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Rosetta was built for structure prediction...

-

m{m@j




Rosetta was built for structure prediction...
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...but it can also be used for protein design
/ DESIGNED ANt:mo ACID SYNTHETD

PROTEIN SEQUENCE GENE

3 = E—
\







Broadly speaking, what does Rosetta do?

Keeps track of
protein structure and
kinematics

Provides algorithms for manipulating Scores favorability of current
conformation and/or sequence conformation and sequence V. Mulligan 5



Basic Rosetta Terms

 Residue
« Mover

* Filter

« Pose

« Conformation Space



What is “conformation space”?
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What is “conformation space”?

a, b,
a, b,
si=| a5 |, §,=| b,
a, b,
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Points in conformation space correspond to conformational states, and the distance
between two points is a measure of how similar two states are. Given Cartesian
coordinates, the length of the difference vector is the RMSD!



What is “conformation space”?
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Basic Rosetta Terms

 Residue
 Mover

« Filter

« Pose

« Conformation Space
« Score Function
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Rosetta is tool for molecular modeling built on Anfinsen’s Hypothesis

A protein’s amino acid sequence
@Q@oe determines its folded structure.

unfolded,
high energy
(high score)

The Rosetta energy function folded
calculates an energetic e lowest energy
“score” for a given e : (low score)

protein conformation.
Christian Anfinsen
image: NIH funnel: Ken DIII




The ScoreFunction:
A sum of residue-level pairwise
decomposable score terms.
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Rosetta uses a knowledge-based, all-atom energy function

Term Description

fa_atr attractive energy between two atoms on different residues separated by a distance d
fa_rep repulsive energy between two atoms on different residues separated by a distance d
fa_intra_rep repulsive energy between two atoms on the same residue separated by a distance d

fa_sol Gaussian exclusion implicit solvation energy between protein atoms in different residue:
Ik_ball_wtd orientation-dependent solvation of polar atoms assuming ideal water geometry

fa_intra_sol Gaussian exclusion implicit solvation energy between protein atoms in the same residue

fa_elec energy of interaction between two nonbonded charged atoms separated by a distance d

hbond_Ir_bb energy of short-range hydrogen bonds

hbond_sr_bb energy of long-range hydrogen bonds

hbond_bb_scenergy of backbone—side-chain hydrogen bonds

hbond_sc energy of side-chain—side-chain hydrogen bonds

dslf fa13 energy Of disulfide Dritges: et :

rama_prepro probability of backbone ¢, y angles given the amino acid type :

p_aa_pp probability of amino acid identity given backbone ¢, y angles

fa_dun probability that a chosen rotamer is native-like given backbone ¢, y angles

pro_close penalty for an open proline ring and proline w bonding energy

yhh_planarity sinusoidal penalty for nonplanar tyrosine x3 dihedral angle

ref reference energies for amino acid types

omega backbone-dependent penalty for cis dihedrals that deviate from 0° and trans dihedrals that deviate from 180°

Alford et al, The Rosetta all-atom energy function for
macromolecular modeling and design. PNAS. 2019. E<)



RosettaScripts



Layout of Rosetta Scripts

<ROSETTASCRIPTS>

</ROSETTASCRIPTS>
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What is the “packer” and how does it work?

Rosetta B. Packer, Attorney
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What is the “packer” and how does it work?
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t work?

i

” and how does

1Inimizer

What is the “m
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How are more complicated algorithms built?

FastRelax:

Set fa_rep to
2% of its
normal value.

Set fa_rep to
55% of its
normal value.

Call the packer.

Call the packer.

Call the
minimizer (low-
stringency).

Call the
minimizer (low-
stringency).

Set fa_rep to
25% of its

normal value.

Set fa_rep to
100% of its

normal value.

Call the packer.

Call the packer,
then the
minimizer (high-
stringency).

Call the
minimizer (low-
stringency).

