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Definition

«
Wﬁﬁﬂ\"r-

» f:R" — R is convex if domf is a convex set and for all x,y € domf, 0 <6 < 1,

.-#

f(Ox+(1=0)y) <6f(x)+(1-0)f(y)

. f ()
(x,f(x))

> f is concave if —f is convex

> £ is strictly convex if domf is convex and for x,y e domf, x #y, 0 <6 < 1,

fOx+(1=0)y) <6f(x)+(1-06)f(y)
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Examples on R

convex functions:
> affine: ax+b on R, for any a,b € R
exponential: e**, for any a € R

powers: x* on R,,, fora>1ora <0

vV v v ¥V

positive part (relu): max{0, x}

concave functions:

> affine: ax+b on R, for any a,b € R
powers: x¥ on R, for0 < a <1
logarithm: logx on R,

entropy: —xlogx on Ry,

v v v V

negative part: min{0, x}

Convex Optimization

powers of absolute value: [x|” on R, forp > 1
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Examples on R”

convex functions:

> affine functions: f(x) =a'x+b

> any norm, e.g., the £, norms Tr‘“‘ﬁu meq eyl = Iyl
— x|l = (Jxq [P +- - - + x,|P)P for p > 1 Sealoor maudk: | XX U= o (Ix|
— ||x||l0 = max{|xq]|, ..., |xul}

> sum of squares: HxH% = x% + oo X2

» max function: max(x) = max{x;,x2,...,X,}

> softmax or log-sum-exp function: log(expx; + -+ expx,)

Wk () £ L SE(%) S wox(x) + Leg ()

o) X AN (30) <t X:
<e <le "< ne ] == . &

o 0
= 2okt e¥%..re
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Examples on R"""

> X € R™" (m X n matrices) is the variable

» general affine function has form

£(X) = tr(ATX) + b = Z Z A Xij+ b
N i=1 j=1
M‘é A,X

for some A € R™" b e R AR e dots -

> spectral norm (maximum singular value) is convex
F(X) = 11Xll2 = Tmax (X) = (Amax (X" X)) 2

> |og-determinant: for X € S, f(X) =logdetX is concave

Convex Optimization Boyd and Vandenberghe
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Extended-value extension

> suppose f is convex on R”, with domain dom f

» its extended-value extension f is function f :R" -5 RU {0}

~ . | f(x) xe€domf
f(x)_{oo x¢d0mf

> often simplifies notation; for example, the condition
0<0<1 = F(Ox+(1-0)y) <0f(x)+(1-6)F()

(as an inequality in RU {0} ), means the same as the two conditions

— domf is convex
—x,yedomf, 0<0<1 = f(Ox+(1-0)y) <0f(x)+(1-0)f(y)
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Restriction of a convex function to a line

> f:R" — R is convex if and only if the function g : R — R,
2(t) =f(x+1v), domg ={r| x+1v € domf}

is convex (in t) for any x € domf, v € R”

> can check convexity of f by checking convexity of functions of one variable

Convex Optimization Boyd and Vandenberghe
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Example
> f: 8" — R with f(X) =logdetX, domf =S’ /Ohrf?_b’rm. H
> consider line in S" given by X +tV, X €S/, VeS" teR Sstnl. 4tV e S,

g(t) = logdet(X +1tV)
= logdet (Xl/2 (I + tX_l/zVX_l/z) Xl/z)

log det X + logdet (1 + X~ 2VX™12)  De ot olef of har poly
log det X + Z log(1 + tA4;) QPA(S):W (SI_ A) = [ (S')‘f-)
i=1

(O

<@ da(I+4) = ﬁ, Cl+xi)

where A; are the eigenvalues of X~1/2yx~1/2

> g is concave in t (for any choice of X € S7,, V € §"); hence f is concave
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First-order condition
> f is differentiable if domf is open and the gradient

of (x) 0f (x) of (x)

, ., c R”
(9)61 6)62 ﬁxn

Vi (x) =

exists at each x € dom f
> 1st-order condition: differentiable f with convex domain is convex if and only if

f(y) > f(x)+Vf(x) (y-x) forall x,y € domf

> first order Taylor approximation of convex f is a global underestimator of f

(y)
f(x) + Vf(x)! (y — x)

ﬂ&'
(x,f(x)) Supporting Igperplane:
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Second-order conditions

> f is twice differentiable if domf is open and the Hessian Vf(x) € S”,

0%f (x)
8xi8xj ,

Vo (x); = iji=1,...,n,

exists at each x € domf

> 2nd-order conditions: for twice differentiable f with convex domain

— fis convex if and only if Vf(x) > O for all x € dom f
— if V2f(x) > O for all x € domf, then f is strictly convex

