak associations.

The "Shattering" Effect (Mass Spectrometry) Common measurement tools, like Mass
Spectrometry, require imparting energy to the molecules to detect them.

• When you apply energy to measure the system, the weak non-covalent bond breaks.

• You cannot distinguish whether the detected molecules were originally a complex
(ES) or two separate molecules (E+ S).

• The act of measurement destroys the structure you are trying to observe.

E S

Complex (ES)

Measurement Energy

E S
"Shattering"

Free E Free S

2.The Equilibrium Solution: Thermodynamics
Instead of trying to measure k+ and k− individually, we look at the system in equilibrium.
Here, we care about the ratio, the Dissociation Constant (Kd):

2



The Equilibrium Relation

Kd =
[E][S]

[ES]
=

k−

k+

(2)

Crucially, statistical physics relates this ratio to Energy. The probability of a state is
proportional to the Boltzmann factor:

P ∝ e−Estate/kBT (3)

Therefore, Kd is directly related to the Binding Free Energy (∆G):

Energy-Measurement Link

Kd ∝ e∆G/kBT (4)

Why is this easier?

• Energy changes (∆G) correspond to the release or absorption of Heat.

• We can measure heat changes very accurately (e.g., Isothermal Titration Calorimetry)
without needing to count individual molecules or preserve fragile bonds during
detection.

• Conclusion: Equilibrium is a "Measurement Science." It transforms a hard counting
problem into an easier calorimetry problem.

1.2 The Bio-Design Perspective
If you are an engineer or synthetic biologist trying to build a biological function (e.g., a
genetic switch), equilibrium mechanisms are often superior.
1.Low Energy Cost

• Non-Equilibrium: Requires constant energy input (flux) to maintain a steady state
(like keeping a lightbulb on).

• Equilibrium: Once the system settles, it stays there forever without consuming fuel
(ATP). It is thermodynamically stable.

2.Low Mechanistic Complexity
• Designing a cycle that forces a reaction in one direction (Non-equilibrium) requires

complex molecular machinery to couple with energy sources.

• Designing for equilibrium just requires mixing components that have the right binding
affinity (∆G). They will naturally find their way to the desired state.

1.3 The Analytical Perspective
From the perspective of system analysis (Mathematical Modeling), equilibrium provides
powerful constraints that make unsolvable problems solvable.

3



1.Dynamics are Hard
• Deterministic: Systems of coupled differential equations are often non-linear and

hard to solve analytically.

• Stochastic: If we treat it as a random process, the Master Equation is usually
infinite-dimensional and impossible to solve exactly.

2.Equilibrium is Easy
If we assume the system is at equilibrium, we don’t need to solve the dynamics. We know
the answer immediately because of the Boltzmann Law:

P(Statei) =
1
Z
e−Ei/kBT (5)

Where Z is the partition function.

Key Constraints Equilibrium imposes strict physical rules that simplify the math:

1. Detailed Balance: The flux between any two states is zero.

PA · kA→B = PB · kB→A (6)

2. No Cycle Fluxes: There is no net rotation around reaction loops.

Summary of Section 1

Even though biology is dynamic, we use equilibrium physics because:
1. We can measure "Energies" (Heat) much easier than "Rates".
2. Equilibrium systems are energy-efficient and simpler to design.
3. Equilibrium math is solvable via the Boltzmann distribution.

4



2 Markov Chains: Stochastic Kinetics and non-equilibrium
Traditional thermodynamics often focuses on equilibrium—the state of a system after
an infinite amount of time. However, in biological systems (like cells), we are often
interested in kinetics (how fast things happen) and non-equilibrium behaviors (energy
consumption).

The Kinetics Problem

Even if we know the final state of a cell, we often ask: "If a signal changes in the
environment, how long does it take for the cell to switch states?"

• This is known as the First Passage Time problem.
• Simply adding up the inverse rates of steps (1/k1 + 1/k2 . . . ) is incorrect because

stochastic systems can transition backward.

2.1 Non-Equilibrium Systems
Energy vs. Non-Equilibrium
A common misconception is that if a system consumes energy (e.g., ATP hydrolysis), it is
automatically "non-equilibrium."

• Correction: Many energy-consuming systems still exhibit behaviors that fit equilib-
rium models perfectly.

• True Indicator: A system requires a non-equilibrium model only when it exhibits
behaviors impossible in equilibrium, such as non-monotonicity or net cyclic fluxes .

