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2. Convex sets

Fangzhou Xiao肖方舟
why convex sets first? it's the space we're optimizing in. 

you'll see in 2 slides.



Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes
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Affine set

line through x1, x2: all points of form x = 𝜃x1 + (1 − 𝜃)x2, with 𝜃 ∈ R

x1

x2

\ = 1.2
\ = 1

\ = 0.6

\ = 0
\ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}
(conversely, every affine set can be expressed as solution set of system of linear equations)
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Convex set

line segment between x1 and x2: all points of form x = 𝜃x1 + (1 − 𝜃)x2, with 0 ≤ 𝜃 ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ 𝜃 ≤ 1 =⇒ 𝜃x1 + (1 − 𝜃)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = 𝜃1x1 + 𝜃2x2 + · · · + 𝜃kxk

with 𝜃1 + · · · + 𝜃k = 1, 𝜃i ≥ 0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = 𝜃1x1 + 𝜃2x2

with 𝜃1 ≥ 0, 𝜃2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b}, with a ≠ 0

a

x

a
T

x = b

x0

halfspace: set of the form {x | aTx ≤ b}, with a ≠ 0

a

a
T

x ≥ b

a
T

x ≤ b

x0

▶ a is the normal vector
▶ hyperplanes are affine and convex; halfspaces are convex

Convex Optimization Boyd and Vandenberghe 2.6

Fangzhou Xiao肖方舟
check -- why?



Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1}

ellipsoid: set of the form
{x | (x − xc)TP−1 (x − xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

another representation: {xc + Au | ∥u∥2 ≤ 1} with A square and nonsingular
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Fangzhou Xiao肖方舟
notation for 2-norm on vectors.

Fangzhou Xiao肖方舟
what is P for a ball?



Norm balls and norm cones
▶ norm: a function ∥ · ∥ that satisfies

– ∥x∥ ≥ 0; ∥x∥ = 0 if and only if x = 0
– ∥tx∥ = |t| ∥x∥ for t ∈ R
– ∥x + y∥ ≤ ∥x∥ + ∥y∥

▶ notation: ∥ · ∥ is general (unspecified) norm; ∥ · ∥symb is particular norm
▶ norm ball with center xc and radius r: {x | ∥x − xc∥ ≤ r}
▶ norm cone: {(x, t) | ∥x∥ ≤ t}
▶ norm balls and cones are convex

Euclidean norm cone

{(x, t) | ∥x∥2 ≤ t} ⊂ Rn+1

is called second-order cone
x1

x2

t
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0

1

−1

0

1

0
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1
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Fangzhou Xiao肖方舟
why?



Polyhedra

▶ polyhedron is solution set of finitely many linear inequalities and equalities

{x | Ax ⪯ b, Cx = d}

(A ∈ Rm×n, C ∈ Rp×n, ⪯ is componentwise inequality)
▶ intersection of finite number of halfspaces and hyperplanes
▶ example with no equality constraints; aT

i are rows of A

a1 a2

a3

a4

a5

P
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Fangzhou Xiao肖方舟
could be unbounded.



Positive semidefinite cone
notation:
▶ Sn is set of symmetric n × n matrices
▶ Sn

+ = {X ∈ Sn | X ⪰ 0}: positive semidefinite (symmetric) n × n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

▶ Sn
+ is a convex cone, the positive semidefinite cone

▶ Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite (symmetric) n × n matrices

example:
[

x y
y z

]
∈ S2

+

xy
z

0
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1
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0
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0
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1
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Fangzhou Xiao肖方舟
why convex? show from definitions.

Fangzhou Xiao肖方舟
x+z >=0;

xz-y^2 >=0.
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Showing a set is convex

methods for establishing convexity of a set C

1. apply definition: show x1, x2 ∈ C, 0 ≤ 𝜃 ≤ 1 =⇒ 𝜃x1 + (1 − 𝜃)x2 ∈ C
– recommended only for very simple sets

2. use convex functions (next lecture)

3. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . . )
by operations that preserve convexity

– intersection
– affine mapping
– perspective mapping
– linear-fractional mapping

you’ll mostly use methods 2 and 3
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Fangzhou Xiao肖方舟
often seen in control..



