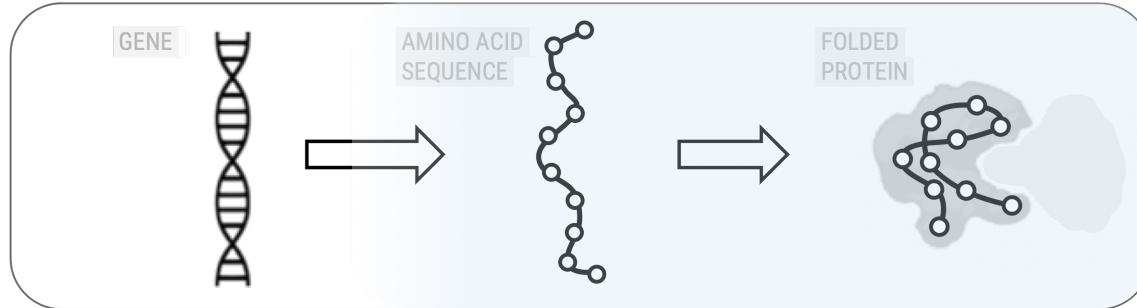
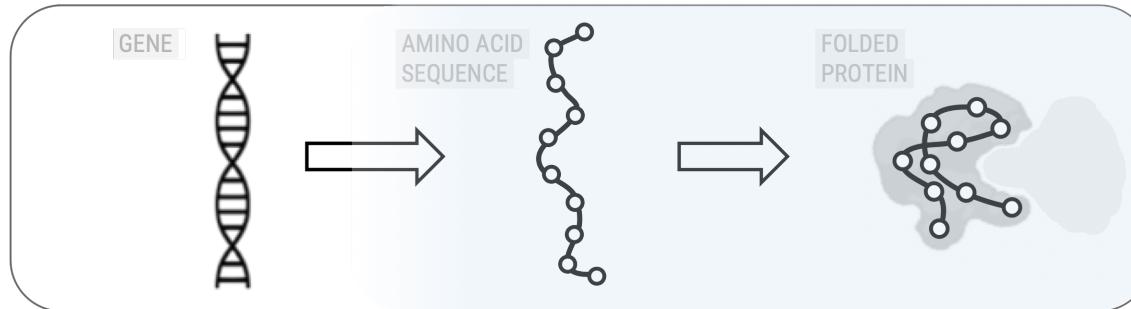


Introduction to Protein Design

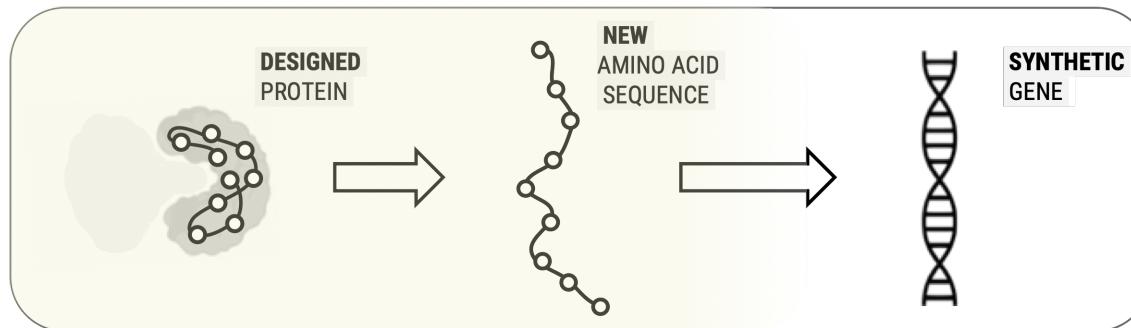
Rosetta was built for structure prediction...

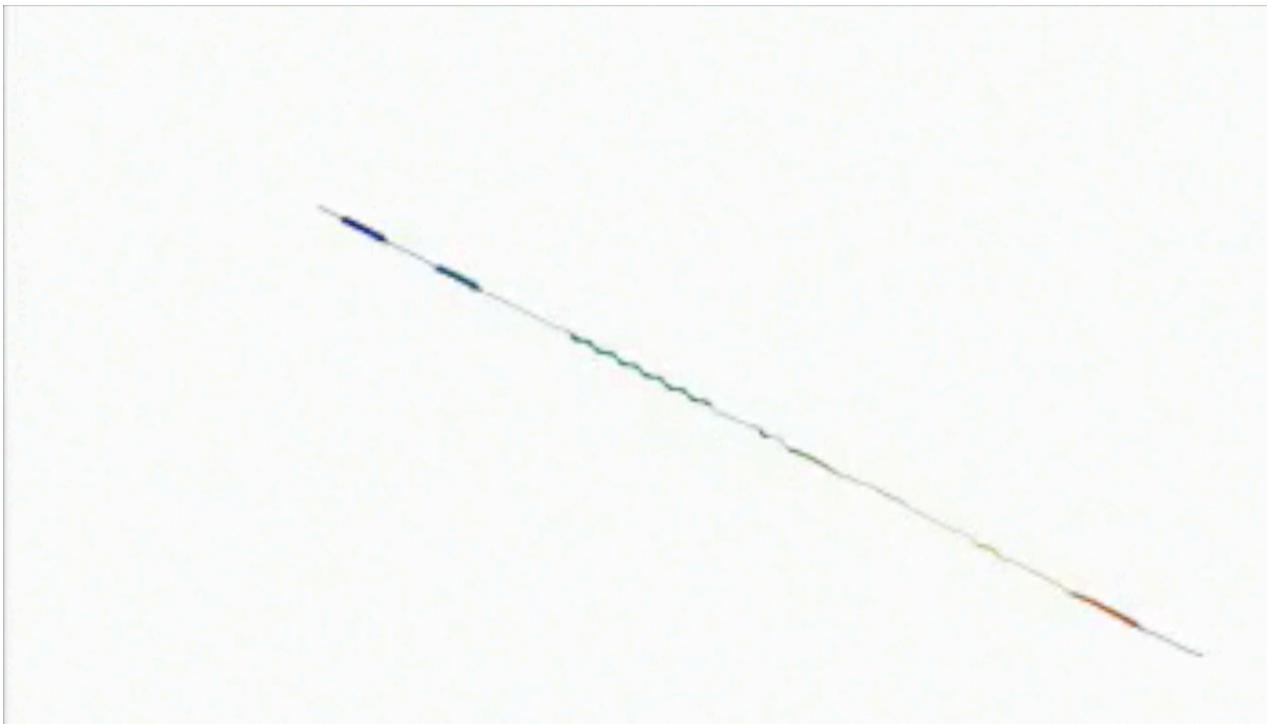


Rosetta was built for structure prediction...

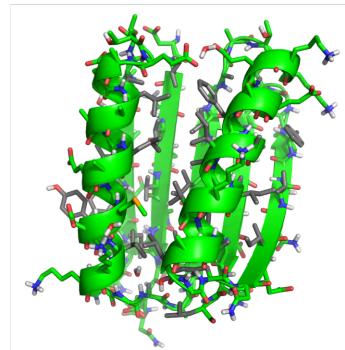


...but it can also be used for protein design

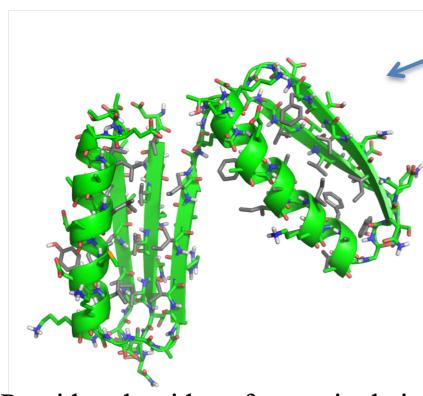




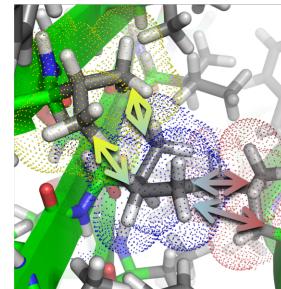
Broadly speaking, what does Rosetta *do*?



Keeps track of
protein structure and
kinematics



Provides algorithms for manipulating
conformation and/or sequence

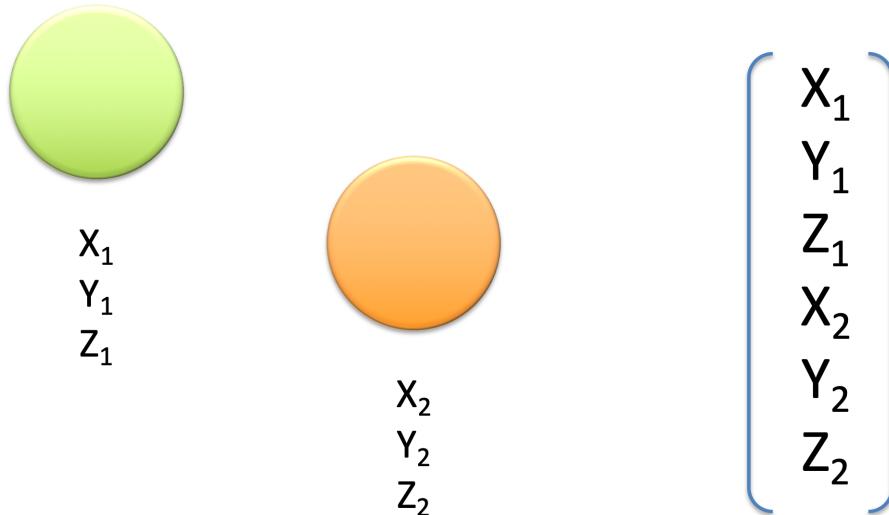


Scores favorability of current
conformation and sequence

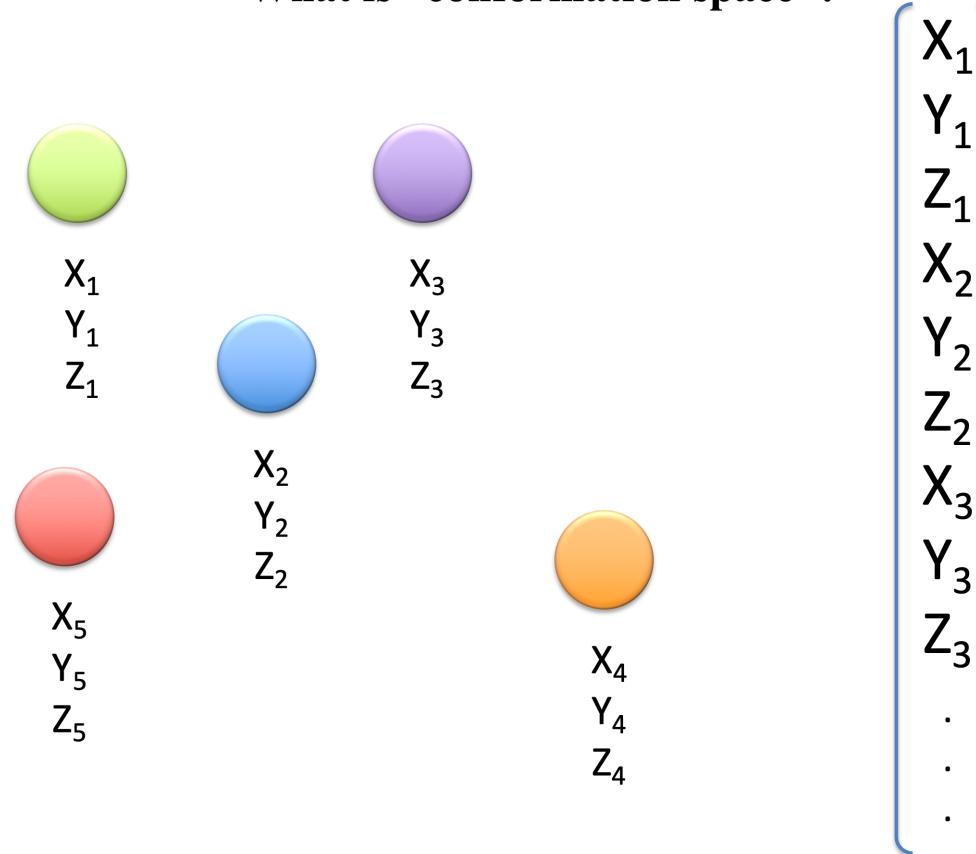
Basic Rosetta Terms

- Residue
- Mover
- Filter
- Pose
- Conformation Space

What is “conformation space”?



What is “conformation space”?

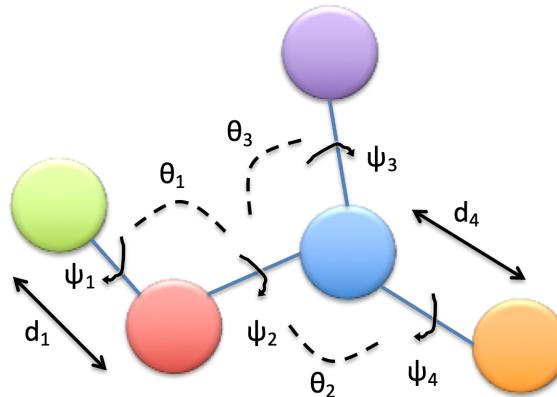


What is “conformation space”?

$$\vec{s}_1 = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix}, \quad \vec{s}_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$
$$|\vec{s}_1 - \vec{s}_2| = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2 + \dots}$$

Points in conformation space correspond to conformational states, and the distance between two points is a measure of how similar two states are. Given Cartesian coordinates, the length of the difference vector is the RMSD!

What is “conformation space”?

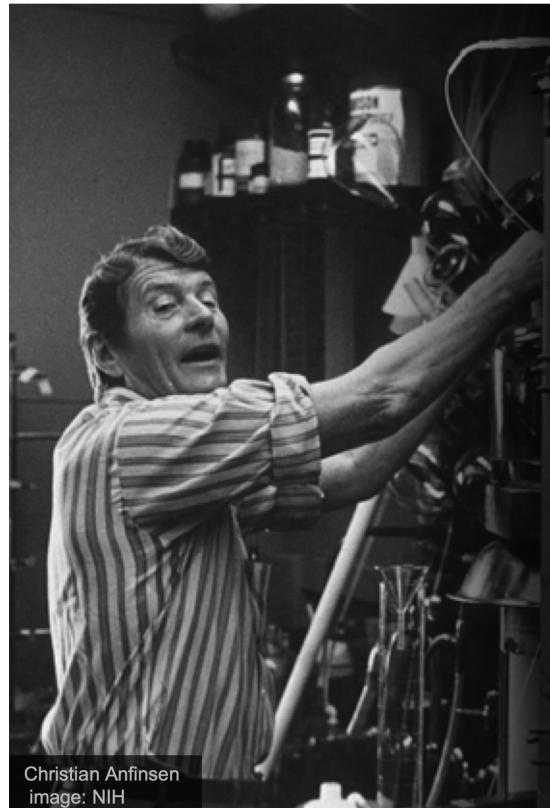
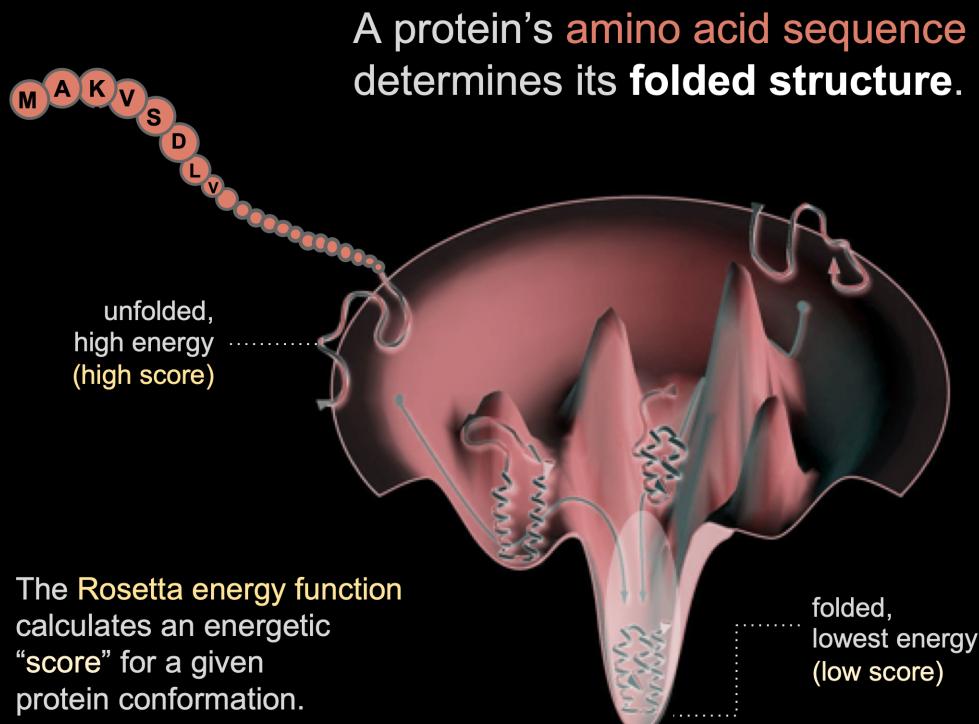


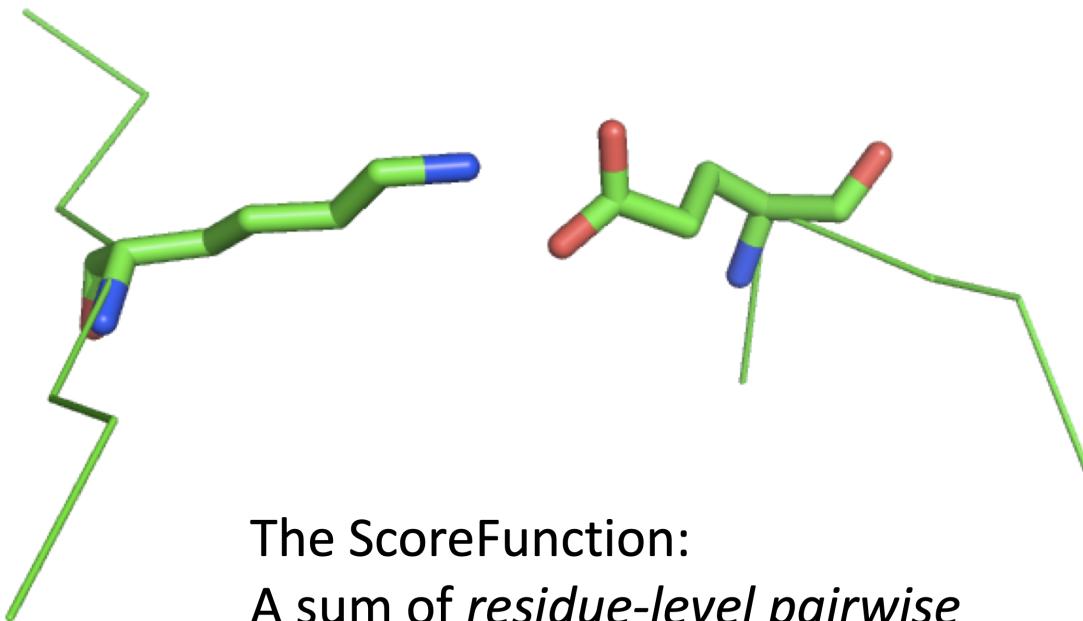
$\left. \begin{matrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \\ \dots \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \dots \\ d_1 \\ d_2 \\ d_3 \\ \dots \end{matrix} \right\}$

Basic Rosetta Terms

- Residue
- Mover
- Filter
- Pose
- Conformation Space
- Score Function

Rosetta is tool for molecular modeling built on Anfinsen's Hypothesis

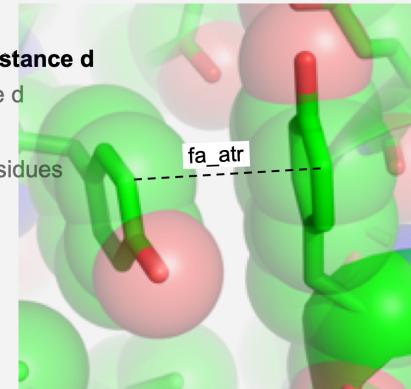
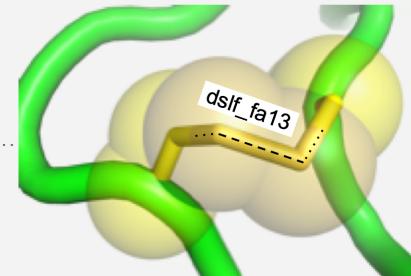




The ScoreFunction:
A sum of *residue-level pairwise decomposable* score terms.