Call the
minimizer (high-
stringency).
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Computation pipeline of the de novo binder design method

Target RifDock Interface Sequence Design

Focused
Search

Library &
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De novo Protein Design Experimental Pipeline
Generate Yeast Surface

Gene Library
Synthesis

FACS and Next-Gen DNA

Select Individual
Display Libraries Sequencing Designs for Verification
T E. Coli expression SDS-PAGE
Limited v I m
370C I/ K 4 Ll
— Protease = { ! ,
o{, 8 ﬁ .
I::> I %ﬁnm o @/zl—:;z‘_ “ . _.’...“- '
@ Limited b Size-exclusion Octet binding
Heat Chromatography
K @ \_/\‘/\\ﬁ ‘,/_—j
_ Transform yeast with N /! = ==
genes encoding | : . . Individual clones
: plasmids encoding Identify gene sequences : .
the designed _ . _ _ expressing designed
. . minibinder design library, encoding functional o
binder candidates L 1 minibinders are used to
and treat with limited designed minibinders

protease and / or heat O verify function



doc
Dock the miniprotein i
scaffolds to the selected » orientation of Patchdock
i outputs using the grid-
based refinement in RIF

region by low resolution

shape matching

Run rlfgen to generate

Detailed pipeline of the de novo binder design method

Target S
Select the protein of »
billions of favorable
interacting RIF residues
Predictor
Pre-screen the RifDock

interest and pick the

targeting region
Interface Des
outputs using a super fast

Motif Extraction nte
Extract all the secondary Use Rosetta to optimize
structural motifs making « the interface residues for «
i high shape and chemical Rosetta design protocol

complementarity and ML based method

Cluster the motlfs and
select privileged motifs «
based on per-position good contacts with the
weighted binding energy target protein
- Predictor n D n Model Se
c Pre-screen the grafting Use Rosetta to optimize Select good designs with
Supenmpose the » outputs using a super fast » the interface residues for » favorable protein folding
Rosetta design protocol high shape and chemical and protein interface
and ML based method complementarity metrics
Oligo A
Synthesis the

scaffolds onto the
privileged motifs
Yeast Dis y
Select and enrich the «
the designs using the

y Screening
oligonucleotides encoding

binders through the high-
DNA printing technology

Deep sequence the start «
throughput yeast display
and cell sorting assay

Binder Characterization
Quickly check the
expression in E. coli, « and the selected yeast
solubility and binding of sorting pools to identify
the potential binders potential binders
&
= Screening Combo Library e A
Screen the SS?\)I Ilt;rer; Combine 5-15 beneficial Screen thaleombo I|braw
» mutations to generate the ’ using lower target
combinatoria] library using concentration to identify
degenerative codons the highest affinity binder
¥

cterization

’ and identify beneficial

SSM L
Substitute each reS|due
with the other 19 AA to
ienesiip st
9 i NextGen Sequencing
- ~ Binder Cha
St ) ion Thoroughly check the
Obtain the high- resolutlon expressgiony solubility,
structure of the de novo ‘ stability, oligomerization
and binding affinity of the
optimize binder

binder to valid the design
model

Charactenze the potenual

« functions of the de novo
designed minibinder

Learn the successes and
failures of the whole

process to optimize the

computation pipeline
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THE AGE OF
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Fighting SARS-CoV-2

Viral entry inhibitors

SARS-CoV-2

Binding and viral entry via
% b fusion or endocy
ACE2

T \ Rec?':tor TM?SSZ

&

j Release of viral RNA

-/\J\/L\/\f\

/ Ribosome binding
Ribosome

ANB

RNA genome
(+ sense)

( REEEREILEY: 3CLpro inhibitors

pplab —D—(H)_
pela O 3_ RdRp

Viral proteases ,ef,fe,s) (Helicase
3CLpro and PLpro " -P™ B S @
Proteolysis by @ QO
Mpro and PLpr 3CLpro "o )
and d Non-structural proteins
PLpro (Nsps)

o0 —

Release of virus
via exocytosis

Exocytic
vesicle

Assembly and
Formation of

«\/\" virions
"\,\’\ 200-80aay

replication inhibitors

=

T+

/ -
w Translation

Replicase-Transcriptase
complex

Replication
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I
Interaction between ACE2 receptor and SARS-CoV-2 spike protein

SARS-CoV-2
s Spike protein

2
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De novo design against COVID-19 -- design small proteins that disrupt viral infection

Human
cell

ACE2
Receptor

Receptor
Binding
Domain

Spike
Protein

Coronavirus
SARS-CoV-2
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.
Computational Design of SARS-CoV-2 Miniprotein Inhibitors