Convex Optimization Boyd and Vandenberghe 3.10



Examples

> quadratic function: f(x) = (1/2)x' Px + ¢! x + r (with P € §")

=P

V2f (x)

Vf(x) = Px +gq,

< 0)

0 (concave if P
> least-squares objective: f(x) = [|[Ax — b||;

>

convex if P

Vf(x) = 2ATA

VF(x) = 24" (Ax - b),

convex (for any A)

3.11

> quadratic-over-linear: f(x,y) =x%/y, y > 0

A
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’Be,_,f—?__z}i_zk—{ b

"é";h' D 2% z 2c

9§ 9 :
E_}Xtr (E}‘KEB N Z“’-f'—-“

A X rgxt

More examples

> log-sum-exp: f(x) =log >/, expx is convex

1 1
sz(x) = dlag(z) (177)? 77l

(zZk = exp xx)

> to show V?f(x) = 0, we must verify that v/ V*f(x)v > 0 for all v:

( 2k Zkvz) (ke 2k) — (2k Vka)

T2
v Vif(x)v = > ()
(2k 2k)*
since (3, vizi)? < (O zkv]%)(zk zx) (from Cauchy-Schwarz inequality)
‘EK::-;. )(F-: ;‘;ﬂ (12.; ‘kl‘: yk'-"—) < Z .\,,,-_ V{;l

> geometric mean: f(x) = (]_[Zzlxk)l/” on R, is concave (similar proof as above)
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Epigraph and sublevel set

» a-sublevel setof f: R" > Ris C, = {x edomf | f(x) < a}
> sublevel sets of convex functions are convex sets (but converse is false)

> epigraph of f: R* —» Risepif = {(x,7) € R"! | x e domf, f(x) <t}

eplf

> fis convex if and only if epif is a convex set
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Jensen’s inequality

> basic inequality: if f is convex, then for x,y €e domf, 0 <6 <1,

f(Ox+ (1 =0)y) <6f(x)+(1-0)f(y)

> extension: if f is convex and z is a random variable on domf,

f(Ez) <Ef(2)

> basic inequality is special case with discrete distribution

prob(z =x) =6, prob(z=y)=1-46

Convex Optimization Boyd and Vandenberghe 3.14



Example: log-normal random variable

suppose X ~ N (u, 0?)
with f(u) = expu, ¥ = f(X) is log-normal
we have Ef(X) =exp(u + 02/2)

Jensen's inequality is

vV v v V

FEX) =expu < Ef(X) = exp(u +°/2)

which indeed holds since expo?/2 > 1
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Example: log-normal random variable

p(f(X))

FEXS

p(X)

Convex Optimization Boyd and Vandenberghe 3.16



Outline

Operations that preserve convexity
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Showing a function is convex

methods for establishing convexity of a function f

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show sz(x) > ()

— recommended only for very simple functions

3. show that f is obtained from simple convex functions by operations that preserve convexity

— nonnegative weighted sum

— composition with affine function

— pointwise maximum and supremum
— composition

— minimization

— perspective

you |l mostly use methods 2 and 3

Convex Optimization Boyd and Vandenberghe 3.138



Nonnegative scaling, sum, and integral

> nonnegative multiple: af is convex if f is convex, a > 0
> sum: fi +f» convex if fi,f>» convex

> infinite sum: if f1,f>, ... are convex functions, infinite sum ", f; is convex

> integral: if f(x,a) is convex in x for each a € A, then f(x,a) da is convex
acA

> there are analogous rules for concave functions

Convex Optimization Boyd and Vandenberghe 3.19



Composition with affine function

(pre-)composition with affine function: f(Ax + b) is convex if f is convex

ol

examples

> log barrier for linear inequalities
: > X

f(x) = —Zlog(bi —aiTx), " domf = {x | al.Tx <b,i=1,...,m}
i=1

> norm approximation error: f(x) = ||[Ax — b|| (any norm)

Convex Optimization Boyd and Vandenberghe 3.20



Pointwise maximum &

if f1, .., fm are convex, then f(x) = max{f;(x),...,fn(x)} is convex - —

examples

> piecewise-linear function: f(x) = max;-

.....