Rosetta uses a knowledge-based, all-atom energy function

Term	Description
fa_atr	attractive energy between two atoms on different residues separated by a distance d
fa_rep	repulsive energy between two atoms on different residues separated by a distance d
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d
hbond_lr_bb	energy of short-range hydrogen bonds
hbond_sr_bb	energy of long-range hydrogen bonds
hbond_bb_sc	energy of backbone–side-chain hydrogen bonds
hbond_sc	energy of side-chain–side-chain hydrogen bonds
dslf_fa13	energy of disulfide bridges
rama_prep	probability of backbone ϕ , ψ angles given the amino acid type
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ , ψ angles
pro_close	penalty for an open proline ring and proline ω bonding energy
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle
ref	reference energies for amino acid types
omega	backbone-dependent penalty for cis dihedrals that deviate from 0° and trans dihedrals that deviate from 180°



RosettaScripts

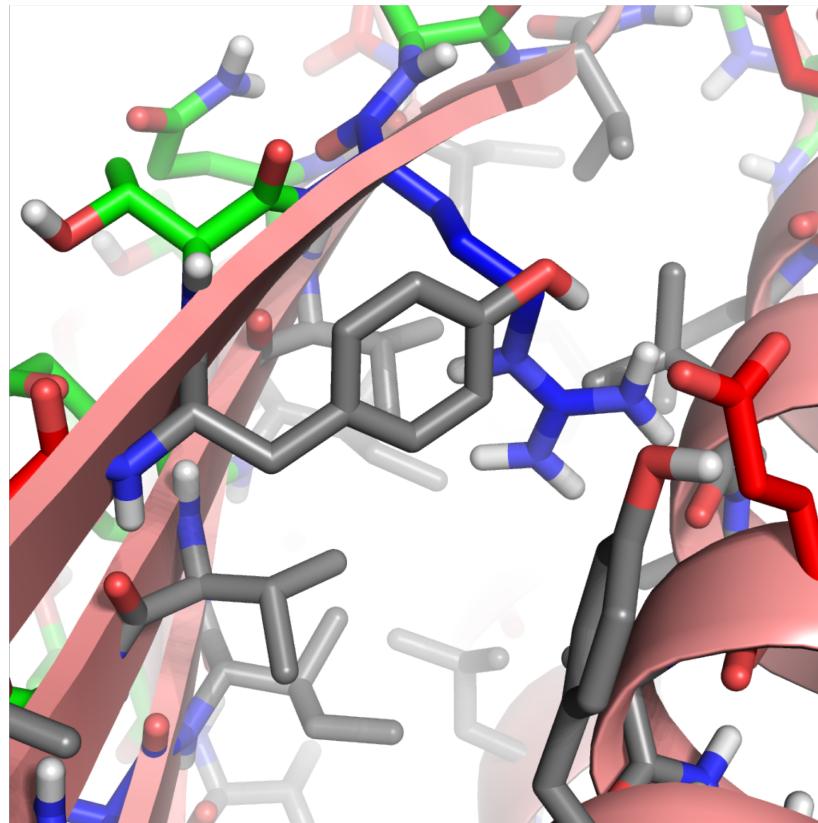
Layout of Rosetta Scripts

```
<ROSETTASCRIPTS>
  <SCOREFXNS>
  </SCOREFXNS>
  <RESIDUE_SELECTORS>
  </RESIDUE_SELECTORS>
  <TASKOPERATIONS>
  </TASKOPERATIONS>
  <FILTERS>
  </FILTERS>
  <MOVERS>
  </MOVERS>
  <PROTOCOLS>
  </PROTOCOLS>
</ROSETTASCRIPTS>
```

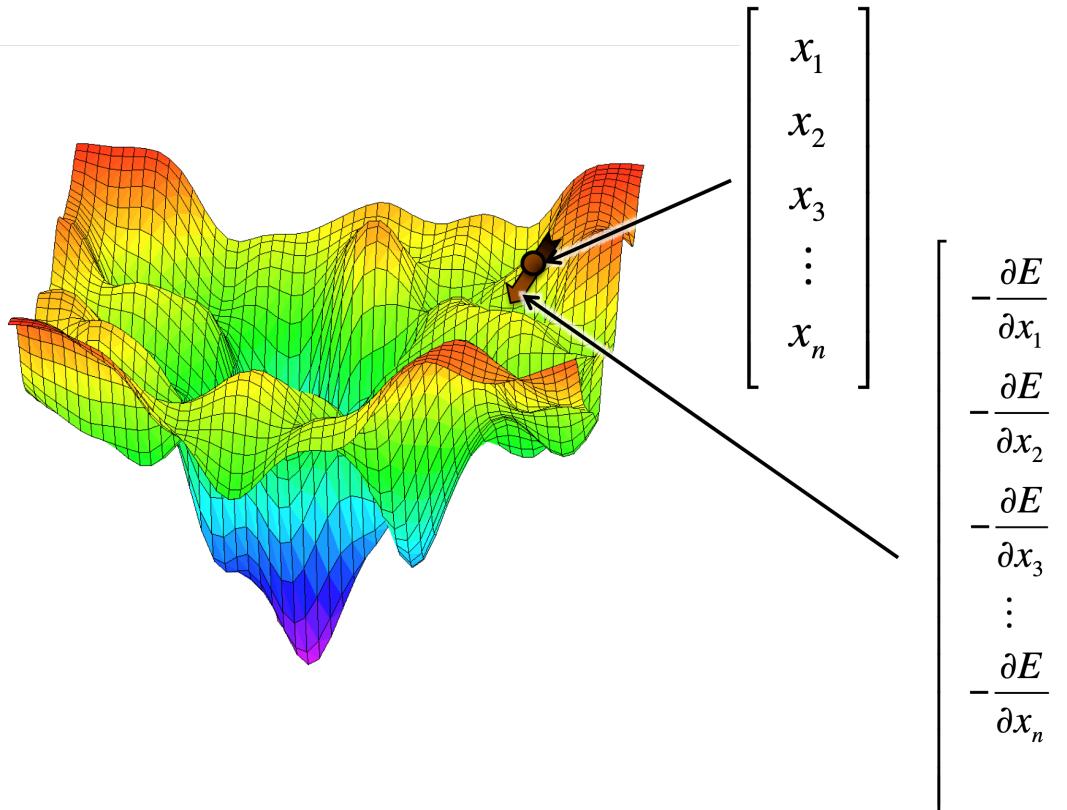
What is the “packer” and how does it work?

Rosetta B. Packer, Attorney

What is the “packer” and how does it work?

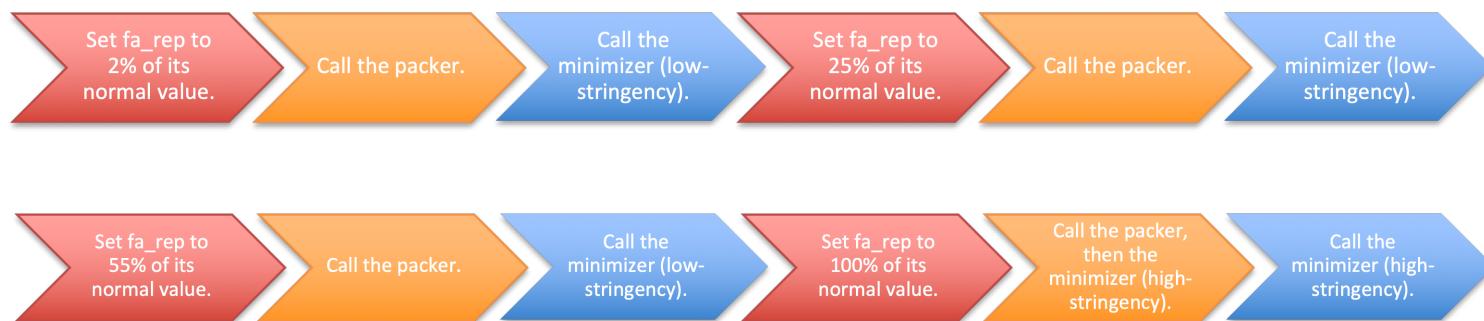


What is the “minimizer” and how does it work?

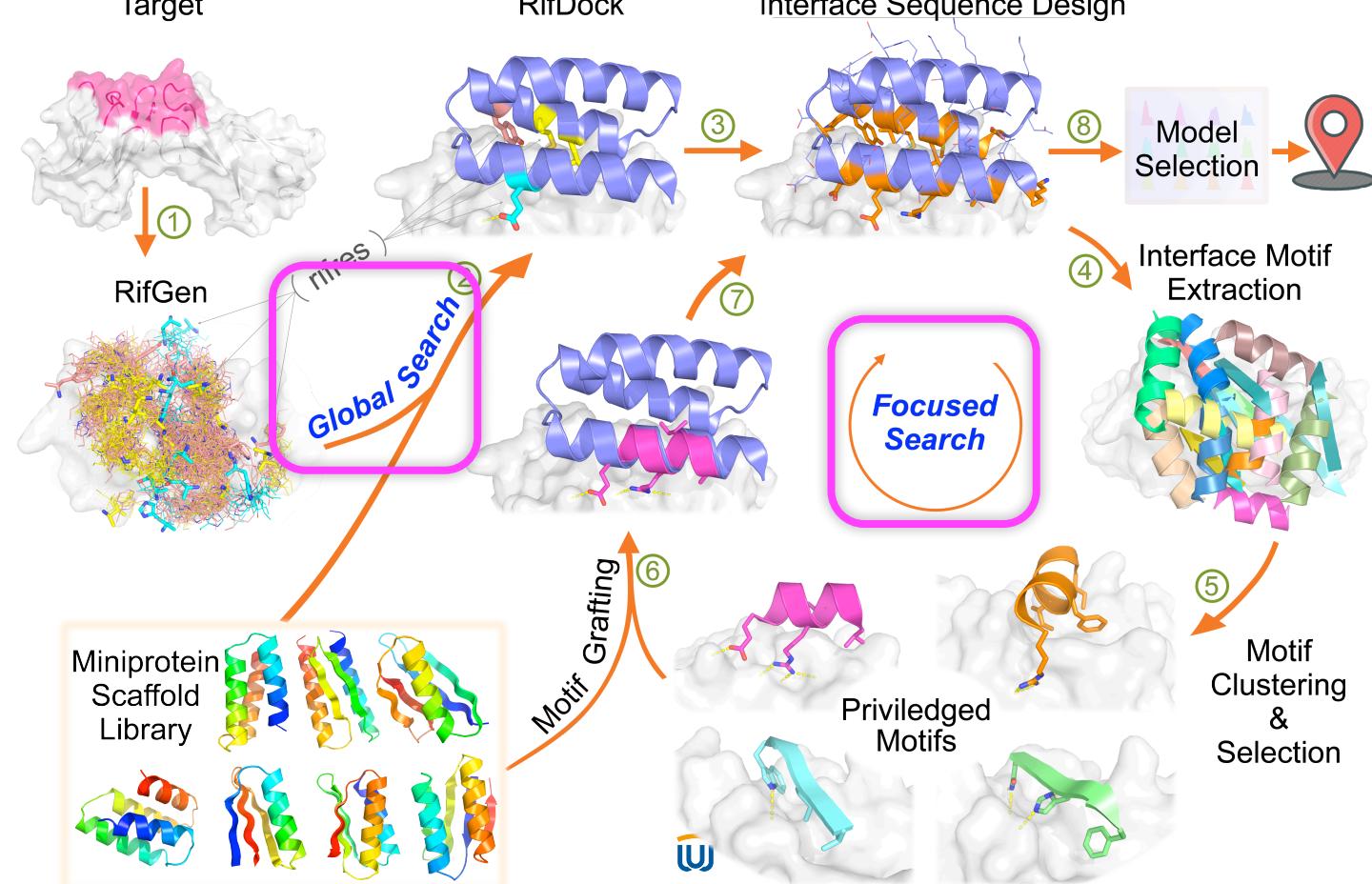


How are more complicated algorithms built?

FastRelax:

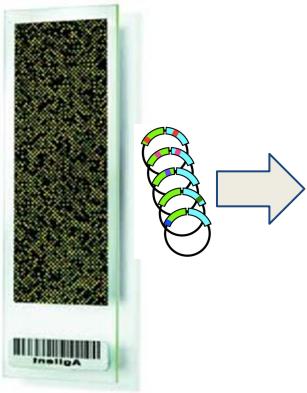


Computation pipeline of the de novo binder design method



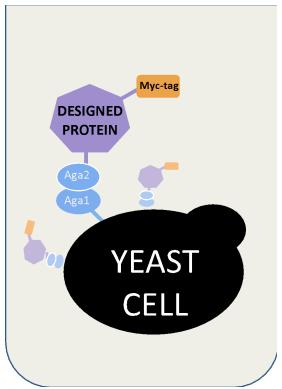
De novo Protein Design Experimental Pipeline

Gene Library Synthesis



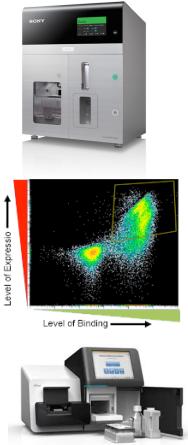
genes encoding the designed binder candidates

Generate Yeast Surface Display Libraries

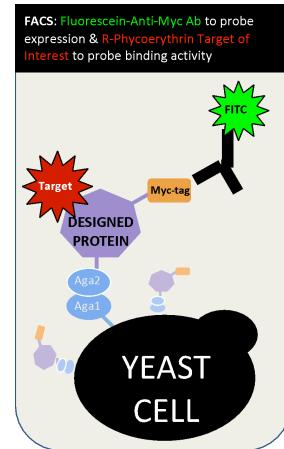


Transform yeast with plasmids encoding minibinder design library, and treat with limited protease and / or heat

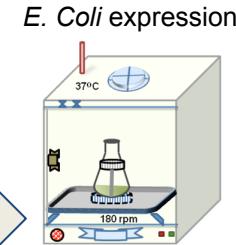
FACS and Next-Gen DNA Sequencing



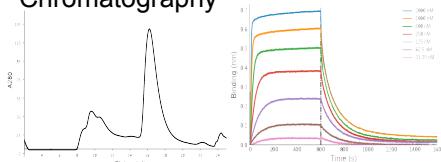
Identify gene sequences encoding functional designed minibinders



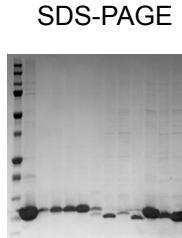
Select Individual Designs for Verification