Example: The Enzymatic Cycle
Consider an enzyme E that converts Substrate S to Product P.

E

ESEP

+S (Binding)

Catalysis

−P (Release)

Net Flux J > 0

• Equilibrium: Forward and backward rates balance perfectly. No net rotation.

• Non-Equilibrium: High concentration of S drives the cycle continuously in a clockwise
direction (Flux). This is a "current" in the state space.

2.2 Finite Markov Chains & The Master Equation
To model these kinetics, we use Finite State Markov Chains . This is a specific application
of the Chemical Master Equation (CME).

5



From Concentrations to Probabilities
The lecture demonstrates that for 1st-order reactions , the macroscopic rate equation is
mathematically identical to the single-molecule probability equation.

Consider a simple reversible transition:

A
k2
⇌
k1

B (7)

*(Note: Notation assumes k2 creates A, k1 consumes A)*.

1. Macroscopic View (Rate Equation) Let A(t) and B(t) be the number of molecules. The
total number Ntot = A+ B is constant. The rate of change of A is:

dA

dt
= k2B− k1A (8)

Variable Definitions:

• dA/dt: Change in number of molecules of A per unit time.

• k1: Rate constant for A → B (units: time−1).

• k2: Rate constant for B → A (units: time−1).

2. Microscopic View (Probability) We define the probability (or fraction) of being in state A
as:

PA =
A

Ntot

, PB =
B

Ntot

(9)

Since the system is linear, we can divide the rate equation by the constant Ntot:

1
Ntot

dA

dt
= k2

B

Ntot

− k1
A

Ntot

(10)

Substituting the probability definitions:

dPA

dt
= k2PB − k1PA (11)

Conclusion on Linearity

Because the reaction is linear (1st order), the math governing billions of molecules
(concentration) is the exact same math governing one molecule’s probability . We
can simply model one molecule hopping between states.

2.3 Mathematical Formalism: The Q-Matrix
We generalize the system to n states using Linear Algebra.

6



The Probability Vector
Let p(t) be a column vector representing the probability distribution at time t:

p(t) =


P1(t)
P2(t)

...
Pn(t)

 (12)

where
∑n

i=1 Pi(t) = 1.
The Transition Rate Matrix (Q)
The evolution of probability is given by the differential equation:

dp

dt
= Qp (13)

The matrix Q is constructed as follows:

• Off-diagonal terms (qij where i ̸= j): The rate of transitioning FROM state j TO state
i.

• Diagonal terms (qii): The negative sum of all outgoing rates from state i.

Mathematical Detail: Conservation of Probability

Since probability cannot be created or destroyed, the columns of Q must sum to zero.

n∑
i=1

qij = 0 (14)

This implies the diagonal term is:

qjj = −
∑
i̸=j

qij (15)

Physical meaning: The rate of leaving state j (qjj) is exactly the sum of rates going to
all other states.

2.4 Steady States and Ergodicity
Steady State Distribution (π)
At steady state, the probability distribution does not change with time.

dp

dt
= 0 =⇒ Qπ = 0 (16)

Here, π is the Steady State Distribution . Mathematically, it is the Right Eigenvector of
matrix Q corresponding to the eigenvalue λ = 0.

7



Ergodicity

Definition: Strong Connectivity

A graph is strongly connected if there is a path from every state to every other state.

If the state transition graph is strongly connected (Irreducible):

1. The steady state π is Unique .

2. The system is Ergodic .

Implication for Simulation: Due to ergodicity, the Time Average equals the Ensemble
Average .

Time Average of 1 trajectory = Average over infinite populations

You only need to simulate one single molecule trajectory for a long time to calculate the
distribution of the entire population.

2.5 Detailed Balance (Equilibrium vs. Steady State)
A system can be in a steady state (constant concentrations) without being in thermodynamic
equilibrium (e.g., a battery powering a circuit).
Detailed Balance Condition
For a system to be in true Equilibrium , the flux between any two specific states must
balance out to zero.

Fluxj→i = Fluxi→j (17)
πjqij = πiqji (18)

Cycle Condition (Kolmogorov Criterion)
An easier way to check for equilibrium is to look at loops in the graph. For any closed cycle
(e.g., 1 → 2 → 3 → 1):

Product of Clockwise Rates = Product of Counter-Clockwise Rates (19)

1

23

k12

k21

k23

k32

k31

k13

Equilibrium Requirement:

k12 · k23 · k31 = k13 · k32 · k21 (20)

If this equation does not hold, there is a net flux, and the system is "Non-Equilibrium".

