Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

2. Convex sets

why convex sets first? it's the space we're optimizing in. you'll see in 2 slides.

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Affine set

line through x_1, x_2 : all points of form $x = \theta x_1 + (1 - \theta)x_2$, with $\theta \in \mathbf{R}$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points of form $x = \theta x_1 + (1 - \theta) x_2$, with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point *x* of the form

 $x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$

with $\theta_1 + \cdots + \theta_k = 1, \ \theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

with $\theta_1 \ge 0, \, \theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Convex Optimization

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$, with $a \neq 0$

halfspace: set of the form $\{x \mid a^T x \le b\}$, with $a \ne 0$

hyperplanes are affine and convex; halfspaces are convex check -- why?

Euclidean balls and ellipsoids

(Euclidean) ball with center *x_c* and radius *r*:

notation for 2-norm on vectors.

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, *P* symmetric positive definite)

what is P for a ball?

another representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

- ▶ norm: a function || · || that satisfies
 - $||x|| \ge 0; ||x|| = 0$ if and only if x = 0
 - ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
 - $\|x + y\| \le \|x\| + \|y\|$
- ▶ notation: || · || is general (unspecified) norm; || · ||_{symb} is particular norm
- ▶ **norm ball** with center x_c and radius r: $\{x \mid ||x x_c|| \le r\}$
- norm cone: $\{(x, t) | ||x|| \le t\}$
- norm balls and cones are convex why?

Euclidean norm cone

 $\{(x,t) \mid ||x||_2 \le t\} \subset \mathbf{R}^{n+1}$

is called **second-order cone**

Polyhedra

> polyhedron is solution set of finitely many linear inequalities and equalities

 $\{x \mid Ax \le b, \ Cx = d\}$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{ is componentwise inequality})$

- intersection of finite number of halfspaces and hyperplanes
- example with no equality constraints; a_i^T are rows of A

could be unbounded.

Positive semidefinite cone

notation:

- **S**^{*n*} is set of symmetric $n \times n$ matrices
- ▶ $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \ge 0\}$: positive semidefinite (symmetric) $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \quad \Longleftrightarrow \quad z^T X z \ge 0 \text{ for all } z$$

Sⁿ₊ is a convex cone, the positive semidefinite cone why convex? show from definitions.
Sⁿ₊₊ = {X ∈ Sⁿ | X > 0}: positive definite (symmetric) n × n matrices

 $x_1^{0.5}$

Convex Optimization

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Showing a set is convex

methods for establishing convexity of a set C

- 1. apply definition: show $x_1, x_2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 \theta) x_2 \in C$
 - recommended only for **very simple** sets
- 2. use convex functions (next lecture)
- 3. show that *C* is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine mapping
 - perspective mapping
 - linear-fractional mapping often seen in control..

you'll mostly use methods 2 and 3

Intersection

the intersection of (any number of) convex sets is convex

example:

- $-S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}, \text{ with } p(t) = x_1 \cos t + \dots + x_m \cos mt$
- write $S = \bigcap_{|t| \le \pi/3} \{x \mid |p(t)| \le 1\}$, *i.e.*, an intersection of (convex) slabs

intersection of an uncountable number of convex sets.

• picture for m = 2:

Convex Optimization

Affine mappings

▶ suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine, *i.e.*, f(x) = Ax + b with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex $\implies f(S) = \{f(x) \mid x \in S\}$ convex

why? make sure you check this.

• the **inverse image** $f^{-1}(C)$ of a convex set under *f* is convex

 $C \subseteq \mathbf{R}^m$ convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

inverse image can increase dimension.

Examples

▶ scaling, translation: $aS + b = \{ax + b \mid x \in S\}, a, b \in \mathbf{R}$

- ▶ projection onto some coordinates: $\{x \mid (x, y) \in S\}$
- if $S \subseteq \mathbf{R}^n$ is convex and $c \in \mathbf{R}^n$, $c^T S = \{c^T x \mid x \in S\}$ is an interval
- ▶ solution set of **linear matrix inequality** $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ with $A_i, B \in \mathbb{S}^p$
- ▶ hyperbolic cone { $x \mid x^T P x \le (c^T x)^2$, $c^T x \ge 0$ } with $P \in \mathbf{S}_+^n$

why? book: inverse image of positive semi-definite cone under f(x)=B-A(x)

why? book: inverse image of secondorder cone $z^T z \le t^2$ under affine function f(x) = (P^1/2 x, c^T x)

Perspective and linear-fractional function

• perspective function $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$:

P(x, t) = x/t, **dom** $P = \{(x, t) | t > 0\}$

image of a pin-hole camera with hole at origin, white screen at x2

images and inverse images of convex sets under perspective are convex =-1.

linear-fractional function $f : \mathbf{R}^n \to \mathbf{R}^m$:

$$f(x) = \frac{Ax+b}{c^T x + d}, \quad \text{dom} f = \{x \mid c^T x + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

Linear-fractional function example

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Proper cones

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, ..., n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

how would you show this? Intersection of linear inequalities.

Generalized inequality

(nonstrict and strict) generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \operatorname{int} K$$

examples a partial ordering.

- componentwise inequality $(K = \mathbf{R}_{+}^{n})$: $x \leq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, i = 1, ..., n$
- matrix inequality $(K = \mathbf{S}^n_+)$: $X \leq_{\mathbf{S}^n} Y \iff Y X$ positive semidefinite

these two types are so common that we drop the subscript in \leq_K

many properties of \leq_{κ} are similar to \leq on **R**. *e.a.*.

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Separating hyperplane theorem

▶ if *C* and *D* are nonempty disjoint (*i.e.*, $C \cap D = \emptyset$) convex sets, there exist $a \neq 0$, *b* s.t.

$$a^T x \le b$$
 for $x \in C$, $a^T x \ge b$ for $x \in D$

• the hyperplane $\{x \mid a^T x = b\}$ separates *C* and *D*

example where there is no strict separation?

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

Suppose x_0 is a boundary point of set $C \subset \mathbf{R}^n$

▶ supporting hyperplane to *C* at x_0 has form $\{x \mid a^T x = a^T x_0\}$, where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$ along the direction of a.

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C