Size-exclusion Chromatography



Individual clones expressing designed minibinders are used to verify function



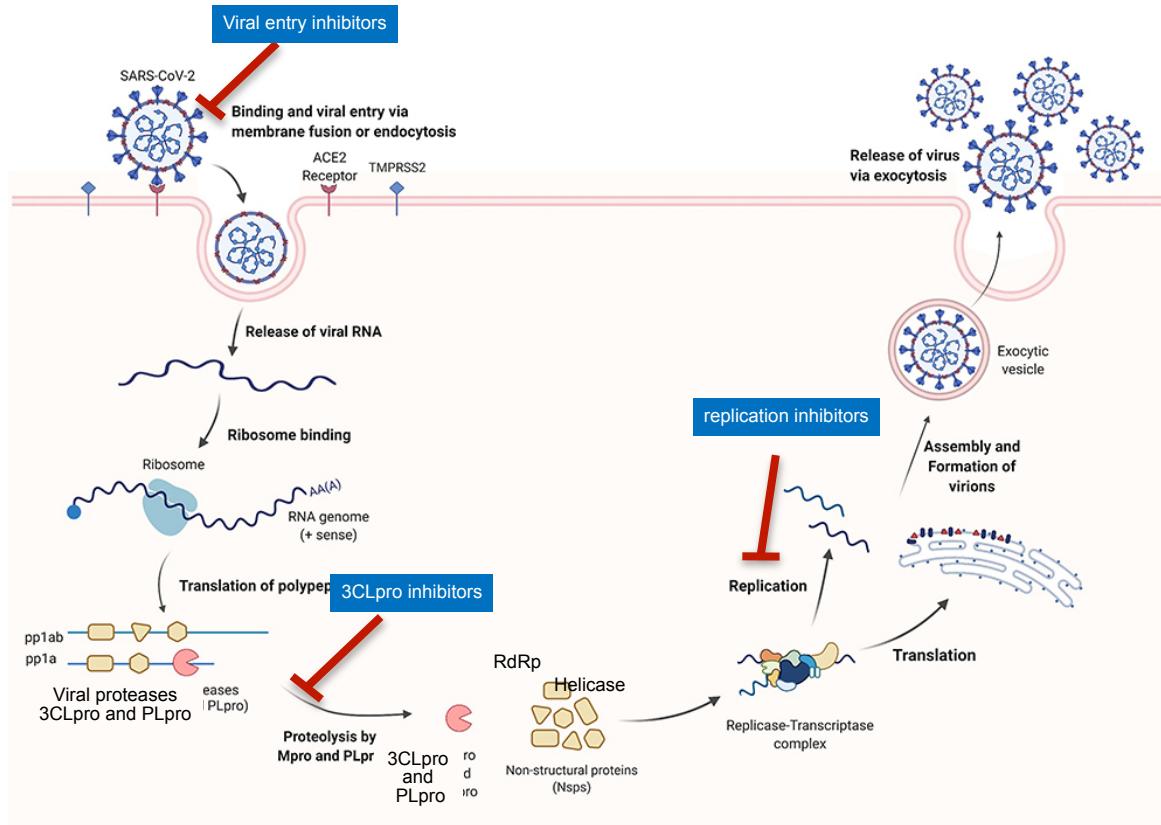
Octet binding

Detailed pipeline of the de novo binder design method

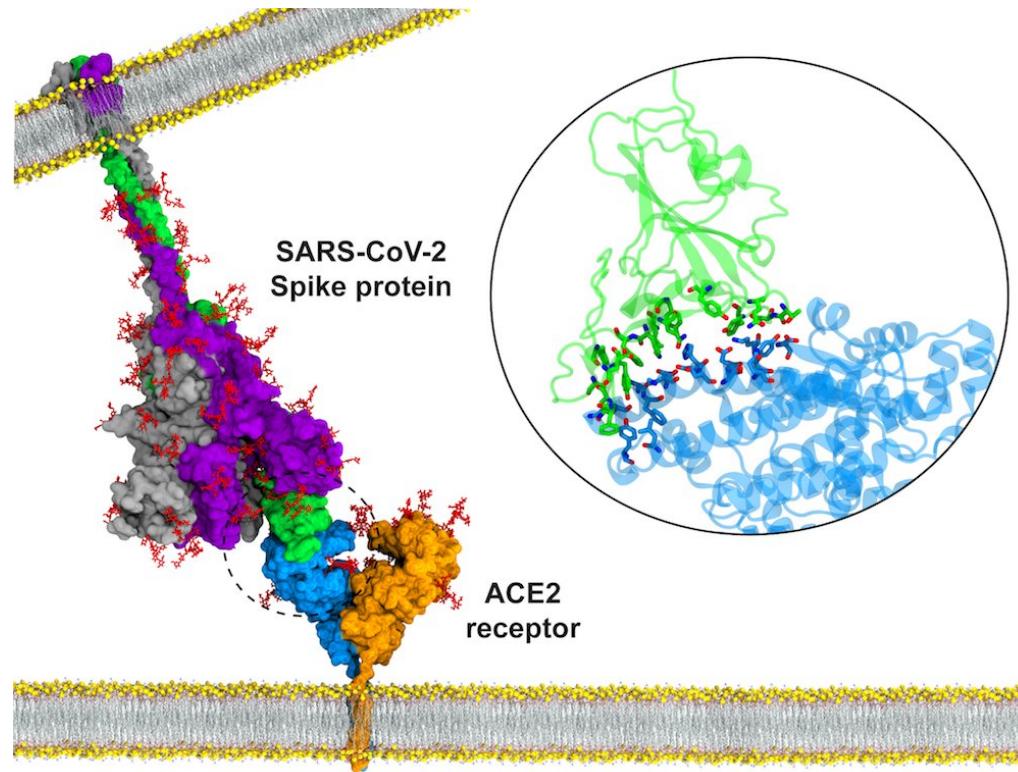
THE AGE OF A.I.

Slides Credit: Longxing Cao

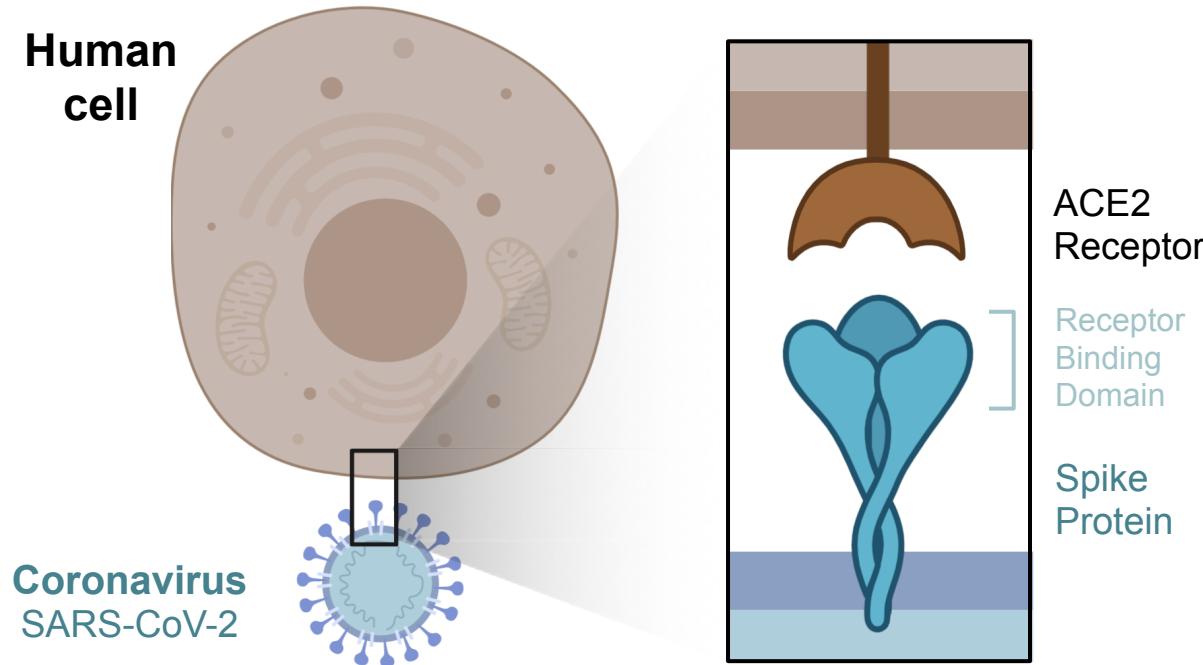
Fighting SARS-CoV-2



Interaction between ACE2 receptor and SARS-CoV-2 spike protein



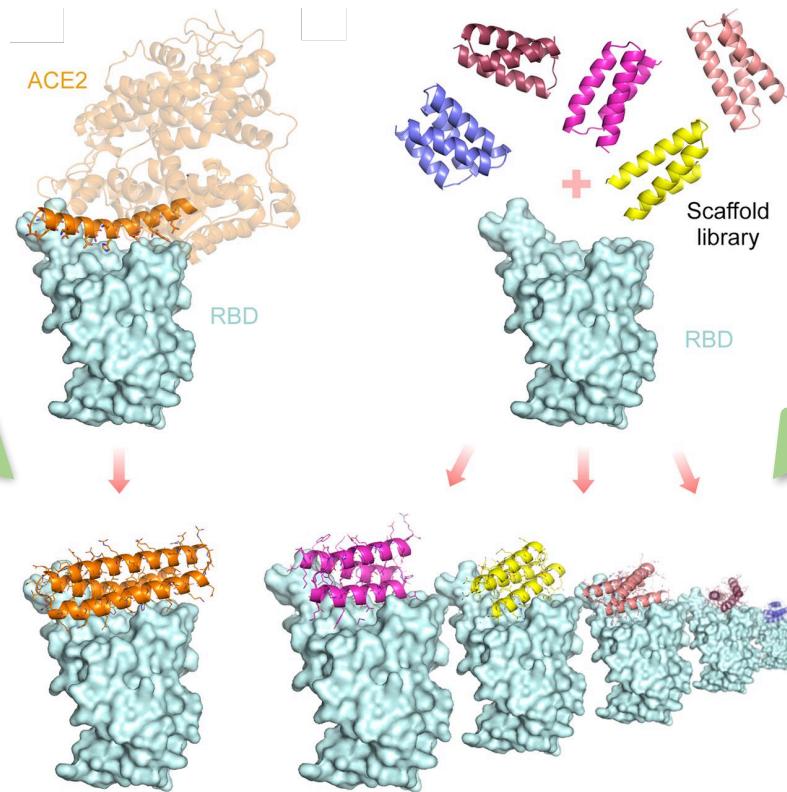
De novo design against COVID-19 -- design small proteins that disrupt viral infection



Computational Design of SARS-CoV-2 Miniprotein Inhibitors

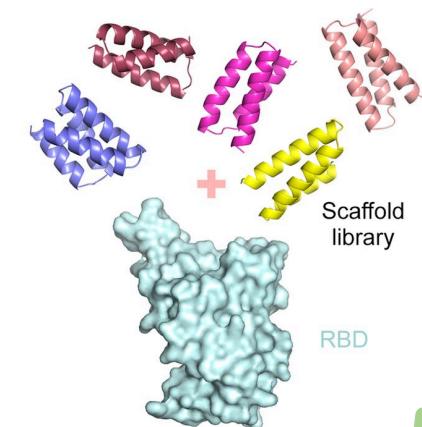
Approach I

de novo proteins built from the ACE2 helix

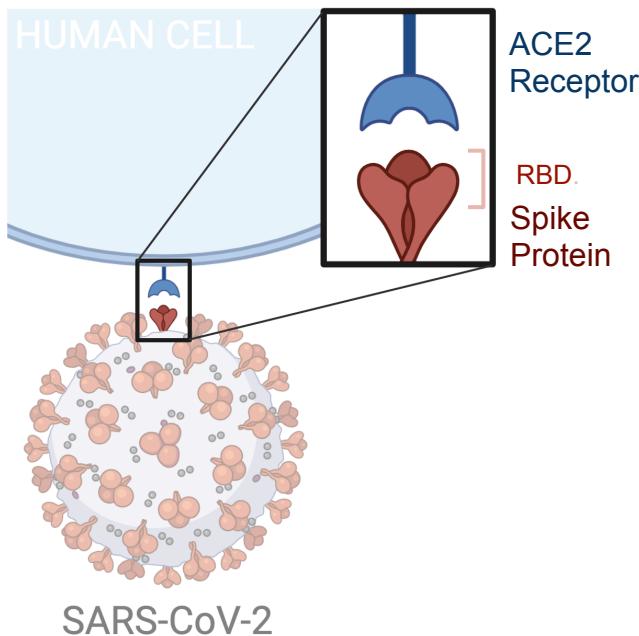


Approach II

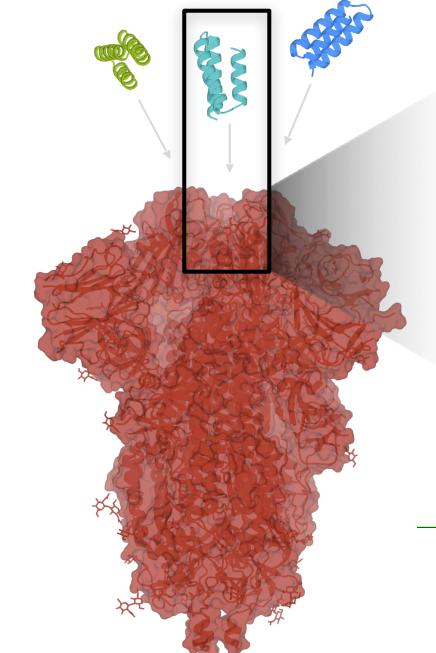
de novo scaffolds docked to the ACE2 binding region



Goal: Design small proteins that disrupt viral infection

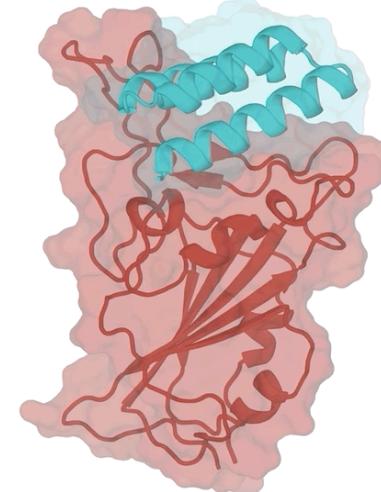


Computer-generated
protein scaffolds



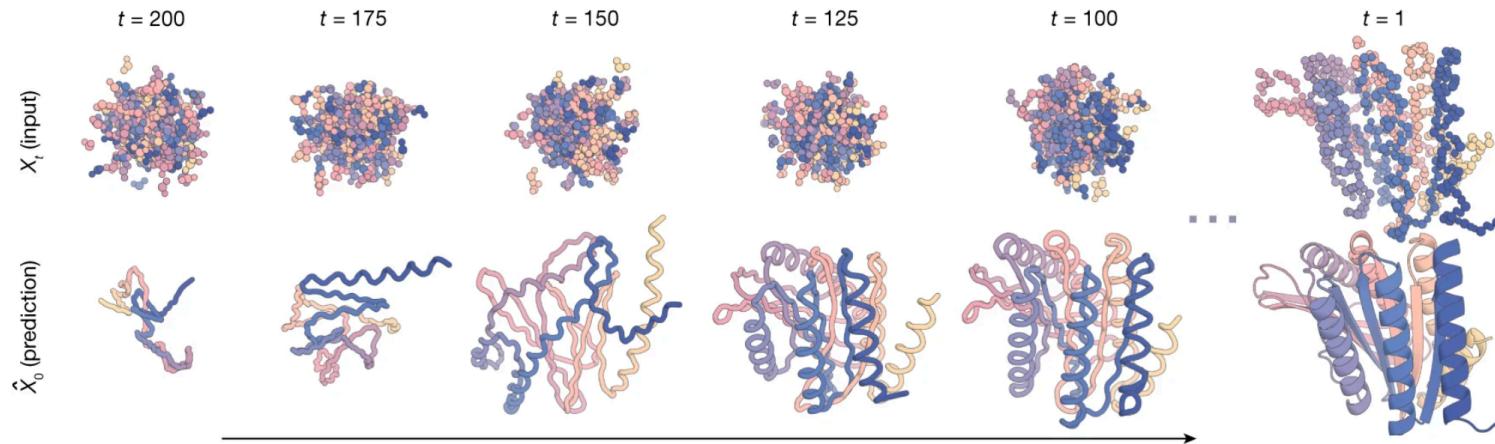
Miniprotein inhibitor LCB1

Length: 55 amino acids
Stability: $>95^{\circ}\text{C}$ T_m



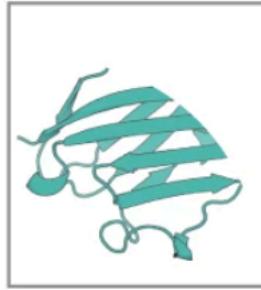
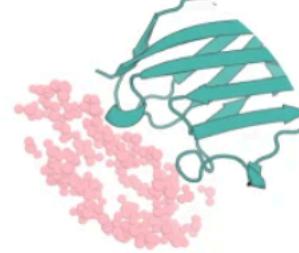
Receptor binding domain (RBD).