8



2.6 The Philosophy of "State": Markovian vs. Non-Markovian
There is a debate in biology that biological systems depend on history (memory) and are
therefore "Non-Markovian."
The Lecturer’s Counter-Argument
The lecturer argues that all dynamical systems are Markovian if you define the "State"
correctly.

Definition: State

A State is a collection of variables that summarizes all necessary information from
the past to predict the future evolution of the system.

Example: Hidden Variables
If a system appears to depend on history (xt depends on xt−1 and xt−2), it is only because
we defined the state too narrowly.

• Narrow View (Non-Markovian): State = [xt]. The future depends on the past history.

• Expanded View (Markovian): State =
[
xt
xt−1

]
. Now, the current vector contains all the

information needed for the next step.

Analogy: In Newtonian mechanics, position x alone is not a state (need velocity). But (x, v)
is a state.

Conclusion: When modeling cell biology, assuming a Markov chain is not a restrictive
assumption about "lack of memory." It is simply an assumption that the variables we chose
(e.g., gene expression levels) are sufficient to define the system’s future.

2.7 First-Passage Time to an Active State
Consider a CTMC with discrete states. One state is designated as active (state A). We want
to compute: How long does it take to reach A starting from some initial state i?
Notation:

• X(t): state of the system at time t

• Q = (qij): generator matrix

– qij ⩾ 0 for i ̸= j (transition rate i → j)

– qii = −
∑

j̸=i qij (total exit rate from i)

• First-passage time: Ti = inf{t ⩾ 0 : X(t) = A | X(0) = i}

• Mean first-passage time: mi = E[Ti]

• CDF: Fi(t) = P(Ti ⩽ t)

9



Mean First-Passage Time Calculation
Intuitive Derivation: Starting from state i ̸= A:

1. Wait in state i for exponentially distributed time with rate −qii. Mean waiting time =
1/(−qii).

2. Jump to state j ̸= i with probability qij

−qii
.

3. After arriving at j:

• If j = A: done (extra time = 0)

• If j ̸= A: need additional mean time mj

Thus:
mi =

1
−qii

+
∑
j̸=i

qij

−qii

mj (21)

Multiply by −qii:
−qiimi = 1 +

∑
j̸=i

qijmj (22)

Since mA = 0, we separate terms:

−qiimi = 1 +
∑
j̸=i
j̸=A

qijmj (23)

This is a system of linear equations for mi (i ̸= A).
Matrix Formulation: Make state A absorbing: set qAj = 0 for all j.

Partition states: transient states T and absorbing state A. Reorder so transient states come
first:

Q =

(
Q̃ r
0 0

)
• Q̃: nT × nT matrix for transient states

• r: exit rates from transient to absorbing state

• 0: row for A

Let m = vector of mi for i ∈ T , and 1 = column vector of ones.

Then:
m = (−Q̃)−11 (24)

10



Proof: From −qiimi = 1 +
∑

j∈T ,j̸=i qijmj, rewrite as:

(−qii)mi −
∑

j∈T ,j̸=i

qijmj = 1

This is the i-th row of (−Q̃)m = 1.

2.8 Distribution and Example
Distribution of First-Passage Time
Let Fi(t) = P(Ti ⩽ t).
Backward Equation: Condition on first jump:

Fi(t) =

∫ t

0
(−qii)e

qiis

[∑
j

qij

−qii

Fj(t− s)

]
ds

=

∫ t

0
eqiis

[∑
j̸=i

qijFj(t− s)

]
ds

Differentiate with respect to t:

dFi

dt
= qiiFi(t) +

∑
j̸=i

qijFj(t) (25)

Boundary Conditions:

• FA(t) = 1 for t ⩾ 0

• Fi(0) = 0 for i ̸= A

Matrix Form: Let F(t) = vector of Fi(t) for i ∈ T . Then:

dF
dt

= Q̃F(t) + r (26)

with F(0) = 0.

Solution using matrix exponential:

F(t) =
∫ t

0
eQ̃srds (27)

If Q̃ is invertible:
F(t) =

(
eQ̃t − I

)
Q̃−1r (28)

11



Example: Three-State System
System Description: States: 1 (initial), 2, A (active).

Transition rates:

1 k1−→ 2

2 k2−→ A

2 kb−→ 1

1 kf−→ A

Generator Matrix:

Q =

−(k1 + kf) k1 kf

kb −(kb + k2) k2
0 0 0


Mean First-Passage Times: Transient states: {1, 2}.