» sum of r largest components of x € R":

f(x) =xp1) +xp2) + - X))

(x[i7 is ith largest component of x)

proof: f(x) =max{x; +x;, +---+x; |1 <ij <ip <---<i <nj}

Convex Optimization Boyd and Vandenberghe 3.21



Pointwise supremum

it f(x,y) is convex in x for each y € A, then g(x) = sup,. »/(x,y) is convex

examples

> distance to farthest point in a set C: f(x) = sup, ¢ [lx =yl
> maximum eigenvalue of symmetric matrix: for X € 8", Anax (X) = supyj,j,= y! Xy is convex

> support function of a set C: Sc(x) = sup,¢ y! x is convex
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Partial minimization

> the function g(x) = infyec f(x,y) is called the partial minimization of f (w.r.t. y)

> if f(x,y) is convex in (x,y) and C is a convex set, then partial minimization g is convex

examples

2 2 _—
> f(x,y) =x'Ax + 2x' By + y! Cy with RX 2(“('/“L -, ¢

V= — _EEL N M e Lo e

A B
> 0, C >0 PR R S
l BT C ] ﬂ)‘( -—2,_-&-""‘ C
= (Q~ L)l/(.)\(l.

minimizing over y gives g(x) = inf, f(x,y) = x’ (A = BC™'B)x
g is convex, hence Schur complement A — BC™ !B’ > 0

"F'-I-l-...,--__ __.#—#

> distance to a set: dist(x,S) = inf,cg ||[x — y|| is convex if § is convex
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Composition with scalar functions

> composition of g: R" > Rand 7: R —> Ris f(x) = h(g(x)) (written as f = h o g)
> composition f is convex if

— g convex, h convex, h nondecreasing
— Oor g concave, h convex, h nonincreasing

(monotonicity must hold for extended-value extension /) W60 Coven
a4

> proof (for n =1, differentiable g, i) e voumnple - €

£ (x) = h" (g(x))g" (x)* + 1’ (g(x))g" (x)
06)= W(gm) 9 ()

examples
> f(x) =expg(x) is convex if g is convex
> f(x) =1/g(x) is convex if g is concave and positive ¢q. ~ ”‘L‘(“

Convex Optimization Boyd and Vandenberghe 3.24



General composition rule

> composition of g : R* —» R¥ and 7 : R¥ = Riis f(x) = h(g(x)) = h(g{(x), g2(x), ..., gk (x))

> f is convex if i is convex and for each i one of the following holds

— g; convex, h nondecreasing in its ith argument L 2
— g; concave, h nonincreasing in its ith argument € vs €
— g;i affine —a
8i oY ( otWEX
B > W&W“‘g .
exp(Y)e X
> you will use this composition rule constantly throughout this course CoONE
e MMM

> you need to commit this rule to memory

Convex Optimization Boyd and Vandenberghe 3.25



Examples

( K- U
> log >..", exp gi(x) is convex if g; are convex CQMU uﬂg“‘“E’(f’ s dorfobies ase C"W? ag

> £(x) = p(x)?/g(x) is convex if S Wﬁi@t@%“ﬁ ‘% XZo  yso F
— p is nonnegative and convex ’”"g

— ¢ is positive and concave

> composition rule subsumes others, e.g.,

— af is convex if f is, and @ > 0

— sum of convex (concave) functions is convex (concave)
— max of convex functions is convex

— min of concave functions is concave

Convex Optimization Boyd and Vandenberghe 3.26



Outline

Constructive convex analysis
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Constructive convexity verification

> start with function f given as expression
> build parse tree for expression

— leaves are variables or constants
— nodes are functions of child expressions

> use composition rule to tag subexpressions as convex, concave, affine, or none
> if root node is labeled convex (concave), then f is convex (concave)

> extension: tag sign of each expression, and use sign-dependent monotonicity

> this is sufficient to show f is convex (concave), but not necessary

> this method for checking convexity (concavity) is readily automated

Convex Optimization Boyd and Vandenberghe 3.23



Example

the function .
(x —y)
1 — max(x,y)’

f(x,y) =

x<l1, y<l

IS convex

constructive analysis:
> (leaves) x, y, and 1 are affine
> max(x,y) is convex; x — vy is affine
> 1 —max(x,y) is concave
» function uz/v is convex, monotone decreasing in v for v > 0

> f is composition of u*/v with u = x —y, v=1—max(x,y), hence convex

Convex Optimization Boyd and Vandenberghe 3.29



Example (from dcp.stanford.edu)

Variables: x,y
Parameters: None
Positive Parameters: None

-

Curvature —— )i\ J quad_over_lin(x -y, 1 - max(x, y)) + ¢—

constant
~ affine
\_J convex
[\ concave

@ unknown

Convex Optimization

/S X-y+

quad_over_lin

M 1-max(x,y) +

14

i

\J max(x, y) +

max

/y+

Boyd and Vandenberghe

Sign
- positive
— negative

<+ unknown
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Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave functions as
expressions using constructive convex analysis

> expressions formed from

— variables,
— constants,
— and atomic functions from a library

> atomic functions have known convexity, monotonicity, and sign properties

v

all subexpressions match general composition rule
> a valid DCP function is

— convex-by-construction
— ‘syntactically’ convex (can be checked ‘locally’)