De novo binder design with RFdiffusion

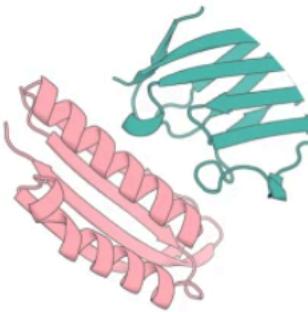


De novo binder design with RFdiffusion

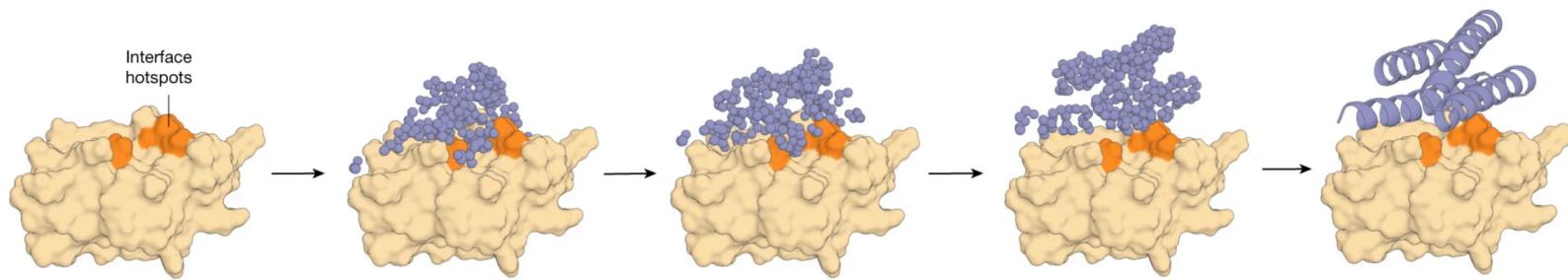
Binding target



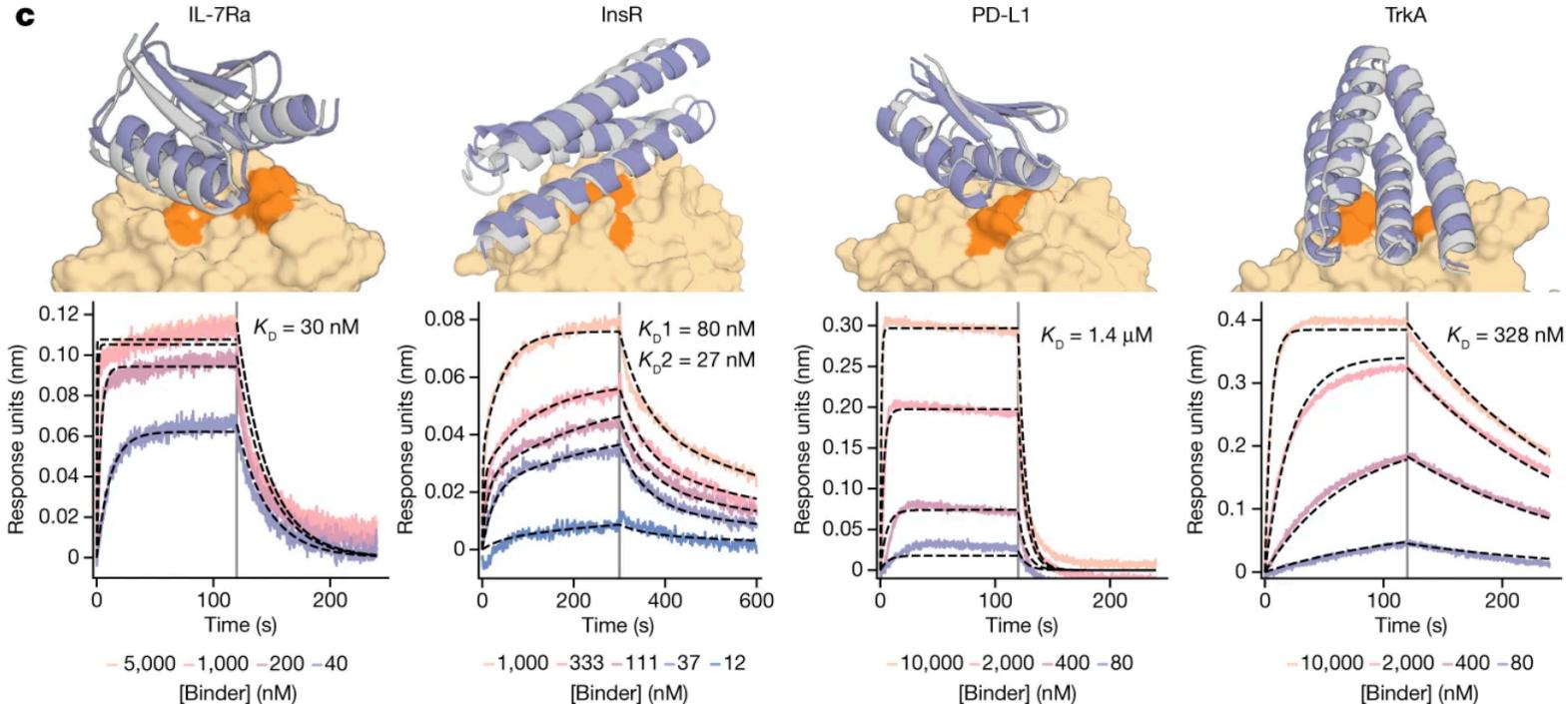
Binder design



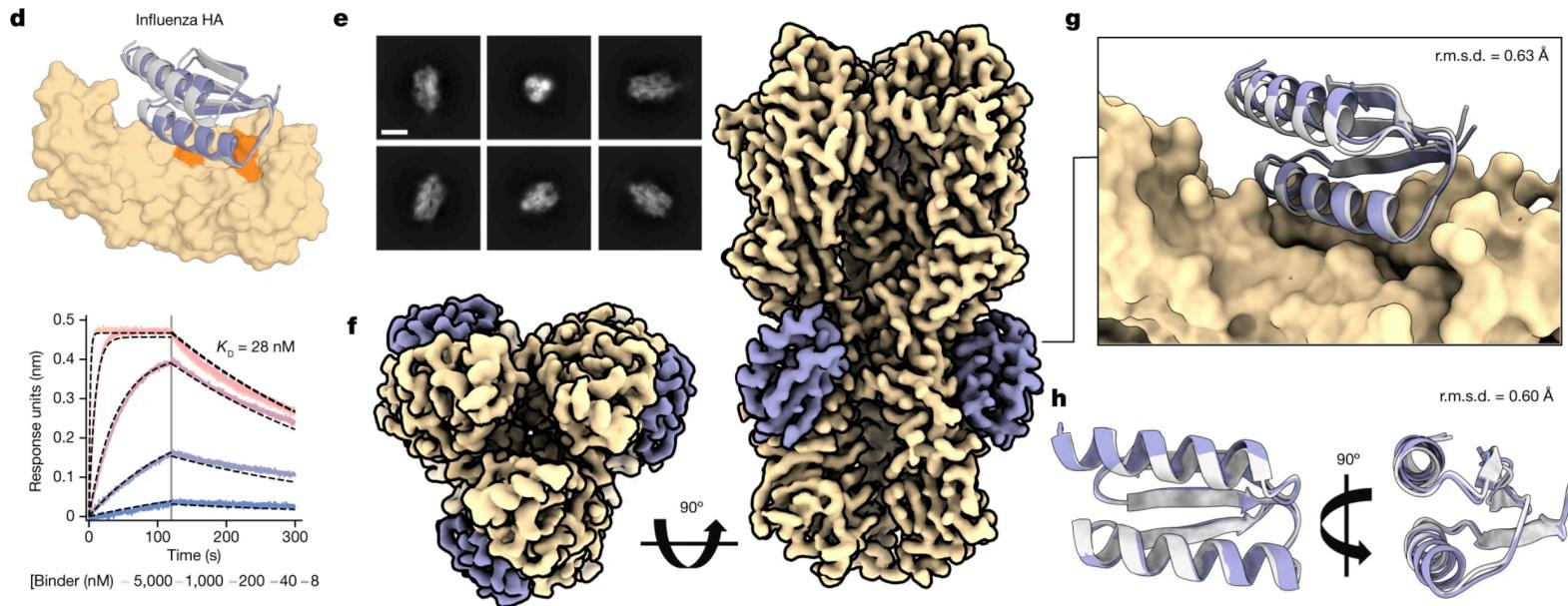
De novo binder design with RFdiffusion



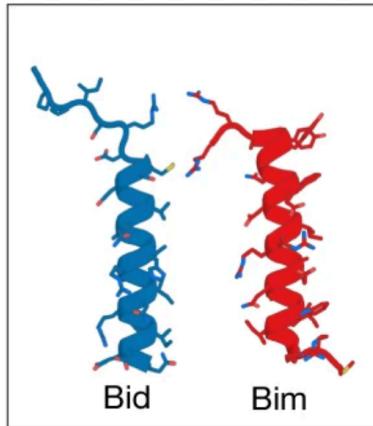
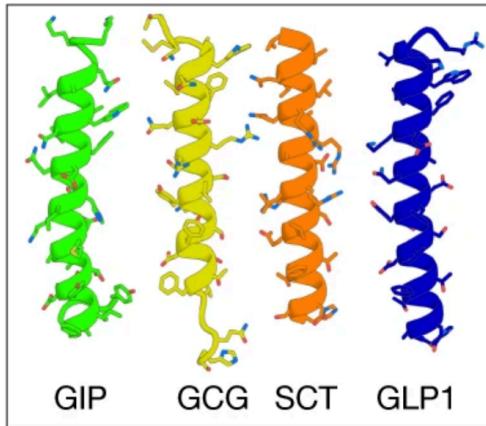
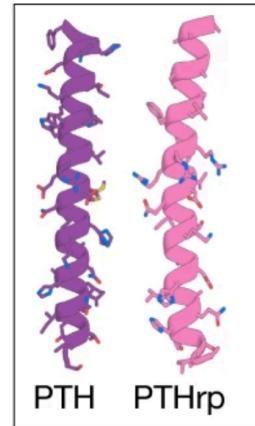
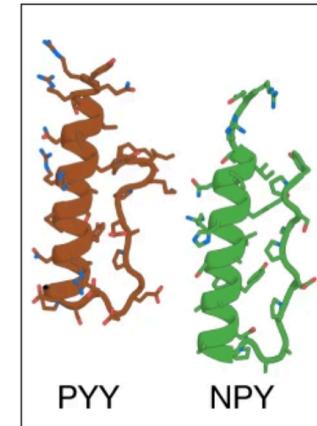
De novo binder design with RFdiffusion



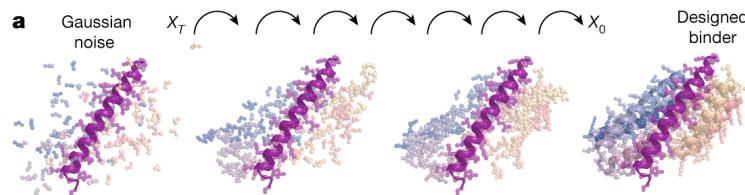
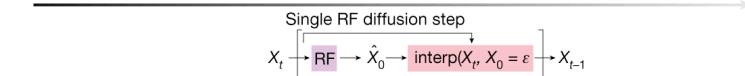
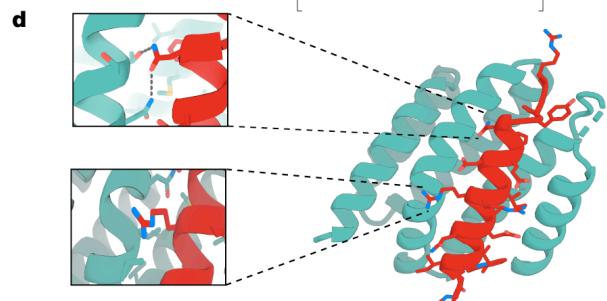
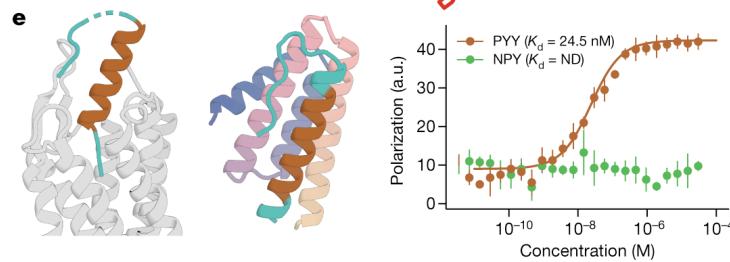
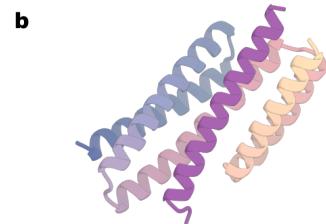
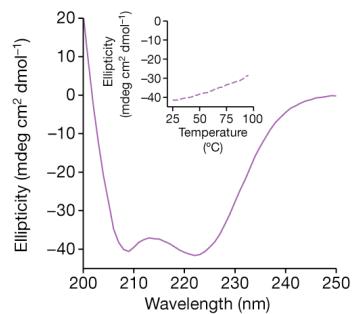
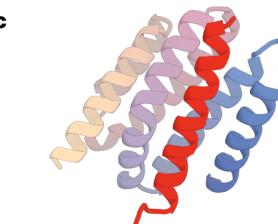
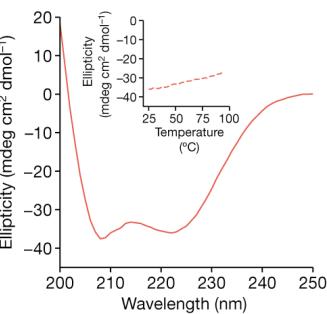
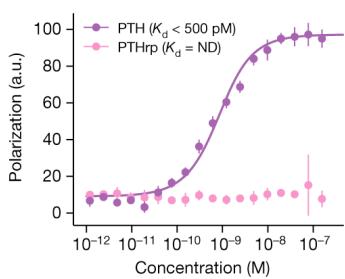
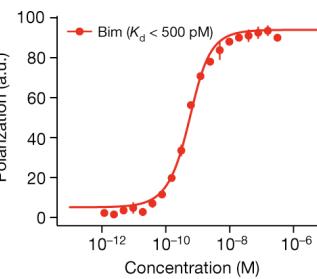
De novo binder design with RFdiffusion



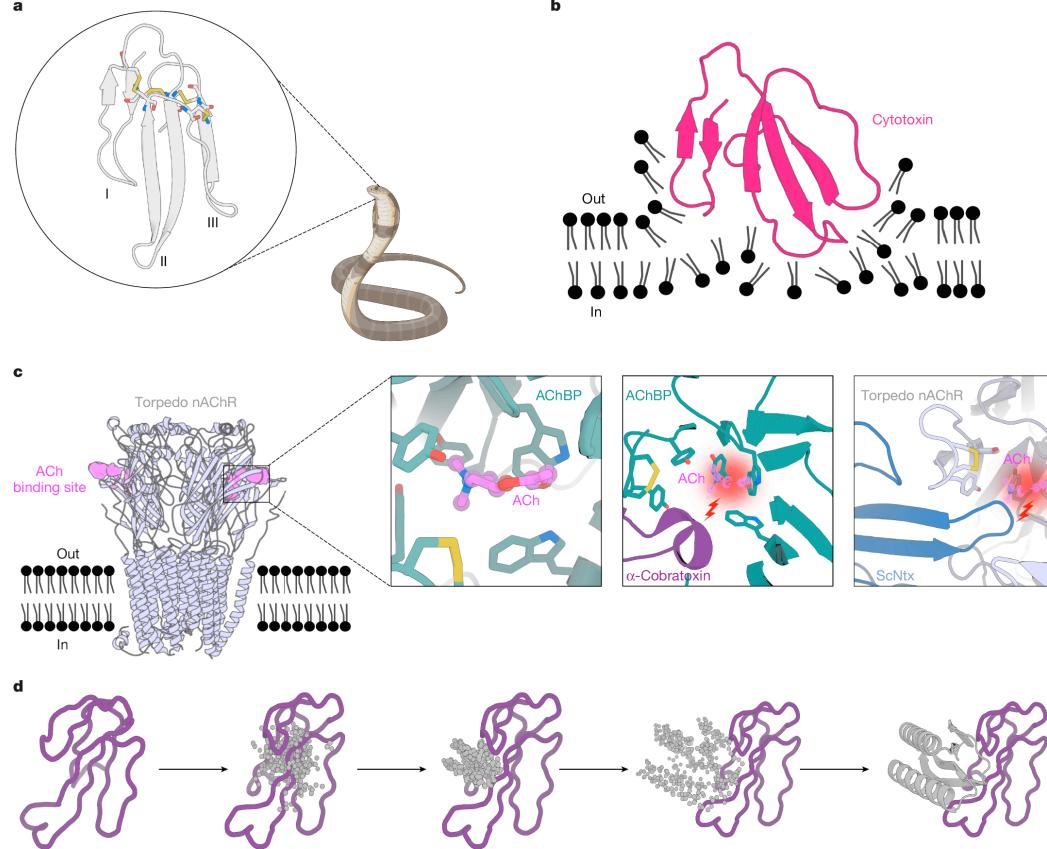
De novo design of high-affinity binders of bioactive helical peptides



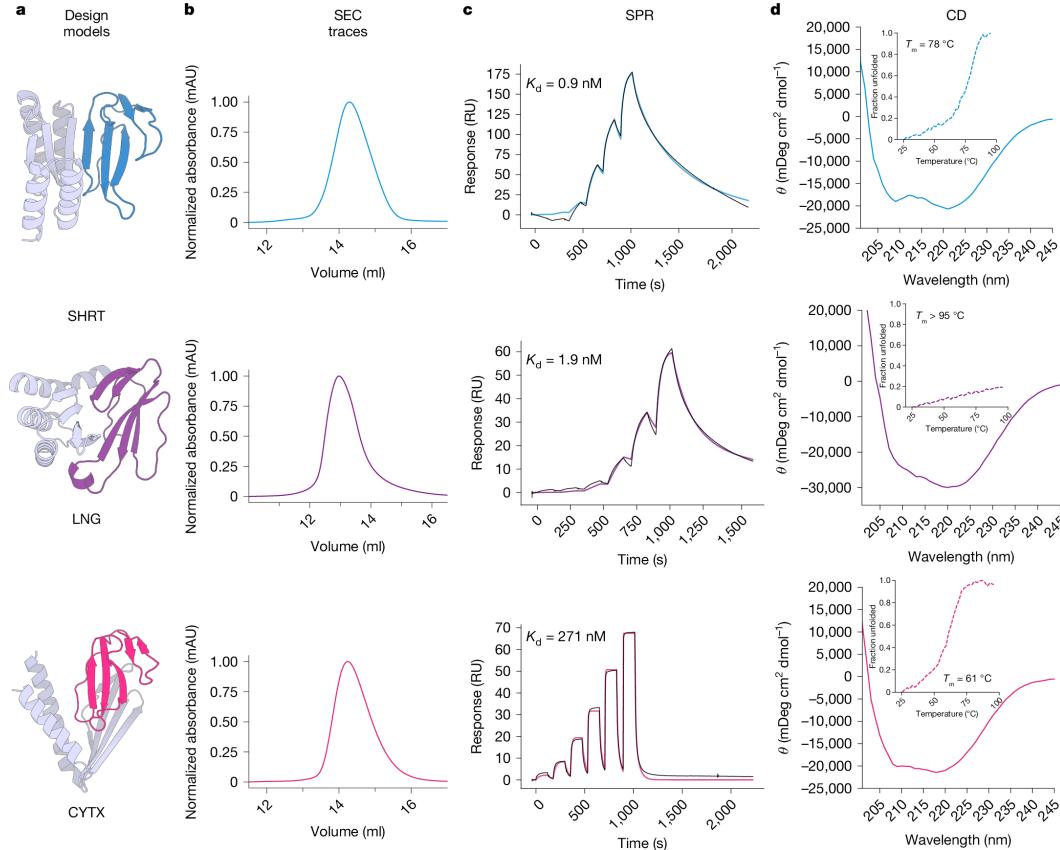
De novo peptide binder design with RFdiffusion