Q̃ =

(
−(k1 + kf) k1

kb −(kb + k2)

)

−Q̃ =

(
k1 + kf −k1
−kb kb + k2

)

m = (−Q̃)−1
(

1
1

)
The explicit solution:

det
(
−Q̃

)
= (k1 + kf)(kb + k2) − k1kb

= k1k2 + kfkb + kfk2

m =
1

det
(
−Q̃

)(kb + k2 + k1
kb + k1 + kf

)
So:

m1 =
kb + k2 + k1

k1k2 + kfkb + kfk2

m2 =
kb + k1 + kf

k1k2 + kfkb + kfk2

12



3 Computation Biomachine
Again like in adaptation biomachine, when we consider biological systems, we often
consider they have distinct functions, like computation. To achieve such functions, we have
built engineered machines, eg, computer. Since biological systems also need to achieve the
same tasks, the structures and design principles of engineered machines could be used to
better understand why biological systems are built in that way.

3.1 Today’s Computation biomachine
Biological systems need to process information to respond to environments.

• Example:
– activate a gene expression
– to take up new nutrient
– start a stringent response when harsh conditions hit
– become a new cell type when growth factors say “differentiate”

So cells for sure need to do computation, but how is it done? How complex a computation
does the cell achieve in that way? In ENgineered machines, we built computational units,
and then linked them up for the larger and larger computation.

And now let us search for the existing biological computational unit.
logic gates
We built computers consisting of binary logic gates to perform computation. Maybe cells
do the same?

• Example:
– AND Gate
– OR gate
– NOT gate

Cells have chemical reactions inside, maybe implement gates via chemical reactions
(catalysis)? Input and output turn out to be the concentration of species.

• ’0’ corresponds to low conc relative to the total conc
• ’1’ corresponds to high conc relative to the total conc

• Example:
– The variable Y is represented in two forms, Y0 and Y1. (e.g., like phosphorylation

and dephosphoorylation)
Y0 ⇔ Y1

– Then ’transition’ of a signal can be done by catalysis of production and degrada-
tion.

How to build an universal turing machine out of logic gate? Namely, we can do whatever
computation we want. The answer is NAND gate.

• NAND gate

13



X0 + Y0 + Z0 → X0 + Y0 + Z1

X0 + Y1 + Z0 → X0 + Y1 + Z1

X1 + Y0 + Z0 → X1 + Y0 + Z1

X1 + Y1 + Z1 → X1 + Y1 + Z0

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

So Chemical reaction (catalysis) networks are Turing universal!

Cells can perform logic gate computations via catalytic chemical reactions. In fact, they can
perform arbitrarily complex computations!

• Points to worry:

– Signal may get corrupted in a cascade (repeat / restore).

– Such reactions may be hard to implement (e.g. not trimolecular; need to make
them first- or second-order).

– Reactions are stochastic / discrete / noisy (in fact that’s even better . . . ).

– Maybe reactions are more powerful:

‗ Use mass–action catalytic reactions themselves as computational units
(similar, maybe a bit better).

• WAIT! But how complex can a cell be in this way?

– Number of catalytic reactions ≈ number of enzyme types.

– This is about 103 (e.g. ∼ 5 × 103 reactions in databases for all known enzymes,
∼ 103 in a human cell).

– If we need about 2–8 reactions per gate, that gives ∼ 3 × 102 logic gates.

• Compare:

– 1972: first pocket calculators, ∼ 3 × 103 transistors, with about 2–8 transistors per
gate (e.g. 4 for a NAND gate) ⇒ roughly 4-bit data bandwidth (one decimal digit
at a time).

– Moon landing computers (1970s): ∼ 5 × 103 gates (∼ 20× more than a cell in this
estimate).

– Nowadays: microcontroller chips have ∼ 106 gates.

– Intel laptop chips typically have ∼ 109 gates (∼ 103× more than a cell).

Maybe cells do computations in smarter ways? More efficient computing than logic
gates?
Neural networks
In recent years (2010 on wards), artificial neural networks (ANNs) have taken over in
the complexity of certain computational tasks, e.g. computer vision (image recognition),

14



language models and translation, robotics, etc.

ANNs are made more powerful by their depth. Instead of just linking computational
units in simple cascades, we put them into layers, so that the network can achieve an
exponential-in-layers growth in representational complexity. The idea is to use layers to
build a very complex input–output map that represents the solutions of a computational
task, and then let the ANN learn/represent this map.