ACE2 [garys

Approach Il
Approach | PP

de novo scaffolds docked
to the ACE2 binding
region

de novo proteins built
from the ACE2 helix

Cao et al., Science, 2020. 28



Goal: Design small proteins that disrupt viral infection

SARS-CoV-2

A

Miniprotein inhibitor LCB1

QCE2 t COT&Z?EZ%??;{?;M Length: 55 amino acids
eceptor P Stability: >95°C T,

RBD #ﬁ

Spike

Protein

Receptor binding domain (RBD)

Cao L, et al. Science. 2020
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https://www.bakerlab.org/wp-content/uploads/2020/09/Cao_etal_Science_COVID_spike_binders.pdf

I
De novo binder design with RFdiffusion

t=125 t=100

X, (input)

)?0 (prediction)

Euj Watson, J., Nature, 2023.
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De novo binder design with RFdiffusion

Binding target Binder design

@ Watson, J., Nature, 2023.
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De novo binder design with RFdiffusion

@ Watson, J., Nature, 2023.
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De novo binder design with RFdiffusion
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[lTJ Watson, J., Nature, 2023.
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Response units (nm)

[Binder (nM) ~ 5,000 1,000 -200 -40 -8

De novo binder design with RFdiffusion
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W Watson, J., Nature, 2023.
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.
De novo design of high-affinity binders of bioactive helical peptides

Bid

Bim

GIP

YL
o
GCG SCT GLP1

PTH PTHm

PYY NPY

w

Torres, S., Nature, 2023.
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De novo peptide binder design with RFdiffusion
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Euj Torres, S., Nature, 2023.
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I
De novo designed proteins neutralize lethal snake venom toxins

Cytotoxin

N %
AN Zrm
LN TR

ACh
binding site

Out

w Susana, T., Nature, 2025.
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De novo designed proteins neutralize lethal snake venom toxins

Design
models

SHRT
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CYTX

o
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RESEARCH

Robust deep learning-based protein sequence design
using ProteinMPNN

J. Dauparas'?, |. Anishchenko™2, N. Bennett"?3, H. Bai***, R. J. Ragotte™Z, L. F. Milles*2, B. I. M. Wicky™2,
A. Courbet'?4, R. J. de Haas®, N. Bethel"?4, P. J. Y. Leung"?3, T. F. Huddy'?, S. Pellock'?, D. Tischer'?,
F. Chan'2, B. KoepnickZ, H. Nguyen'?, A. Kang™2, B. Sankaran®, A. K. Bera'?, N. P. King"2, D. Baker*%4*

W Science, 2023.
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ProteinMPNN architecture

A chainA

Chain B

Input: protein

N, Ca, C, O,

/

/ Backbone Encoder \

| Update
edges

I
1
c
o
Q
)
-
o
-

backbone
coordinates

CpB distances

Zeros

ProteinMPNN

/ Sequence Decoder \

Update
nodes

Random
decoding
order

)
T{

Probabilities

lterative
decoding

Sample

Nodes <€

-

w

Sequence

Output: protein
sequence
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A graph-based, autoregressive model for protein sequences given 3D structures

A " =

Structure Encoder Sequence Decoder (autoregressive) Decoder
Position-wise Feedforward
Causal Self-attention
Encoder
Position-wise Feedforward
Self-attention

. . Edge embeddings  Node embeddlngs
(O Node (amino acid) —> Structure n A

)
=)

Information flow

6\9 Backbone —>» Structure and sequence | Structure G |

m NIPS, 2019. 41



In silico evaluation of ProteinMPNN

A 0.95 B
> 0.85 - =@= Rosetta
g 0.75 - ~#= ProteinMPNN | £ 0.7 7
g 0.65 A == = Fraction >
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2 0.25 - S
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o 0.15 7 7 ~ o Interface
~ n .
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Average CB distance for 8 closest neighbors, A
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= D
Structural characterization of ProteinMPNN designs

A B _ CS 1
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_____
Structural characterization of ProteinMPNN designs

E Tied within chain F 1le3 G H

8 10 12 14 16
Retention volume [mL]