De novo designed proteins neutralize lethal snake venom toxins



De novo designed proteins neutralize lethal snake venom toxins



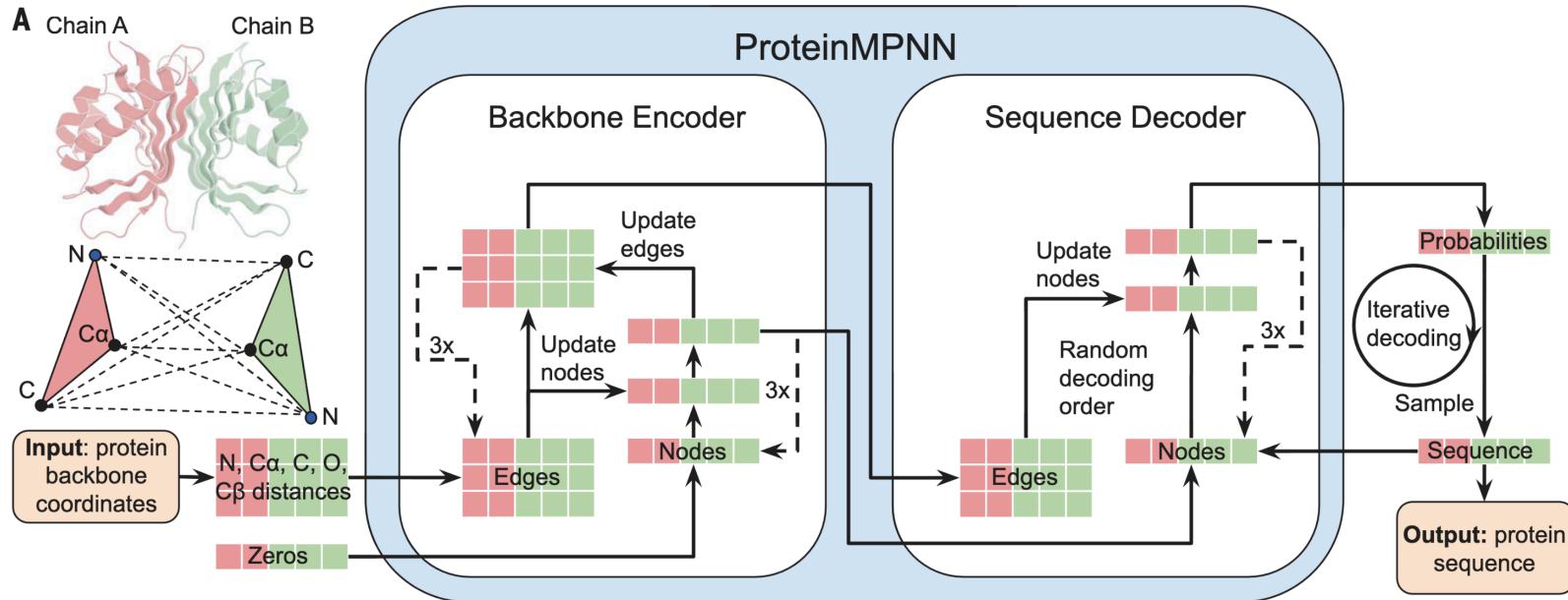
RESEARCH

PROTEIN DESIGN

Robust deep learning–based protein sequence design using ProteinMPNN

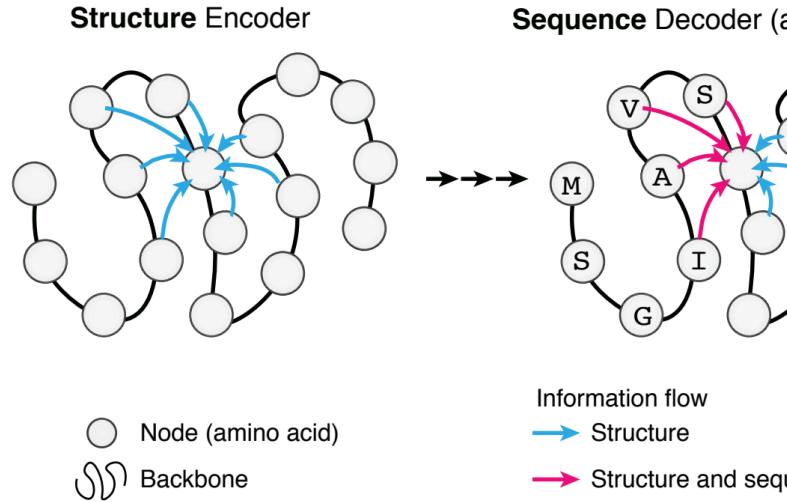
J. Dauparas^{1,2}, I. Anishchenko^{1,2}, N. Bennett^{1,2,3}, H. Bai^{1,2,4}, R. J. Ragotte^{1,2}, L. F. Milles^{1,2}, B. I. M. Wicky^{1,2}, A. Courbet^{1,2,4}, R. J. de Haas⁵, N. Bethel^{1,2,4}, P. J. Y. Leung^{1,2,3}, T. F. Huddy^{1,2}, S. Pellock^{1,2}, D. Tischer^{1,2}, F. Chan^{1,2}, B. Koepnick^{1,2}, H. Nguyen^{1,2}, A. Kang^{1,2}, B. Sankaran⁶, A. K. Bera^{1,2}, N. P. King^{1,2}, D. Baker^{1,2,4*}

ProteinMPNN architecture



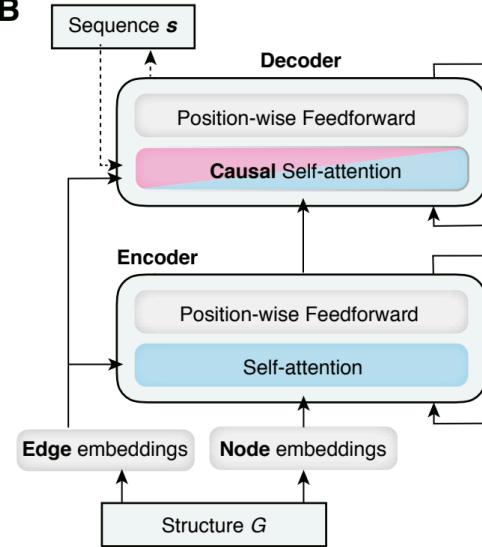
A graph-based, autoregressive model for protein sequences given 3D structures

A

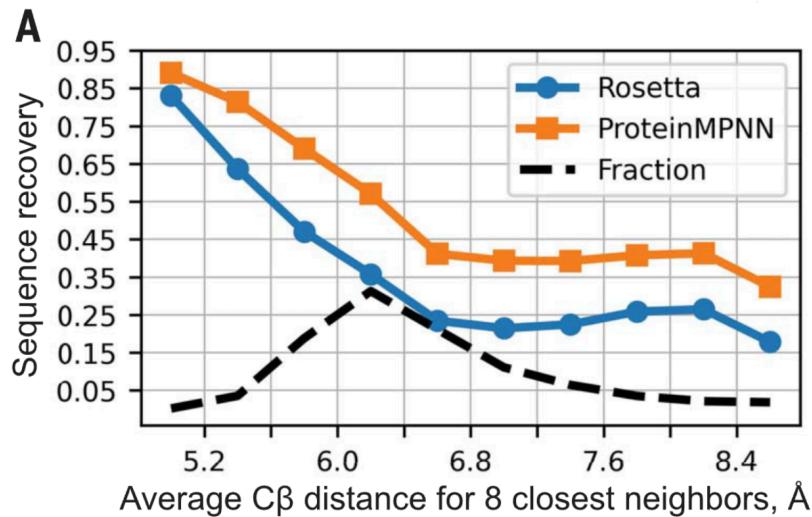
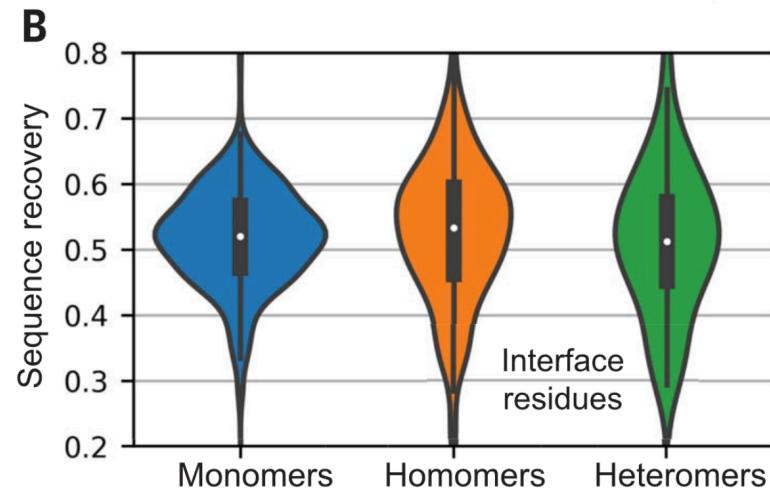


Sequence Decoder (autoregressive)

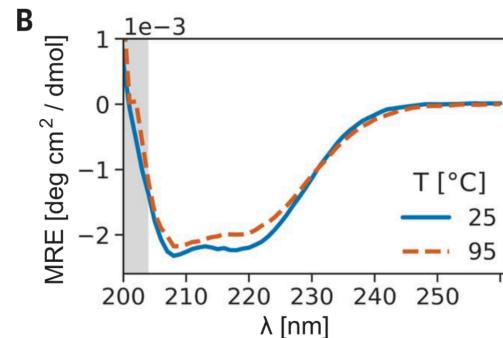
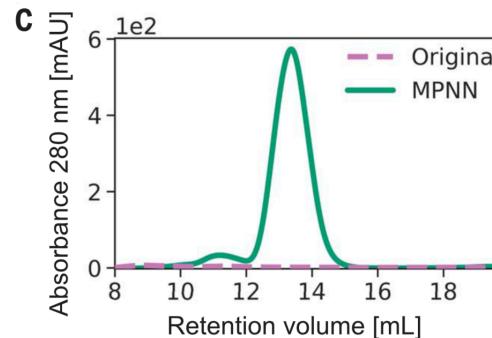
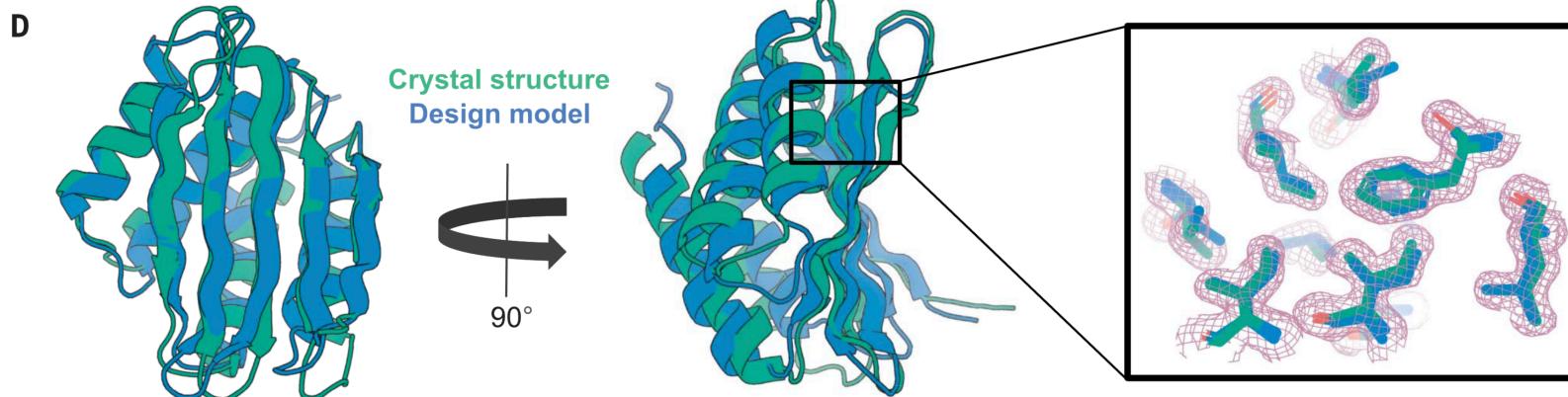
B



In silico evaluation of ProteinMPNN

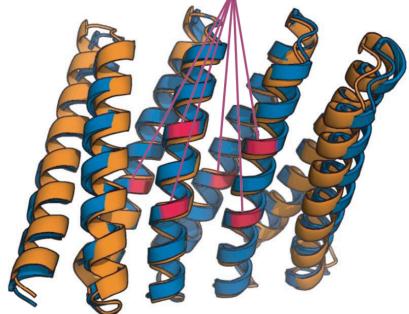


Structural characterization of ProteinMPNN designs

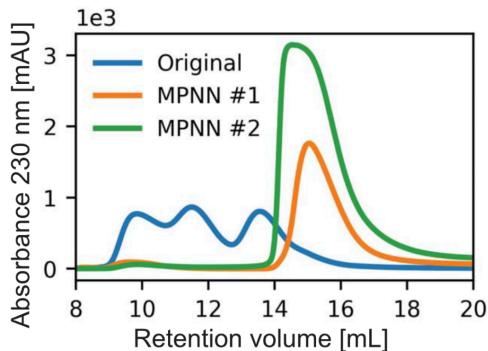


Structural characterization of ProteinMPNN designs

E Tied within chain

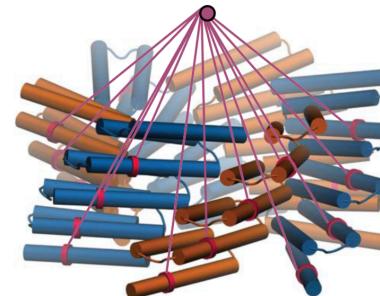


F

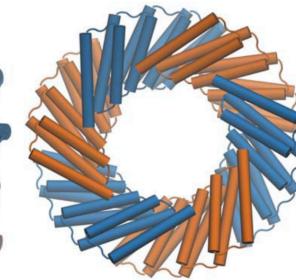
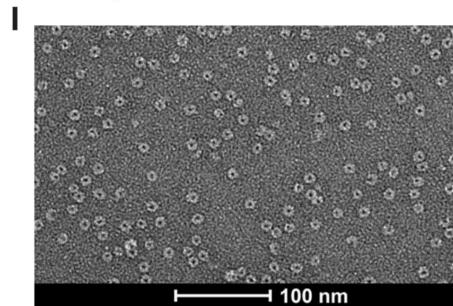


G

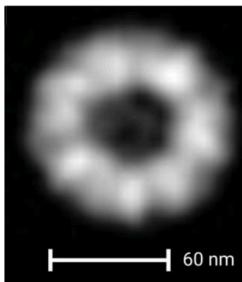
Tied across & within chains



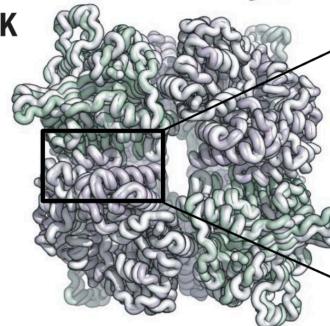
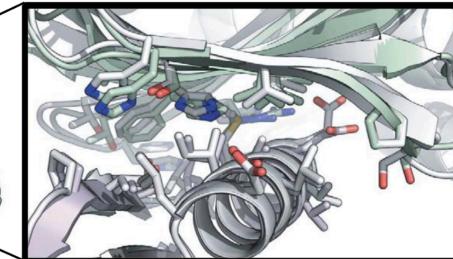
H