Intersection

▶ the intersection of (any number of) convex sets is convex

▶ example:
– S = {x ∈ Rm | |p(t) | ≤ 1 for |t| ≤ 𝜋/3}, with p(t) = x1 cos t + · · · + xm cos mt
– write S =

⋂
|t | ≤𝜋/3 {x | |p(t) | ≤ 1}, i.e., an intersection of (convex) slabs

▶ picture for m = 2:

0 c/3 2c/3 c

−1

0

1

t

p
(t
)

x1

x
2 S

−2 −1 0 1 2
−2

−1

0

1

2
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Fangzhou Xiao肖方舟
p(x,t)

Fangzhou Xiao肖方舟
each line is 

p(x,t)=+1 or -1 

for a fixed t,

of the form

p(x,t) = a1 x1 + a2 x2

Fangzhou Xiao肖方舟
intersection of an uncountable number of convex sets.



Affine mappings

▶ suppose f : Rn → Rm is affine, i.e., f (x) = Ax + b with A ∈ Rm×n, b ∈ Rm

▶ the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f (S) = {f (x) | x ∈ S} convex

▶ the inverse image f −1 (C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f −1 (C) = {x ∈ Rn | f (x) ∈ C} convex
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Fangzhou Xiao肖方舟
why? make sure you check this.

Fangzhou Xiao肖方舟
inverse image can increase dimension.



Examples

▶ scaling, translation: aS + b = {ax + b | x ∈ S}, a, b ∈ R

▶ projection onto some coordinates: {x | (x, y) ∈ S}
▶ if S ⊆ Rn is convex and c ∈ Rn, cTS = {cTx | x ∈ S} is an interval
▶ solution set of linear matrix inequality {x | x1A1 + · · · + xmAm ⪯ B} with Ai,B ∈ Sp

▶ hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} with P ∈ Sn
+
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Fangzhou Xiao肖方舟
why? book: inverse image of positive 

semi-definite cone under f(x)=B-A(x)

Fangzhou Xiao肖方舟
why? book: inverse image of second-

order cone z^T z <= t^2 under affine 

function f(x) = (P^1/2 x, c^T x)

Fangzhou Xiao肖方舟
b is a vector.



Perspective and linear-fractional function

▶ perspective function P : Rn+1 → Rn:

P(x, t) = x/t, dom P = {(x, t) | t > 0}

▶ images and inverse images of convex sets under perspective are convex

▶ linear-fractional function f : Rn → Rm:

f (x) = Ax + b
cTx + d

, dom f = {x | cTx + d > 0}

▶ images and inverse images of convex sets under linear-fractional functions are convex
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Fangzhou Xiao肖方舟
image of a pin-hole 

camera with hole at 

origin, white screen at x2

=-1.



Linear-fractional function example

f (x) = 1
x1 + x2 + 1

x

x1

x
2

C

−1 0 1
−1

0

1

x1

x
2

f (C)

−1 0 1
−1

0

1
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Proper cones

a convex cone K ⊆ Rn is a proper cone if
▶ K is closed (contains its boundary)
▶ K is solid (has nonempty interior)
▶ K is pointed (contains no line)

examples
▶ nonnegative orthant K = Rn

+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}
▶ positive semidefinite cone K = Sn

+
▶ nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t + x3t2 + · · · + xntn−1 ≥ 0 for t ∈ [0, 1]}
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Fangzhou Xiao肖方舟
how would you show this?

Intersection of linear inequalities.



Generalized inequality

▶ (nonstrict and strict) generalized inequality defined by a proper cone K:

x ⪯K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ int K

▶ examples
– componentwise inequality (K = Rn

+): x ⪯Rn
+

y ⇐⇒ xi ≤ yi, i = 1, . . . , n
– matrix inequality (K = Sn

+): X ⪯Sn
+

Y ⇐⇒ Y − X positive semidefinite
these two types are so common that we drop the subscript in ⪯K

▶ many properties of ⪯K are similar to ≤ on R, e.g.,

x ⪯K y, u ⪯K v =⇒ x + u ⪯K y + v
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Fangzhou Xiao肖方舟
a partial ordering.



Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Convex Optimization Boyd and Vandenberghe 2.21



Separating hyperplane theorem

▶ if C and D are nonempty disjoint (i.e., C ∩ D = ∅) convex sets, there exist a ≠ 0, b s.t.

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

a
T

x ≥ b a
T

x ≤ b

▶ the hyperplane {x | aTx = b} separates C and D
▶ strict separation requires additional assumptions (e.g., C is closed, D is a singleton)
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Fangzhou Xiao肖方舟
example where there is no strict separation?

Fangzhou Xiao肖方舟
VERY important property of convex sets!



Supporting hyperplane theorem

▶ suppose x0 is a boundary point of set C ⊂ Rn

▶ supporting hyperplane to C at x0 has form {x | aTx = aTx0}, where a ≠ 0 and aTx ≤ aTx0
for all x ∈ C

C

a

x0

▶ supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C
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Fangzhou Xiao肖方舟
along the direction of a.
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