? 3 "y Tied across & within chains
= = Original

= == MPNN #1 7

S pa— MPNN #2

3 4 /,’t';;\ N,
N v l‘g-',\ﬁ-' -
© 1A i

(] "

c = N\
@ W

£

50

(%]

o)

<

@ 44



Design of protein function with ProteinMPNN

Native peptide

Rosetta Remodel ProteinMPNN N to D mutant

Layer Design rescue
Rosetta Packing
SH3 domain
B
0.6 | s 3 M
0.54 = 1uM _ _ A
w300 NM g g g
0.4 e 100 M 5 5 S
0.34 == 30nM % % g
— () NM += += =
2] O O 4 O
e o} o} o}
0.0 1 E H{ - | -

200 400 600 800 1000
Time, s

200 400 600 800 1000
Time, s

W

200 400 600 800 1000 200 400 600 800 1000
Time, s Time, s
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Highly accurate protein structure prediction with AlphaFold

nature

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Open access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

John Jumper &, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav

Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal

Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David

Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis &3

w
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Sum(Zscore>0.0)
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AlphaFold2 performance in CASP14

Ve AlphaFold 2 e
 ——
Results from blind predictions o T~

(CASP14) “competition”

CASP Prediction Year

Current Opinion in Chemical Biology

of protein The median accuracy of the
top two performing methods at CASP (Critical Assessment of protein
Structure Prediction) is shown over the last four years In CASP14 (late
2020), the AlphaFold2 system from DeepMi 2 A
over all heavy atoms for single domain apo proteins.

Curr Opin Chem Biol, 2021

| AlQuraishi,

A

T1
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What is AlphaFold?

* A machine-learning-based model for predicting the 3D structure of
proteins using only sequence as input.

« Trained on known sequences and structures from the Protein Data
Bank, as well as large databases of protein sequences.

w



Median Co. r.m.s.d.qq (A)

AlphaFold2 produces highly accurate structures

b c
4 N terminus
2 -
1 -
0- ND QOOQNOINBRTNG© AlphaFold Experiment AlphaFold Experiment AlphaFold Experiment
3L S8nen3s033803Y r.m.s.d.q; = 0.8A; TM-score = 0.93 r.m.s.d. = 0.59 A within 8 A of Zn r.m.s.d.q5 = 2.2 A; TM-score = 0.96
=
<
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Example (TIA1)
Example (TIA1)

* AF2 was trained on monomeric —~
proteins with structures resolved |
in the PDB

* It is not designed to predict
flexibility or structures of flexible
regions

* AF2, however, is pretty good at
telling you when you should not
trust the predictions

* When AF2 is unsure, the region is
likely disordered™

*Tunyasuvunakool et al, Nature, 2021
* Akdel et al, bioRxiv, 2021
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AF2 is a pretty good predictor of disorder

That is, when AlphaFold is unsure where the atoms should be, then Nature is too

a 10, b 1o
I rLDDT > 90
pLDDT > 70
pLDDT > 50 08
0.8 1 .
[ pLDDT < 50
Q
g S 06
3 06 2
5 %
° a
c > 0.4
o
= =
3] 0.4 =
E 7/
0.2 ~ = ROC curve (pLDDT); AUC = 0.897
.7 % pLDDT=70.0
0.2 1 P 4 % PpLDDT =50.0
Y —— ROC curve (exp. resolved head);
0 AUC = 0.921
0- 0 0.2 0.4 0.6 0.8 1.0
PDB PDB Human False-positive rate

resolved unresolved

Tunyasuvunakool et al, Nature, 2021
Akdel et al, bioRxiv, 2021
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Co-evolution information from MSA

. ST
N
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w (T N
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p - g
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Database of

sequences
Sides adapted from Sergey 52



Multiple sequence alignment

Evolution

[E— O Ja— © J— ,” _\\\\
S e e—— @ F— b - N
- o /, N *C
B ¢ B—  R—

5 3 N -

* 4 R

S 7’

Prediction
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Input feature generation for AlphaFold2