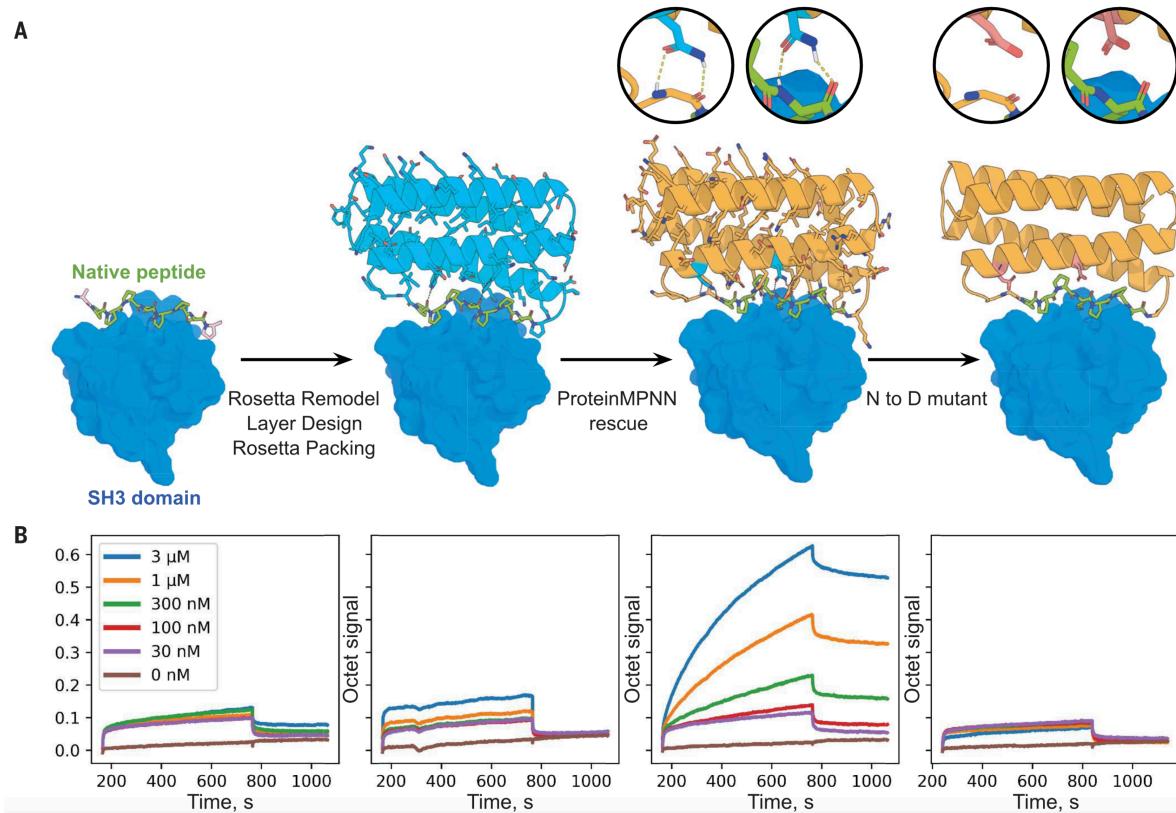
J



K



Design of protein function with ProteinMPNN



Highly accurate protein structure prediction with AlphaFold

nature

Explore content ▾

About the journal ▾

Publish with us ▾

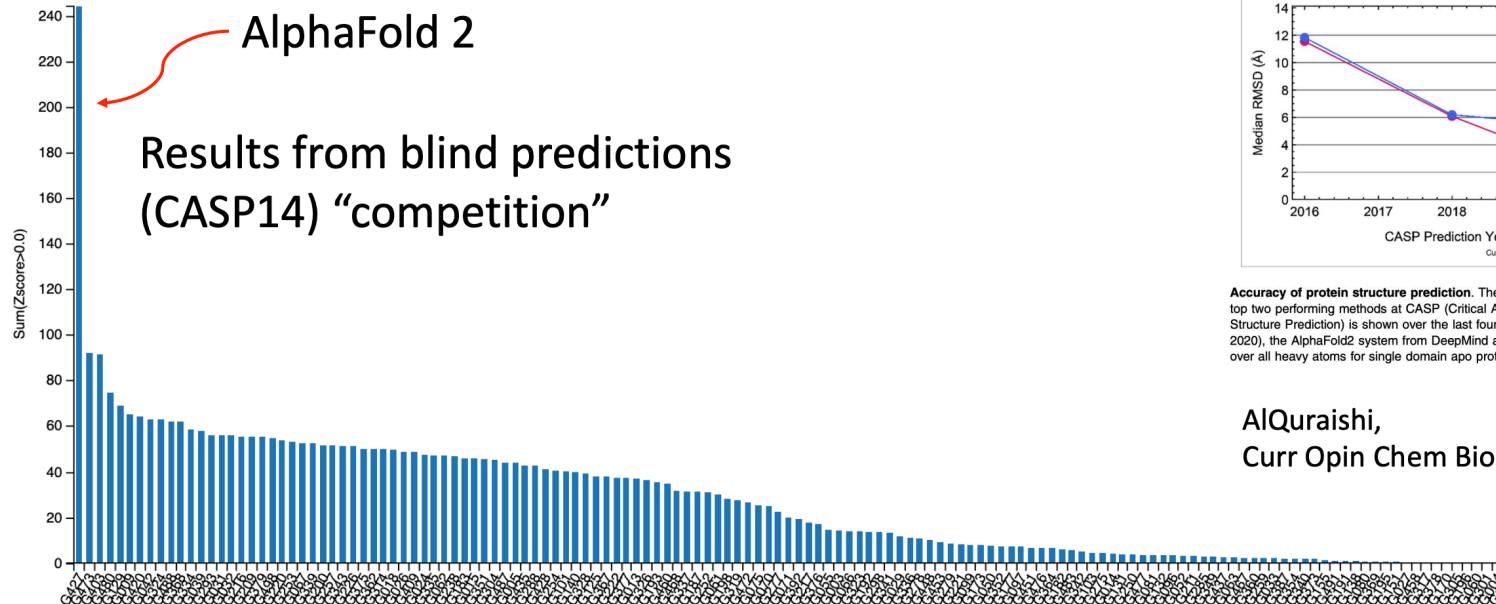
[nature](#) > [articles](#) > [article](#)

Article | [Open access](#) | Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

[John Jumper](#)✉, [Richard Evans](#), [Alexander Pritzel](#), [Tim Green](#), [Michael Figurnov](#), [Olaf Ronneberger](#),
[Kathryn Tunyasuvunakool](#), [Russ Bates](#), [Augustin Žídek](#), [Anna Potapenko](#), [Alex Bridgland](#), [Clemens Meyer](#), [Simon A. A. Kohl](#), [Andrew J. Ballard](#), [Andrew Cowie](#), [Bernardino Romera-Paredes](#), [Stanislav Nikolov](#), [Rishabh Jain](#), [Jonas Adler](#), [Trevor Back](#), [Stig Petersen](#), [David Reiman](#), [Ellen Clancy](#), [Michał Zielinski](#), [Martin Steinegger](#), [Michałina Pacholska](#), [Tamas Berghammer](#), [Sebastian Bodenstein](#), [David Silver](#), [Oriol Vinyals](#), [Andrew W. Senior](#), [Koray Kavukcuoglu](#), [Pushmeet Kohli](#) & [Demis Hassabis](#)✉

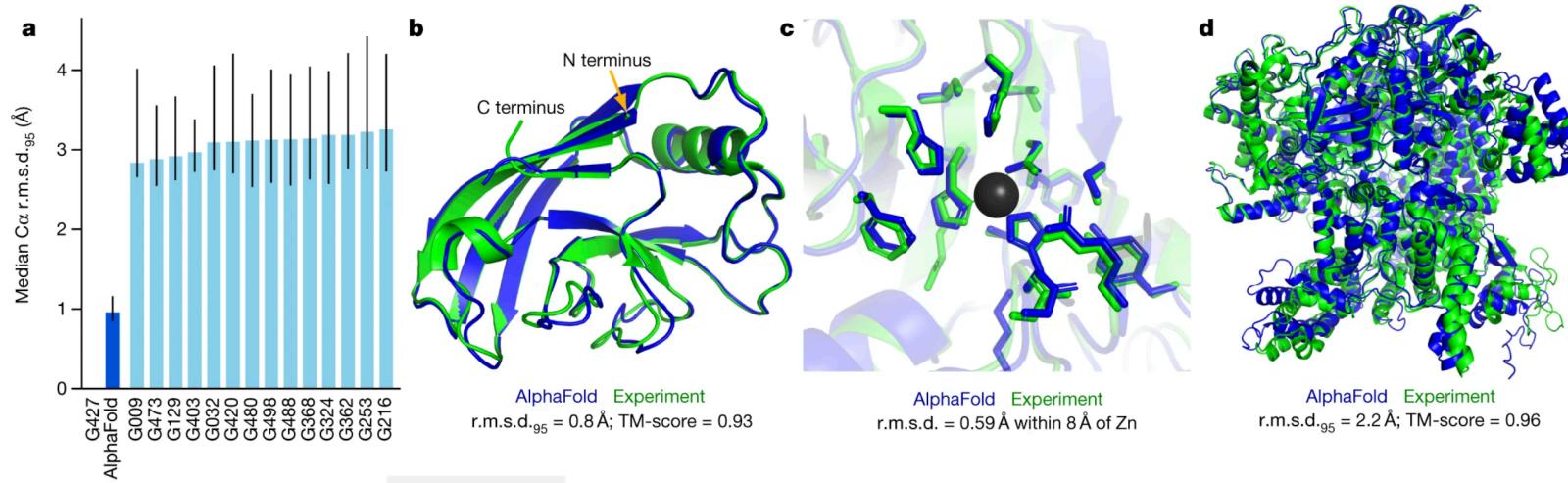
AlphaFold2 performance in CASP14



What is AlphaFold?

- A machine-learning-based model for predicting the 3D structure of proteins using only sequence as input.
- Trained on known sequences and structures from the Protein Data Bank, as well as large databases of protein sequences.

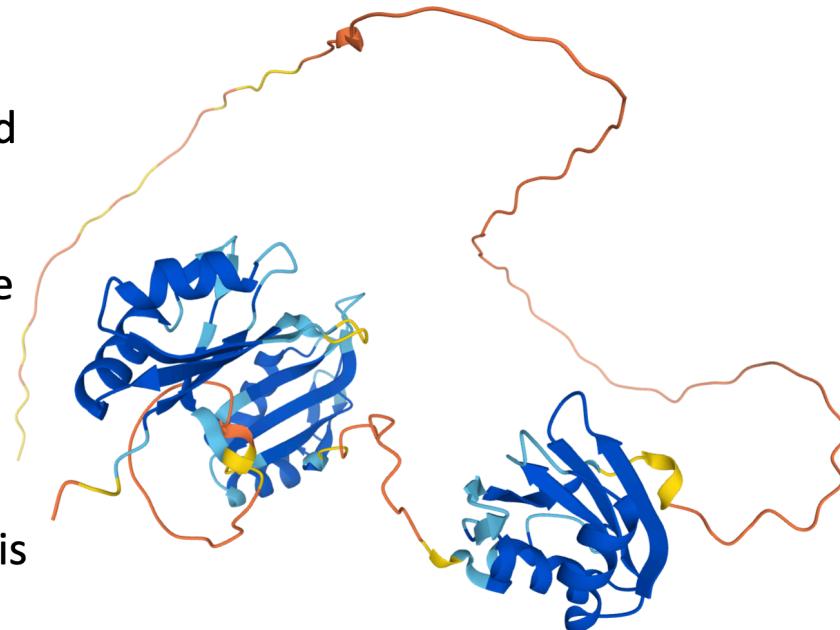
AlphaFold2 produces highly accurate structures



Example (TIA1)

Example (TIA1)

- AF2 was trained on monomeric proteins with structures resolved in the PDB
- It is not designed to predict flexibility or structures of flexible regions
- AF2, however, is pretty good at telling you when you should not trust the predictions
- When AF2 is unsure, the region is likely disordered*

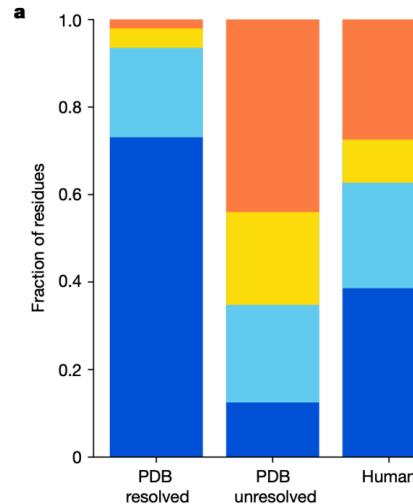
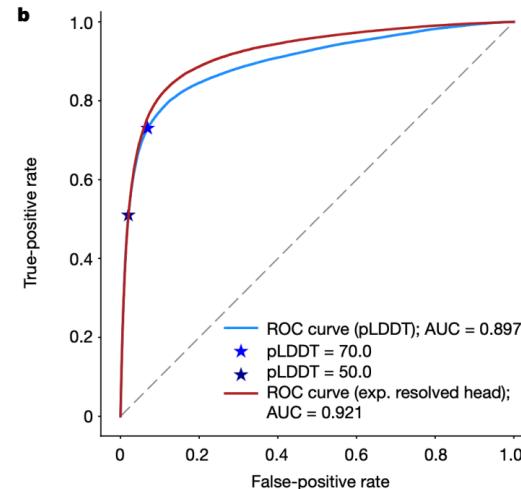


* Tunyasuvunakool et al, Nature, 2021

* Akdel et al, bioRxiv, 2021

AF2 is a pretty good predictor of disorder

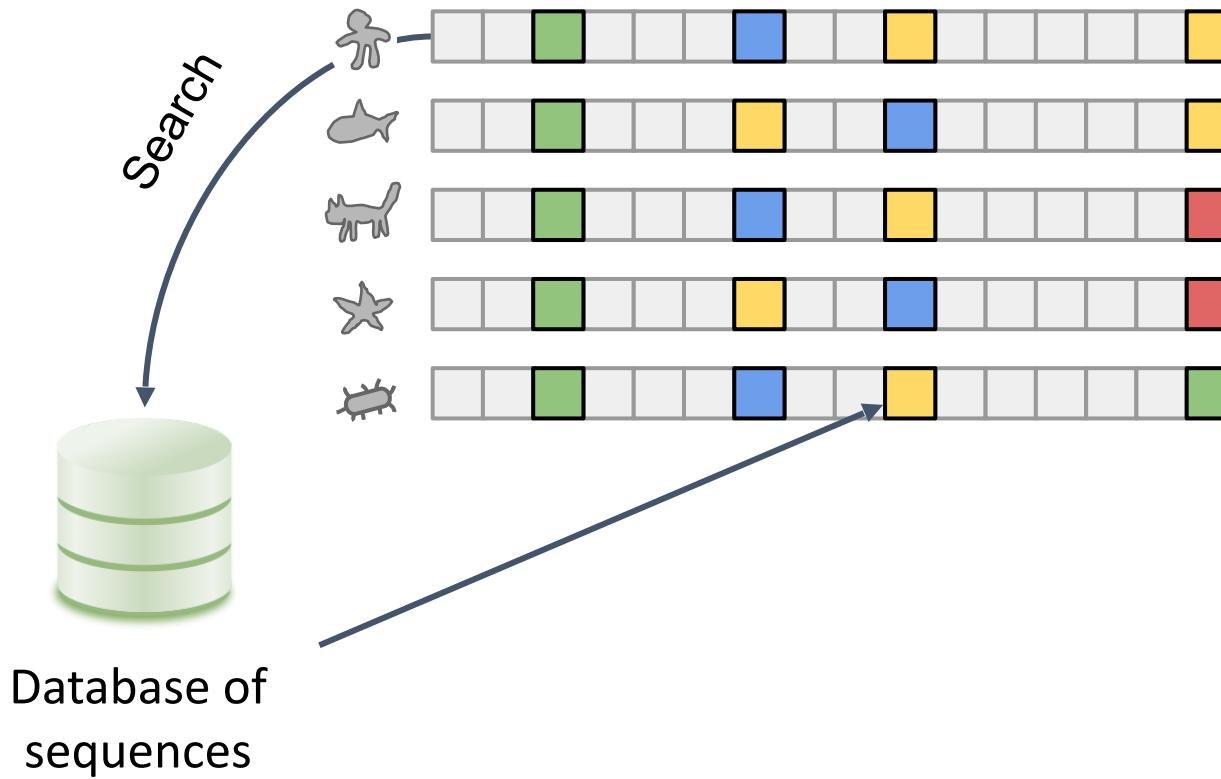
That is, when AlphaFold is unsure where the atoms should be, then Nature is too



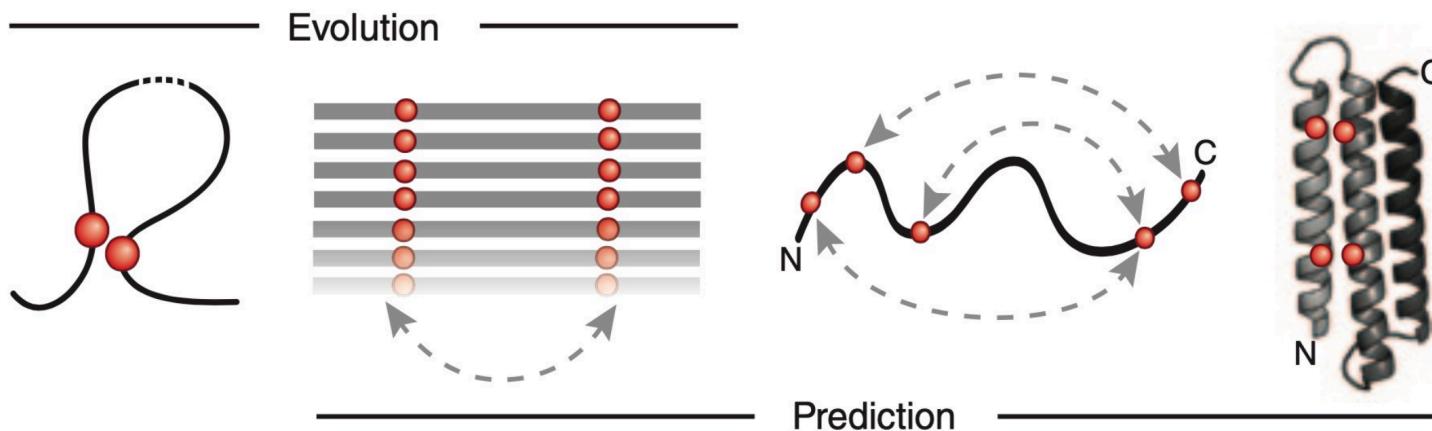
Tunyasuvunakool et al, *Nature*, 2021

Akdel et al, *bioRxiv*, 2021

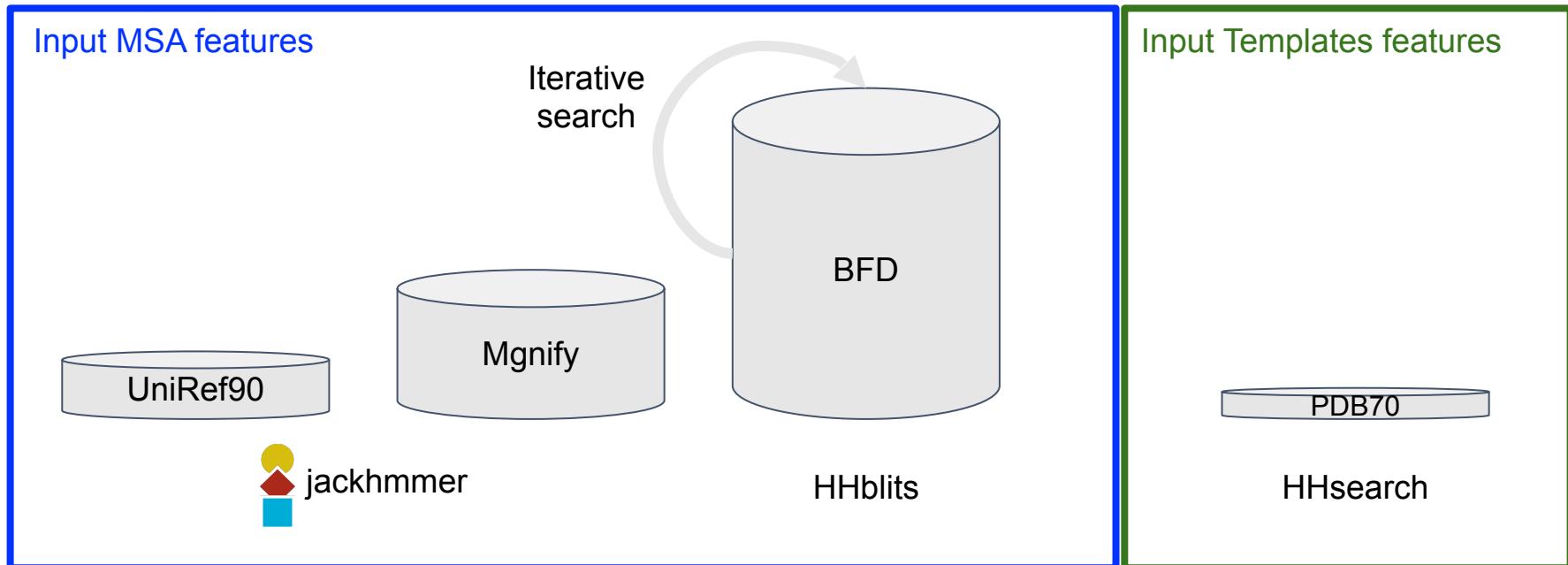
Co-evolution information from MSA



Multiple sequence alignment

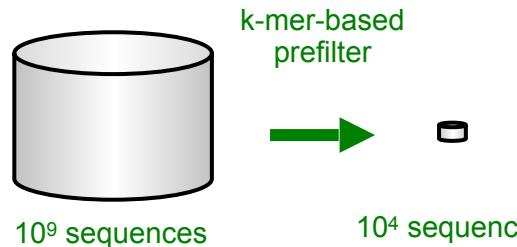


Input feature generation for AlphaFold2



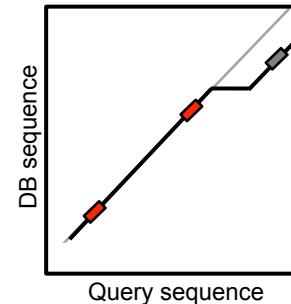
Generation of input features can take **hours** for a single protein on multiple cores