• The computational units of ANNs are linear threshold units (LTUs, perceptrons). For
an input vector x = (x1, . . . , xn) and a weight vector w = (w1, . . . ,wn), the output y is

y =

{
1, w⊤x =

∑
i wixi > θ,

0, w⊤x =
∑

i wixi ⩽ θ,

where θ is the threshold.

• Example: an LTU network can implement the XOR function z = XOR(x,y) with two
binary inputs x,y ∈ {0, 1}. Its truth table is

x y z

0 0 0
1 0 1
0 1 1
1 1 0

• How to implement an LTU in cells? We need many inputs to be combined and
weighted. A natural candidate mechanism is gene regulation: multiple activators and
repressors bind to DNA and jointly control the expression level of a gene.

Gene regulatory networks (GRNs) as an implementation:

• Transcription
Gi

ktx,i−−→ Gi + Ti,

where Gi is gene i and Ti is its transcript.

• Translation
Ti

ktl,i−−→ Ti + Ri,

where Ri is the regulatory species (e.g. a transcription factor).

• Degradation
Ti

krd,i−−→ ∅, Ri

kpd,i−−−→ ∅.

• Typical rates
ktx,i, ktl,i ∼ 10−3 s−1 (per molecule),

krd,i, kpd,i ∼ 10−3 s−1 (e.g. ∼ 20 min timescale).

15



• Regulation of transcription by regulator Rj:

Rj +G0
i

k+
ji

⇌
k−
ji

Gij,

where G0
i is the unbound promoter state and Gij the promoter bound by regulator j.

Typically
k+
ji ∼

1
nM · s , k−

ji = KM k+
ji,

with binding constant (dissociation constant) KM in the range 0.1–105 nM.

• Regulation among transcription factors:

Ri + Lj

k+
ij

⇌
k−
ij

Dij,

Dij

k
pd
ij−−→ ∅,

Dij +Gk

k+
ijk

⇌
k−
ijk

Gijk.

These reactions allow transcription factors to form dimers Dij and regulate different
genes Gk, effectively changing their transcription rates.

• LTU in titration GRN:

Represent inputs by normalized variables

xj =
Ij

Īj
,

where Ij is the concentration of input j and Īj is a reference value.

Assumptions:

– Ij act as repressors, so they only affect transcription rates through binding (no
extra production term, kj

tx = 0).

– Tight binding between transcription factors Ri and Ri ′ , i.e. Kii ′

M → 0.

– Dimers Dii ′ do not bind promoters Gi or Gi ′ , so promoter states with dimers
(e.g. Gii ′ , Gi ′i) can be ignored.

Idea: competitive binding among transcription factors Ri, Ri ′ forms a decision unit
that behaves like a linear threshold unit.

• Binding equilibrium with inputs:

For repressor Ij binding to promoter Gi, let

Gc
ji = promoter i bound by input j.

16



At equilibrium,

Gc
ji =

IjGi

Kji
M

.

The total amount of promoter for gene i is

Gtot
i = Gc

i +
∑
j

Gc
ji = Gi +

∑
j

IjGi

Kji
M

= Gi

(
1 +

∑
j

Ij

Kji
M

)
.

Hence
Gi =

Gtot
i

1 +
∑

j Ij/K
ji
M

.

• Gene expression of regulator Ri:

Let
Ri,tot = Ri +Dii ′

be the total amount of Ri (free plus dimer). Its production–degradation dynamics are

Ṙi,tot = ktlTi − krdRi,tot.

At steady state,

Ri,tot =
ktl

krd
Ti.

For the transcript Ti,

Ṫi = giktxGi − kpdTi ⇒ Ti =
ktx

kpd
giGi

at steady state. Combining the two expressions gives

Ri,tot =
ktxktl

kpdkrd
giGi ≡ giGi,

where the prefactor is absorbed into an effective gain gi (typically of order 1 per copy
of Gtot

i ). Using the expression for Gi,

Ri,tot = gi

Gtot
i

1 +
∑

j Ij/K
ji
M

.

• Competitive binding / titration between Ri and Ri ′ :

For very tight binding between Ri and Ri ′ , the dimer concentration and the remaining
free Ri can be approximated by

Dii ′ = min{Ri,tot,Ri ′,tot},

17



and

Ri =

{
0, Ri,tot < Ri ′,tot,

Ri,tot − Ri ′,tot, otherwise.