Input MSA features
Iterative
search

UniRefo0 |

& jackhmmer

Input Templates features

TN
~_
BFD
~ — PDB70
HHblits HHsearch

Generation of input features can take hours for a single protein on multiple cores

w
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ColabFold uses MMseqs2 for fast MSA search

k-mer-based

prefilter
—> [
109 sequences 104 sequences

MMseqs2 key ideas

Match long & similar k-mers

SECY Ci
Mevch iy

(0]
Two k-mer matches y‘f\out gap in-between 3

[0}
Sequence profiles / iterative searches

Query sequence
Steinegger and Sdding, Nature Biotechnol., 2017 github.com/soedinglab/MMseqs2

w
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ColabFold (MMseqgs2) performs similar to the full Deepmind Colab and the AlphaFold2 system on

1.004
. [ J
SEQS
® 029
0.75 1 @ 3099
)
23 >99
— [}
wn 12}
Q =
8 = (J
%
g E 0.50
-— e} [ ]
o £ )
£ g ® ° °
[e]
o
0.25
0.00
0.00 0.25 0.50 0.75 100  0.00 0.25 0.50 0.75 1.00
Deepmind Colab TM (HMMer) AlphaFold2 TM (full system)
(no templates) (with templates)

Generation of MSA for all 20 sequence take <4 minutes on one core
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Prediction of designed transmembrane protein

recycle 1 recycle 2 recycle 3 recycle 4 recycle 5
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Another example: need up to 12 recycles to get the correct fold

recycle=0 colored by pLDDT

100

80 4

plddt

40 1

20 1

0 20 40 60 8 100 120
positions

Vorobieva, A.A., White, P., Liang, B., Horne, J.E., Bera, A.K., Chow, C.M., Gerben, S., Marx, S., Kang, A., Stiving, A.Q. and
Harvey, S.R., 2021. De novo design of transmembrane 8 barrels. Science, 371(6531).
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B @2
Another example: need up to 12 recycles to get the correct fold

Mirdita et al, bioRxiv, 2021
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Changing the seeds can give different results

seed 0 seed 1

Protein with a knot, different seed value can change the outcome (knot or no knot)

Slide Credit: Sergey Ovchinnikov
w



Large scale application of AF2

AlphaFold Protein Structure Database Home About FAQs  Downloads

AlphaFold
Protein Structure Database

Developed by DeepMind and EMBL-EBI

AlphaFold DB provides open access to protein structure
predictions for the human proteome and other key proteins of
interest, to accelerate scientific research.

Tunyasuvunakool et al, Nature, 2021
Varadi et al, Nucl Acid Res, 2021

AF residue

Proteins Residues confidence

Homo sapiens
Mus musculus 1 |
Drosophila melanogaster 1 ] [ ]
Caenorhabditis elegans 1 1
Saccharomyces cerevisiae
Schizosaccharomyces pombe
Escherichia coli 1
Staphylococcus aureus
Plasmodium falciparum 1
Mycobacterium tuberculosis
Arabidopsis thaliana 1 |

0.0 20.0 0.0 10.0
Count 1e3 Count 1e6

g 100% [l Dark proteome

) [ Intrinsically disordered

S 75% % ] PFAM - No PDB / AF

- [l Gained AF - 70 > pLDDT 2 50
g 50% - [l Gained AF - 90 > pLDDT 2 70
£ I Gained AF - pLDDT 2 90

"2 25% 4 ] PDB 20% to 50% - pLDDT < 90
S [] PDB 50% to 95%

‘8‘ 0% Il PDB 295%

W Coverage after AlphaFold

Akdel et al, bioRxiv, 2021
Porta-Pardo, bioRxiv, 2021

w

Databank
SwissModel
AlphaFold

W Unresolved

Confldence
Very low (pLDDT < 50)
Low (70 > pLDDT > 50)
Confident (90 > pLDODT > 70)
W Very high (pLDDT > 90)
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Highly accurate protein structure prediction for the human proteome

nature > articles > article

Article | Open access | Published: 22 July 2021

Highly accurate protein structure prediction for the
human proteome

Kathryn Tunyasuvunakool &, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Zidek,

Alex Bridgland, Andrew Cowie, Clemens Meyer, Agata Laydon, Sameer Velankar, Gerard J. Kleywedgt,

Alex Bateman, Richard Evans, Alexander Pritzel Michael Figurnov, Olaf Ronneberger, Russ Bates, Simon
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Computation pipeline of the de novo binder design method
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Protein binder design in the era of Al

RFdiffusion ProteinMPNN AlphaFold2

w






Bash

Bash: Bash is a command-line interpreter. It translates commands you type into actions for the operating
system (like macOS or Linux).