ColabFold uses MMseqs2 for fast MSA search



MMseqs2 key ideas

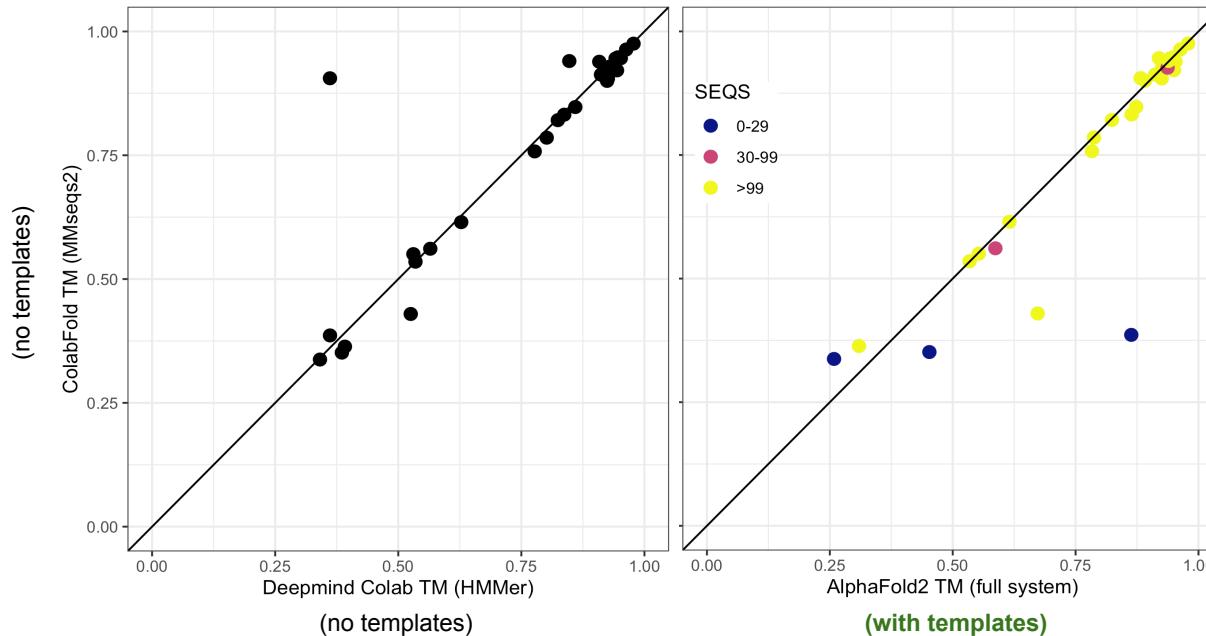
- Match *long & similar k-mers*
- Two *k*-mer matches without gap in-between
- Sequence **profiles** / **iterative searches**



Steinegger and Söding, *Nature Biotechnol.*, 2017

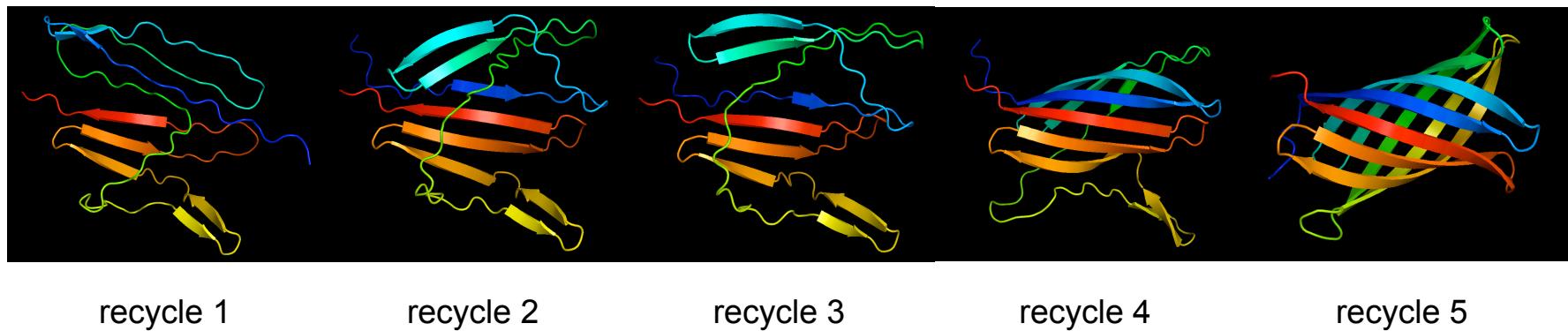
github.com/soedinglab/MMseqs2

ColabFold (MMseqs2) performs similar to the full Deepmind Colab and the AlphaFold2 system on CASP14-FM



Generation of MSA for all 20 sequence take **<4 minutes** on one core

Prediction of designed transmembrane protein



recycle 1

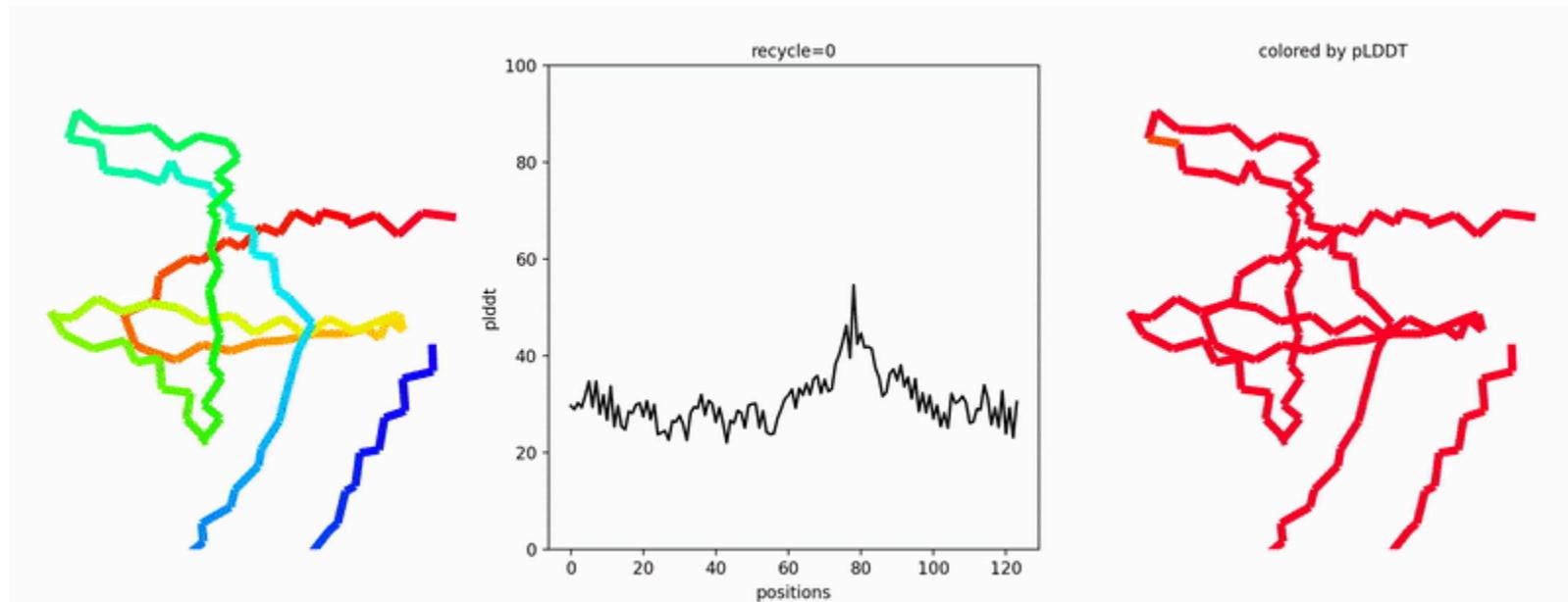
recycle 2

recycle 3

recycle 4

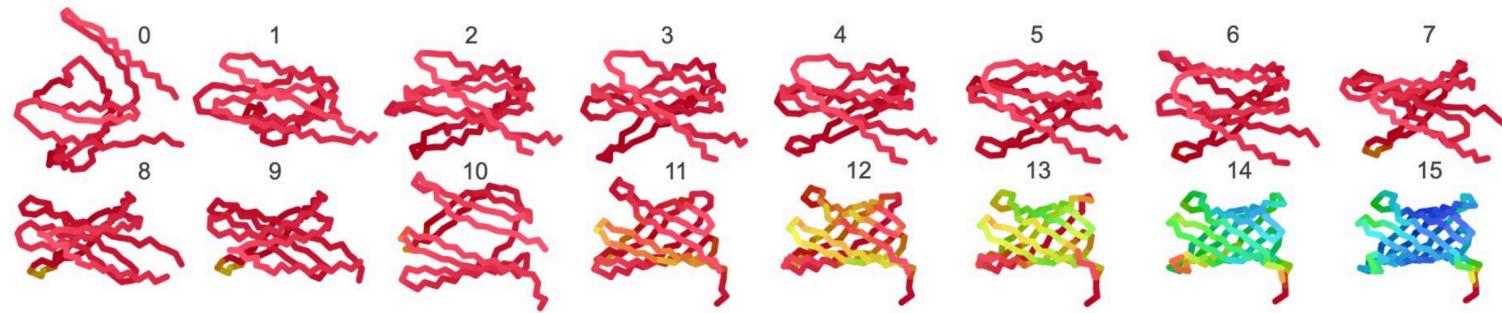
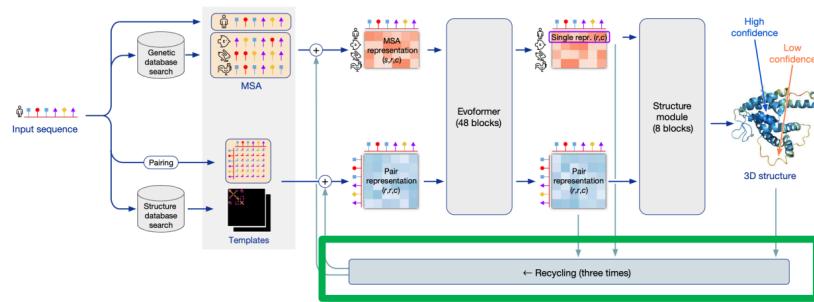
recycle 5

Another example: need up to 12 recycles to get the correct fold



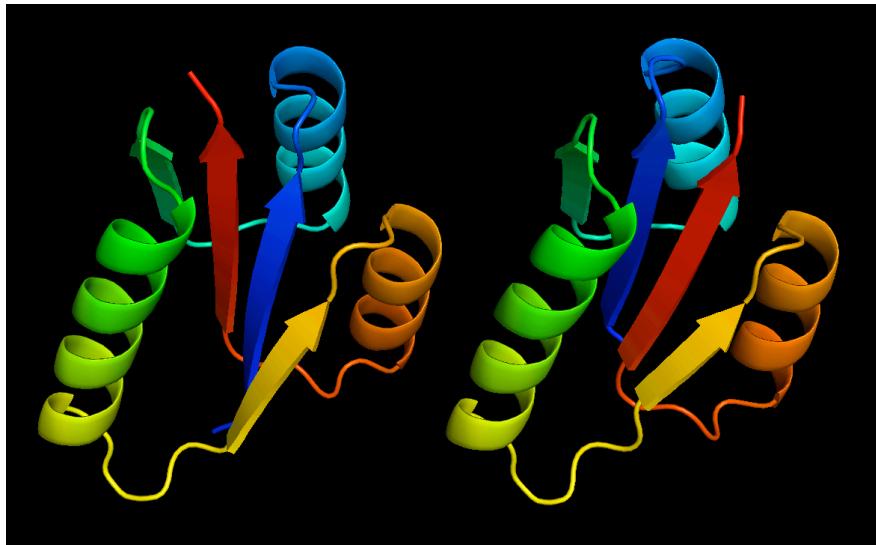
Vorobieva, A.A., White, P., Liang, B., Horne, J.E., Bera, A.K., Chow, C.M., Gerben, S., Marx, S., Kang, A., Stiving, A.Q. and Harvey, S.R., 2021. De novo design of transmembrane β barrels. *Science*, 371(6531).

Another example: need up to 12 recycles to get the correct fold



Changing the seeds can give different results

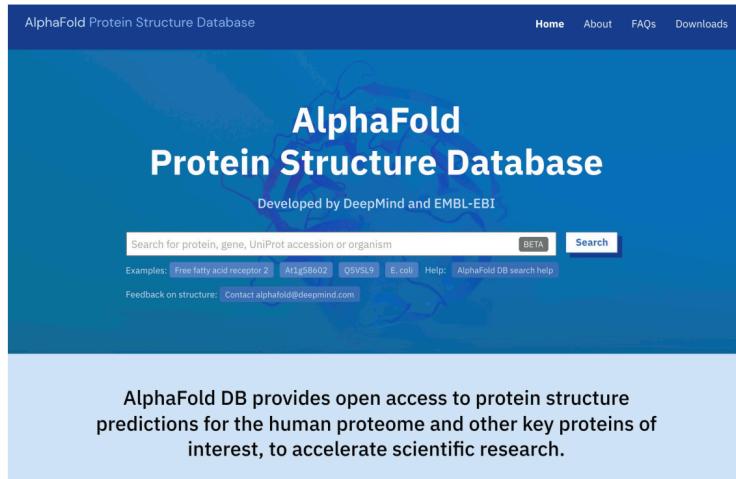
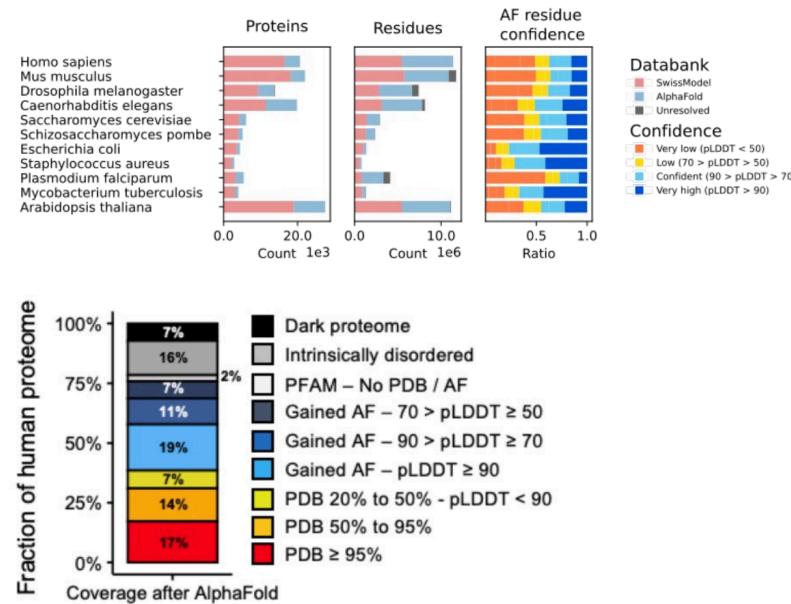
seed 0



seed 1

Protein with a knot, different seed value can change the outcome (knot or no knot)

Large scale application of AF2



Tunyasuvunakool et al, Nature, 2021
Varadi et al, Nucl Acid Res, 2021

Akdel et al, bioRxiv, 2021
Porta-Pardo, bioRxiv, 2021

Highly accurate protein structure prediction for the human proteome

[nature](#) > [articles](#) > [article](#)