This titration mechanism implements a nonlinear, threshold-like dependence of the
free regulator Ri on the inputs, which is what allows the GRN to behave like an LTU.

• Decision boundary.

There are regulators R ′
i that can bind to the output gene G0. If R ′

i,tot > Ri,tot (and
binding is tight), R ′

i represses G0 and the output is 0. In this case we require

g ′
i

1 +
∑

j Ij/K
ji ′

M

>
gi

1 +
∑

j Ij/K
ji
M

as the condition for output = 0.

Rearranging gives

g ′
i

(
1 +

∑
j

Ij

Kji ′

M

)
> gi

(
1 +

∑
j

Ij

Kji
M

)
(g ′

i − gi) >
∑
j

Ij

( g ′
i

Kji ′

M

−
gi

Kji
M

)
.

Introducing normalized inputs

xj =
Ij

m
,

we obtain
g ′
i − gi

m︸ ︷︷ ︸
θi

>
∑
j

xj

( g ′
i

Kji ′

M

−
gi

Kji
M

)
︸ ︷︷ ︸

wj

.

Thus, for output 0, ∑
j

wjxj < θi,

which is exactly the decision rule of a linear threshold unit (LTU).

• That’s great: we can build an LTU out of just three genes. Cells can in principle
achieve much more efficient computation using neural networks built from such
genetic units.

• But wait — the complexity of an ANN scales with the number of weights.

For a gene regulatory network (GRN), the effective number of weights is roughly

#connections in GRN ≈ #TFs per gene × #genes.

A rough comparison:

18



E. coli Yeast Human
# TFs ∼ 300 (7%) ∼ 200 (3%) ∼ 1800
# TFs per gene 1–2 (0–10) 1–2 (0–20) 10–12 (0–100)
Estimated #weights ∼ 102 ∼ 103 ∼ 104

For ANNs, the number of weights has grown dramatically:

1990s 2010s 2020s

Example models
LeNet,

MLP on MNIST

AlexNet,
VGG-16,

ResNet on ImageNet
Transformers

(GPT-1–4)
#weights ∼ 103 ∼ 104–106 ∼ 107–1010

So even human cells, with only O(104) effective weights, would correspond to just a
small fraction of a classic CNN such as LeNet doing handwritten digit recognition.

Something seems off: cells must be processing information much more efficiently
than a naive weight-count comparison with ANNs would suggest.

Side note: binding is much more efficient Binding can implement a rectified–linear
(ReLU)–type operation much more efficiently than catalysis or gene expression.

Define

ReLU(x) =

{
x, x > 0,
0, otherwise.

Consider tight binding between two species X and Y:

X+ Y ⇌ D.

Let Xtot and Ytot be their total amounts. Under strong binding, the free X concentration
satisfies

Xfree =

{
Xtot − Ytot, Xtot > Ytot,
0, otherwise,

so
Xfree = f(Xtot, Ytot) = ReLU(Xtot − Ytot).

Composition of such functions f can achieve arbitrarily complex behaviour, e.g.

• any piecewise–linear function,

• any logic gate,

• any LTU, etc.

The number of binding reactions in cells is huge. Very roughly:

19



E. coli Yeast Mammalian
protein–protein 104 105–106 106–107

enzyme–substrate / cofactor 105

protein–DNA 104–105

protein–RNA
protein–lipid / ion . . .
Total 105–106 106–107 107–108

Computational tasks in Bio vs Engineered
• Logic gates in computers.

– Task: logical deduction / symbolic computation.

– Question: do cells need to do logical deduction?

• LTUs in ANNs.

– Task: represent / fit / learn complex input–output maps.

– Question: do cells need to do this kind of generic function approximation?

• One task we clearly see cells doing:

– In response to changing environments, cells perform different actions, often via
changes in gene expression.

– So at least, a cell needs to encode one complex input–output map (though not an
arbitrary one) that maps environmental conditions to appropriate actions.

20


	Equilibrium Physics of Bio-regulation
	The Measurement Problem
	The Bio-Design Perspective
	The Analytical Perspective

	Markov Chains: Stochastic Kinetics and non-equilibrium
	Non-Equilibrium Systems
	Finite Markov Chains & The Master Equation
	Mathematical Formalism: The Q-Matrix
	Steady States and Ergodicity
	Detailed Balance (Equilibrium vs. Steady State)
	The Philosophy of "State": Markovian vs. Non-Markovian
	First-Passage Time to an Active State
	Distribution and Example

	Computation Biomachine
	Today's Computation biomachine