Prompt: This is the symbol you see waiting for input (often a S or %). It indicates the shell is ready to
accept a command.

.bashrc: a shell script that Bash executes every time a new interactive, non-login shell is started. It
contains commands, functions, and configuration settings that you want to be run automatically.
Command Structure: Most commands follow the pattern:

Command [Option/Flag| [Argument /File|

e Options modify the command's behavior (e.g., -l for a long list format).
e Arguments are the items the command acts upon (e.g., a file name or directory path).
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pwd

cd
mkdir
touch
cp
mv
rm

alias

Essential Navigation and File Commands

Print Working Directory. Shows your current location.

List directory contents.
Change Directory.
Make Directory. Creates a new folder.
Creates an empty file.
Copy files or directories.
Move or rename files/directories.
Remove (delete) files. Use with caution!

create a shorthand for a longer command

w

pwd

Is -I (lists with detail)

cd .. (moves up one level); cd
projects

mkdir new_results
touch readme.txt
cp fileA.txt /backup/
mv oldname.txt newname.txt
rm junk.log

alias b=‘cd .’
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Set up your environment for binder design first WESTLAKE UNIVERSITY

# Pull the latest version of tutorial repo:

cd /app/rfd_mpnn_af2 _env && git pull origin main

# cd stands for Change Directory, which changes your current working directory in the terminal to your local Git repository.

# && is a conditional operator in shell scripting. It ensures that the command following it (git pull...) only executes if the
preceding command (cd...) was successful (returned an exit code of 0).

# git pull is a command that is actually a combination of two other Git commands.
# origin: This is the default name for the remote repository you cloned from.

# main: This is the name of the branch on the remote repository (origin) that you want to pull changes from and merge into your
currently checked-out local branch.

Slide Credit: wangchentong



Set up your environment for binder design first

There is a dot.
# Copy the required target(sars2 spike protein) pdb files into the work dir: /

cd /root/ && cp -r /app/rfd_mpnn_af2 _env/input/ .”

# cp stands for copy. This command duplicates files or directories.

# -r (or --recursive) is an essential option when copying directories. It tells the cp command to copy the directory specified
as the source (/app/rfd_mpnn_af2_env/input/) and all its contents (subdirectories and files).

# lapp/rfd_mpnn_af2_envl/input/: This is the source directory—the directory being copied.

# . : This is the destination. In Linux, a single dot (.) is a shorthand reference for the current working directory. Since the first
part of the command changed the working directory to /root/, the destination is /root/.
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Set up your environment for binder design first

# print the command instruction in /app/rfd_mpnn_af2_env/:

cat /app/rfd_mpnn_af2 env/run.sh

# cat: This stands for concatenate. It's a standard Unix utility that reads files sequentially and writes them to standard output (usually your

terminal screen).
# /app/rfd_mpnn_af2_env/run.sh: This is the path to the file whose contents you want to view.
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W) %55

1.Scaffold generation : unconditional binder design(option 1)
python /app/RFdiffusion/scripts/run_inference.py

inference.input_pdb=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein.pdb:

‘contigmap.contigs=[B1-193/0 90-907":

'ppi.hotspot_res=[B120,B122,B8123,8160,B172]:

inference.ckpt_override_path=/app/RFdiffusion/models/Complex_base_ckpt.pt

denoiser.noise_scale_ca=0 denoiser.noise_scale_frame=0

inference.output_prefix=samples/uncondition:
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W) %55

1.Scaffold generation : conditional binder design with ACE2 motif(option 2)
python /app/RFdiffusion/scripts/run_inference.py:

inference.input_pdb=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein_complex.pdb:

'‘contigmap.contigs=[B1-193/0 A19-42/60-60]":

inference.ckpt_override path=/app/RFdiffusion/models/Base_ckpt.pt:

denoiser.noise_scale_ca=0 denoiser.noise_scale_frame=0:

inference.output_prefix=samples/ace2:




1.Scaffold generation : conditional binder design with scaffold library(option 3)

W) %55

python /app/RFdiffusion/scripts/run_inference.py:
scaffoldguided.scaffoldguided=True:

scaffoldguided.scaffold_dir=/app/RFdiffusion/examples/ppi_scaffolds/:

scaffoldguided.target pdb=True:
scaffoldguided.target_path=/app/rfd_mpnn_af2_eﬁv/input/Spike_egcoprotein.pdb:
scaffoldguided.target_ss=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein_ss.pt scaﬁoldguided.target_adj=/app/
rfd_mpnn_af2_env/input/Spike_glycoprotein_adj.pt

'ppi.hotspot_res=[B120,B122,B123,B160,B172]":Retains the core constraint:
inference.ckpt_override_path=/app/RFdiffusion/models/Complex_Fold_base ckpt.pt:

denoiser.noise_scale_ca=0 denoiser.noise_scale_ frame=0:

inference.output_prefix=samples/scaffold_guided:
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2.Sequence design with ProteinMPNN

# Executes the main script
python /app/dl_binder_design/mpnn_fr/dl_interface_design.py \

# Input scaffold directory(generated by RFdiffusion in last step)
-pdbdir ./samples/ \

# Output pdb directory(binder scaffolds with added sequence and sidechain atoms)
-outpdbdir ./mpnn/\

# How many cycles of ProteinMPNN+Fastrelax optimization(more cycles improve self-consistency between binder structure and sequence)
-relax_cycles 0

# Higher temperature generate more diverse sequence from single scaffold but more likely unfolded/unbind
-temperature 0.0001

# The number of sequence one scaffold generate
-seqs_per_struct 4

WESTLAKE UNIVERSITY
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3.Alphafold2 Prediction

# Executes the main script
python /app/dl_binder_design/af2_initial_guess/predict.py \

# Design directory(generated by ProteinMPNN in last step)
-pdbdir ./mpnn/\

# Output pdb directory (binder scaffolds with added sequence and sidechain atoms)
-outpdbdir ./predictions/ \

# Number cycles in alphafold2, more cycles mean more accurate prediction but slower
-recycle 3

# Turn on initial guess, use design models as a hint to alphafold2 for improved success rate
-no_initial_guess False



AlphaFold Confidence Scores

e pLDDT (Predicted Local Distance Difference Test).
« pLDDT is a per-residue confidence metric that estimates the local accuracy of
the predicted structure.

pLDI{)a'I;‘S:ore Confidence Level Meaning for the Structure Color in Visualization

The residue is placed with extremely high accuracy;

>90 Very High the side chain and backbone coordinates are Dark Blue
reliable.
. . The backbone is generally correct, but the side
702190 High chain placement may have minor errors. e
50 — 70 Low The backbone placement is poorly defined; this Yellow

region may be flexible or exposed.

The region is likely unstructured, intrinsically
<50 Very Low disordered, or highly flexible. The coordinates Red/Orange
are not reliable.

w
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Low Error
(Dark Blue/Green)

High Error
(Light Yellow/White)

AlphaFold Confidence Scores

» PAE (Predicted Aligned Error). PAE is a global confidence metric that
estimates the error in the relative positions of two residues (i and j)
after the entire predicted structure is optimally aligned on residue i.

PAE Score (Color) Interpretation Meaning for the Structure

High confidence in relative position.

Low confidence in relative position.

w

The two residues are confidently placed relative
to each other. This often means they belong to
the same rigid domain or are part of a stable
interface.

The relative placement of the two residues is
highly uncertain. This is typical for residues in
different domains connected by flexible
linkers, or in disordered regions.
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Root Mean Square Deviation (RMSD)

« RMSD is a measure of the average distance between the
corresponding atoms of two superimposed molecular structures.

Application of RMSD

RMSD is used to compare AlphaFold's model to experimentally validated
Benchmarking structures in the Protein Data Bank (PDB). This is how the accuracy of
AlphaFold's various versions (like AlphaFold 2) is definitively.

Structural Researchers use RMSD to evaluate the prediction quality of specific
Analysis regions, such as loop regions.

WESTLAKE UNIVERSITY
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PyMOL, a widely used, powerful molecular visualization system
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