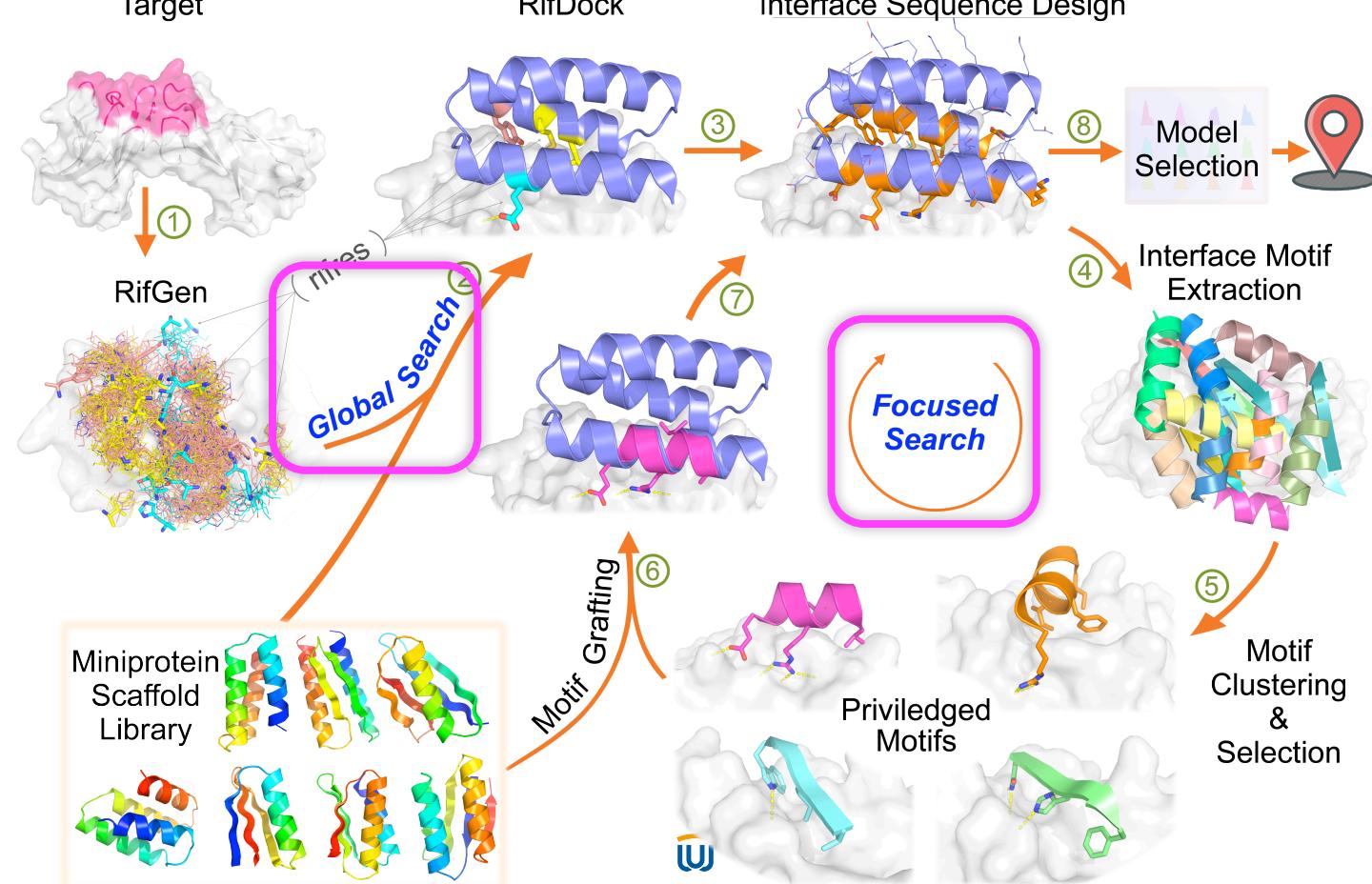
Article | [Open access](#) | Published: 22 July 2021

Highly accurate protein structure prediction for the human proteome

[Kathryn Tunyasuvunakool](#) , [Jonas Adler](#), [Zachary Wu](#), [Tim Green](#), [Michał Zielinski](#), [Augustin Žídek](#), [Alex Bridgland](#), [Andrew Cowie](#), [Clemens Meyer](#), [Agata Laydon](#), [Sameer Velankar](#), [Gerard J. Kleywegt](#), [Alex Bateman](#), [Richard Evans](#), [Alexander Pritzel](#), [Michael Figurnov](#), [Olaf Ronneberger](#), [Russ Bates](#), [Simon A. A. Kohl](#), [Anna Potapenko](#), [Andrew J. Ballard](#), [Bernardino Romera-Paredes](#), [Stanislav Nikolov](#), [Rishabh Jain](#), ... [Demis Hassabis](#) + Show authors

[Nature](#) **596**, 590–596 (2021) | [Cite this article](#)

Computation pipeline of the de novo binder design method



Protein binder design in the era of AI

Hands on Protein Design

Bash

- **Bash:** Bash is a command-line interpreter. It translates commands you type into actions for the operating system (like macOS or Linux).
- **Prompt:** This is the symbol you see waiting for input (often a \$ or %). It indicates the shell is ready to accept a command.
- **.bashrc:** a shell script that Bash executes every time a new interactive, non-login shell is started. It contains commands, functions, and configuration settings that you want to be run automatically.
- **Command Structure:** Most commands follow the pattern:

Command [Option/Flag] [Argument/File]

- Options modify the command's behavior (e.g., -l for a long list format).
- Arguments are the items the command acts upon (e.g., a file name or directory path).

Essential Navigation and File Commands

Command	Purpose	Example
pwd	Print Working Directory. Shows your current location.	pwd
ls	List directory contents.	ls -l (lists with detail)
cd	Change Directory.	cd .. (moves up one level); cd projects
mkdir	Make Directory. Creates a new folder.	mkdir new_results
touch	Creates an empty file.	touch readme.txt
cp	Copy files or directories.	cp fileA.txt /backup/
mv	Move or rename files/directories.	mv oldname.txt newname.txt
rm	Remove (delete) files. Use with caution!	rm junk.log
alias	create a shorthand for a longer command	alias b='cd ..'

Set up your environment for binder design first

Pull the latest version of tutorial repo:

```
cd /app/rfd_mpnn_af2_env && git pull origin main
```

cd stands for *Change Directory*, which changes your current working directory in the terminal to your local Git repository.

&& is a conditional operator in shell scripting. It ensures that the command following it (`git pull...`) only executes if the preceding command (`cd...`) was successful (returned an exit code of 0).

git pull is a command that is actually a combination of two other Git commands.

origin: This is the default name for the remote repository you cloned from.

main: This is the name of the branch on the remote repository (`origin`) that you want to pull changes from and merge into your currently checked-out local branch.

Slide Credit: wangchentong

Set up your environment for binder design first

```
# Copy the required target(sars2 spike protein) pdb files into the work dir:
```

```
cd /root/ && cp -r /app/rfd_mpnn_af2_env/input/ .
```

There is a dot.

cp stands for copy. This command duplicates files or directories.

-r (or **--recursive**) is an essential option when copying directories. It tells the cp command to copy the directory specified as the source (**/app/rfd_mpnn_af2_env/input/**) and all its contents (subdirectories and files).

/app/rfd_mpnn_af2_env/input/: This is the source directory—the directory being copied.

. : This is the destination. In Linux, a single dot (.) is a shorthand reference for the current working directory. Since the first part of the command changed the working directory to **/root/**, the destination is **/root/**.

Set up your environment for binder design first

```
# print the command instruction in /app/rfd_mpnn_af2_env/:
```

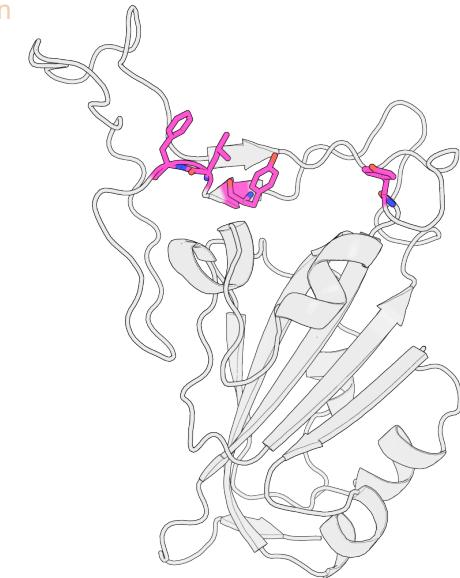
```
cat /app/rfd_mpnn_af2_env/run.sh
```

*# **cat**: This stands for concatenate. It's a standard Unix utility that reads files sequentially and writes them to standard output (usually your terminal screen).*

*# **/app/rfd_mpnn_af2_env/run.sh**: This is the path to the file whose contents you want to view.*

1. Scaffold generation : unconditional binder design(option 1)

```
python /app/RFdiffusion/scripts/run_inference.py
# This calls the Python interpreter to execute the main inference script for RFdiffusion.
inference.input_pdb=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein.pdb:
# The design process will begin from the state defined in this PDB file, which appears to be the Spike glycoprotein
# (from SARS-CoV-2).
'contigmap.contigs=[B1-193/0 90-90]':
# This is the design constraint defining the backbone segments.
# B1-193, Target chain and residue index
# /0 , Chain gap(means the next comes another chain
# 90-90, Binder length(how many residues in binder)
'ppi.hotspot_res=[B120,B122,B123,B160,B172]':
# This is the key constraint for protein-protein interaction (PPI) design.
# It specifies a list of residue indices on chain B (the Spike glycoprotein) that are considered hotspot residues.
inference.ckpt_override_path=/app/RFdiffusion/models/Complex_base_ckpt.pt
# This explicitly sets the path to the model weights (checkpoint file).
# Complex_base_ckpt.pt confirms this is using the RFdiffusion model specifically trained for complex structure
# generation/binder design.
denoiser.noise_scale_ca=0 denoiser.noise_scale_frame=0
# These parameters control the amount of noise added during the reverse diffusion process.
# Setting both to 0 means no noise is added to the structure during the generation process.
inference.output_prefix=samples/uncondition:
# This specifies the path and filename prefix where the resulting PDB files will be saved
```

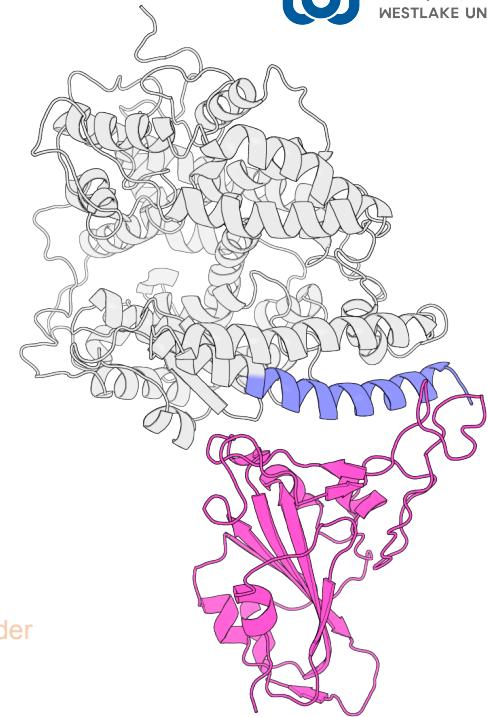


1.Scaffold generation : conditional binder design with ACE2 motif(option 2)

```

python /app/RFdiffusion/scripts/run_inference.py:
# Executes the main RFdiffusion inference script.
inference.input_pdb=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein_complex.pdb:
# The starting structure for the diffusion process.
# This PDB file is the Spike glycoprotein already in a complex (with the ACE2 motif)
'contigmap.contigs=[B1-193/0 A19-42/60-60]':
# This is the core design constraint, defining the fixed and designed segments:
# B1-193: This segment of Chain B (the Spike glycoprotein) is fixed (not designed).
# /0: Chain gap.
# A19-42: This segment of Chain A (the ACE2 motif) is also fixed. This is the motif that the new binder must
incorporate and correctly position.
# /60-60: This instructs the model to design a new connecting sequence of length 60 amino acids
inference.ckpt_override_path=/app/RFdiffusion/models/Base_ckpt.pt:
# Uses the general-purpose RFdiffusion model (Base_ckpt.pt), rather than the specialized Complex model.
denoiser.noise_scale_ca=0 denoiser.noise_scale_frame=0:
# setting these to 0 removes added noise, resulting in a more deterministic or direct sampling run guided
# strictly by the input structure and contigs.
inference.output_prefix=samples/ace2:
# The generated PDB files will be saved with the prefix samples/ace2, indicating that the results are the binder
scaffolds designed around the ACE2 motif.

```

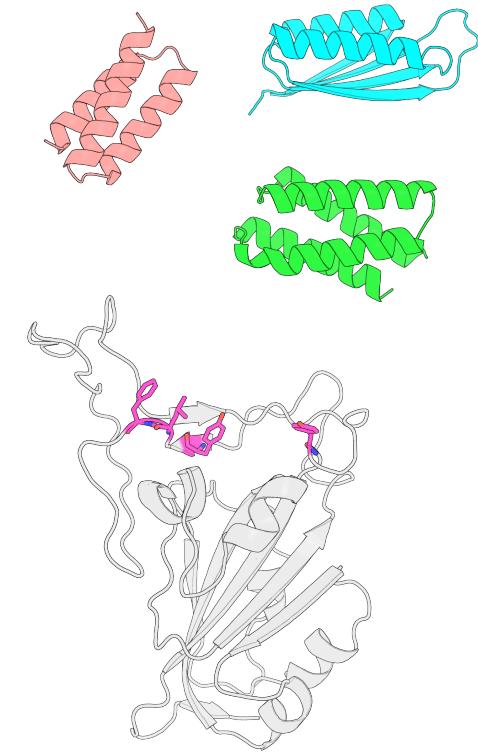


1.Scaffold generation : conditional binder design with scaffold library(option 3)

```

python /app/RFdiffusion/scripts/run_inference.py:
# Executes the main RFdiffusion inference script.
scaffoldguided.scaffoldguided=True:
# Activates the Scaffold-Guided mode.
scaffoldguided.scaffold_dir=/app/RFdiffusion/examples/ppi_scaffolds/:
# Specifies the path to the library of small, pre-folded, stable scaffolds (PDB files) that the model will sample from.
# The model tries to graft each of these scaffolds onto the target.
scaffoldguided.target_pdb=True:
# Confirms that a target PDB file is being provided.
scaffoldguided.target_path=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein.pdb:
# Specifies the target protein (Spike glycoprotein) that the designed binder must interact with.
scaffoldguided.target_ss=/app/rfd_mpnn_af2_env/input/Spike_glycoprotein_ss.pt scaffoldguided.target_adj=/app/
rfd_mpnn_af2_env/input/Spike_glycoprotein_adj.pt
# These arguments provide pre-calculated structural features (secondary structure, ss, and adjacency matrices,
# adj) for the target protein. Loading these pre-computed features speeds up the inference process.
'ppi.hotspot_res=[B120,B122,B123,B160,B172]':Retains the core constraint:
# The designed scaffold/binder must specifically interact with these designated hotspot residues on Chain B.
inference.ckpt_override_path=/app/RFdiffusion/models/Complex_Fold_base_ckpt.pt:
# Uses a highly specialized model checkpoint
denoiser.noise_scale_ca=0 denoiser.noise_scale_frame=0:
# setting noise scales to zero suggests a highly deterministic process
inference.output_prefix=samples/scaffold_guided:
# The output PDB files will be saved under this prefix.

```



2.Sequence design with ProteinMPNN

```
# Executes the main script
python /app/dl_binder_design/mpnn_fr/dl_interface_design.py \
# Input scaffold directory(generated by RFdiffusion in last step)
-pdbdir ./samples/ \
# Output pdb directory(binder scaffolds with added sequence and sidechain atoms)
-outpdbdir ./mpnn/ \
# How many cycles of ProteinMPNN+Fastrelax optimization(more cycles improve self-consistency between binder structure and sequence)
-relax_cycles 0
# Higher temperature generate more diverse sequence from single scaffold but more likely unfolded/unbind
-temperature 0.0001
# The number of sequence one scaffold generate
-seqs_per_struct 4
```

3. AlphaFold2 Prediction

```
# Executes the main script
python /app/dl_binder_design/af2_initial_guess/predict.py \
# Design directory(generated by ProteinMPNN in last step)
-pdbdir ./mpnn/ \
# Output pdb directory (binder scaffolds with added sequence and sidechain atoms)
-outpdbdir ./predictions/ \
# Number cycles in alphafold2, more cycles mean more accurate prediction but slower
-recycle 3
# Turn on initial guess, use design models as a hint to alphafold2 for improved success rate
-no_initial_guess False
```

AlphaFold Confidence Scores

- pLDDT (Predicted Local Distance Difference Test).
- pLDDT is a per-residue confidence metric that estimates the local accuracy of the predicted structure.

pLDDT Score Range	Confidence Level	Meaning for the Structure	Color in Visualization
> 90	Very High	The residue is placed with extremely high accuracy; the side chain and backbone coordinates are reliable.	Dark Blue
70 – 90	High	The backbone is generally correct, but the side chain placement may have minor errors.	Cyan
50 – 70	Low	The backbone placement is poorly defined; this region may be flexible or exposed.	Yellow
< 50	Very Low	The region is likely unstructured, intrinsically disordered, or highly flexible . The coordinates are not reliable.	Red/Orange

AlphaFold Confidence Scores

- PAE (Predicted Aligned Error). PAE is a global confidence metric that estimates the error in the relative positions of two residues (i and j) after the entire predicted structure is optimally aligned on residue i.

PAE Score (Color)	Interpretation	Meaning for the Structure
Low Error (Dark Blue/Green)	High confidence in relative position.	The two residues are confidently placed relative to each other. This often means they belong to the same rigid domain or are part of a stable interface.
High Error (Light Yellow/White)	Low confidence in relative position.	The relative placement of the two residues is highly uncertain. This is typical for residues in different domains connected by flexible linkers , or in disordered regions.

Root Mean Square Deviation (RMSD)

- RMSD is a measure of the average distance between the corresponding atoms of two superimposed molecular structures.

Context	Application of RMSD
Benchmarking	RMSD is used to compare AlphaFold's model to experimentally validated structures in the Protein Data Bank (PDB). This is how the accuracy of AlphaFold's various versions (like AlphaFold 2) is definitively.
Structural Analysis	Researchers use RMSD to evaluate the prediction quality of specific regions, such as loop regions.

PyMOL, a widely used, powerful molecular visualization system