> convexity depends only on attributes of atomic functions, not their meanings
— e.g., could swap +/- and +/-, or exp- and (-)4, since their attributes match
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CVXPY example

(x = y)°
1 — max(x,y)

x<l1, y<l

import cvxpy as cp

x = cp.Variable()

y = cp.Variable()

expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))
expr.curvature # Convex

expr.sign # Positive

expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)
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DCP is only sufficient

> consider convex function f(x) = V1 + x2

> expression f1

> expression £2

> CVXPY will not recognize £1 as convex, even though it represents a convex function

Convex Optimization

cp.sqrt(1+cp.square(x)) is not DCP

cp.norm2([1,x]) is DCP

Boyd and Vandenberghe
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Outline

Perspective and conjugate
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Perspective (M&M‘M)

> the perspective of a function f : R” — R is the function g : R" X R — R,
g(x, 1) =tf(x/t), domg = {(x,?) | x/t € domf, t > 0}

> o is convex if f is convex ,. e
< €,6) € e P 3 O tg?(t)f_—' <

< .‘3(_?_(_ e:_f.

e (], €ep F
examples WMM

. | ep
> f(x) =x'x is convex; so g(x,t) = x'x/t is convex for t > 0 J -
> f(x) = —logx is convex; so relative entropy g(x,t) = tlogt — tlogx is convex on RZ,
X
-G
Convex Optimization Boyd and Vandenberghe
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Conjugate function - L‘Zjﬂ“dw Wﬁrﬁu ) Wfﬂm e

> the conjugate of a function f is f*(y) = sup,cgoms(y' * —f(x)) %

(%)

> f* is convex (even if f is not)

> will be useful in chapter 5

Convex Optimization

///// /.///// .
0, = ()
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Examples

2= —Xj SO . XS‘*[‘“:SY: b"é

> negative logarithm f(x) = —logx

f(y) =sup(xy+logx) = { -1 —log(-y) y<O0

x>0

> strictly convex quadratic, f(x) = (1/2)x! Ox with Q € S",

F() = sup(y"x - (1/2x7 0x) = 570"y

Ux: \{"' &)(
= - &'*\/
5 —
o exw. Poy= ™. == L) = ylegy—Yy. y>o
el
y<©° — 00 .
%
Convex Optimization X\~ € Boyd and Vandenberghe
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Outline

Quasiconvexity
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Quasiconvex functions  Grenesl'cativn, !QP«PWL& I*g 2 ﬂﬁﬂ«ﬂf of WW
feyct & ¢ (x) Lo. comex
> f:R" — R is quasiconvex if domf is convex and the sublevel sets CP() {o, P60 <
€. 5 A ) =

S, = {x edomf | f(x) < a)

are convex for all «

> f is quasiconcave if —f is quasiconvex

> f is quasilinear if it is quasiconvex and quasiconcave
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Examples

> +/|x| is quasiconvex on R

> ceil(x) =inf{z € Z | 7 > x} is quasilinear

> logx is quasilinear on R, AM- GM m?uo»‘dy
_ _ X :i. 0( k Ci) (') I (2)
> f(x1,X2) = x1x5 is quasiconcave on R%, ok | © + (-6) X'
= O({ !KLu) (K(zi c.zl)("f-@»)
» linear-fractional function S o
T
a' x+b
f(x) == : domf ={x|c'x+d >0}
clx+d
IS quasilinear (

B LQMSW a Mo ?{x\; Mygf‘ Xf‘«‘-o}_w (En. e ?WTWY.
b Cordivolily o} 6 Vedkor card(x) =TIIxll," = # Wonemsin X . is quasiconane
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Example: Internal rate of return

> cash flow x = (xo,...,x,); X; is payment in period i (to us if x; > 0)
> we assume xg < 0 (i.e., an initial investment) and xo +x; + -+ - +x, > 0
> net present value (NPV) of cash flow x, for interest rate r, is PV(x,r) = >'_ (1 + r)~lx;

> internal rate of return (IRR) is smallest interest rate for which PV (x, r) = 0:

IRR(x) =inf{r >0 | PV(x,r) =0}

> JRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) >R Z(1+r)_ix,->0for()£r<R
=0

Convex Optimization Boyd and Vandenberghe 3.41



Properties of quasiconvex functions

» modified Jensen inequality: for quasiconvex f

(efuivotent dek.)

0<0<1 = [f(Ox+(1-0)y) <maxif(x).f(y)}

> first-order condition: differentiable f with convex domain is quasiconvex if and only if

f) <fx) = Vfx)'(y-x)<0

Vi (x)

> sum of quasiconvex functions is not necessarily quasiconvex
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