4. Convex optimization problems

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $\mathbf{x} \in \mathbf{R}^n$ is the optimization variable
- $ightharpoonup f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $ightharpoonup f_i: \mathbf{R}^n \to \mathbf{R}, \ i=1,\ldots,m$, are the inequality constraint functions
- $ightharpoonup h_i: \mathbf{R}^n
 ightharpoonup \mathbf{R}$ are the equality constraint functions

Feasible and optimal points

- $x \in \mathbb{R}^n$ is **feasible** if $x \in \mathbf{dom} f_0$ and it satisfies the constraints
- optimal value is $p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
- $p^* = \infty$ if problem is infeasible
- $p^* = -\infty$ if problem is unbounded below
- ► a feasible x is **optimal** if $f_0(x) = p^*$
- $ightharpoonup X_{
 m opt}$ is the set of optimal points

Locally optimal points

x is **locally optimal** if there is an R > 0 such that x is optimal for

minimize (over z) $f_0(z)$ subject to $f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$ $\|z-x\|_2 \leq R$ } A small ball around x.

Examples

examples with n = 1, m = p = 0

- $f_0(x) = -\log x$, $dom f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $dom f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal $\frac{df_0}{dx} = \log x + 1$
- $ightharpoonup f_0(x) = x^3 3x$: $p^* = -\infty$, x = 1 is locally optimal

$$f_0(x) = -\log x$$

$$f_0(x) = x \log x$$

$$f_0(x) = x^3 - 3x$$

Implicit and explicit constraints

standard form optimization problem has implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} h_i,$$

- ightharpoonup we call $\mathcal D$ the **domain** of the problem
- the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the **explicit constraints**
- ▶ a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^{k} \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize
$$0$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $ightharpoonup p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- objective and inequality constraints f_0 , f_1 , ..., f_m are convex
- ightharpoonup equality constraints are affine, often written as Ax = b
- feasible and optimal sets of a convex optimization problem are convex } \times ?

sublevel sets intersection

roblem is quasiconvex if f_0 is quasiconvex, f_1 , ..., f_m are convex, h_1, \ldots, h_p are affine

Example

standard form problem

minimize
$$f_0(x) = x_1^2 + x_2^2$$
 subject to $f_1(x) = x_1/(1+x_2^2) \le 0$ } Convex?
$$h_1(x) = (x_1+x_2)^2 = 0$$
 } offere?
$$x \{(x_1,x_2) \mid x_1 = -x_2 \le 0\} \text{ is convex}$$

- ► f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ is convex
- rightharpoonup not a convex problem (by our definition) since f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:

- rightharpooner x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$
- ightharpoonup x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

$$||y-x||_2 > R, \text{ so } 0 < \theta < 1/2 \quad ||z-x||_2 = ||0y+(i-\theta)x-x||_2 = |0||y-x||_2.$$

- \triangleright z is a convex combination of two feasible points, hence also feasible
- ▶ $||z x||_2 = R/2$ and $f_0(z) \le \theta f_0(y) + (1 \theta) f_0(x) < f_0(x)$, which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal for a convex problem if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible y

If nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Examples

First order condition: $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

- unconstrained problem: x minimizes $f_0(x)$ if and only if $\nabla f_0(x) = 0$
- equality constrained problem: x minimizes $f_0(x)$ subject to Ax = b if and only if there exists a ν such that $X = X_0 + U$. $V \in Nullspace(A)$. $\nabla f_0(y)^T(y-x) = \nabla f_0(x)^T V = 0$.

$$Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

▶ minimization over nonnegative orthant: x minimizes $f_0(x)$ over \mathbf{R}^n_+ if and only if $\in \mathbb{R}_{up}(A^r)$

$$x \ge 0,$$

$$\begin{cases}
\nabla f_0(x)_i \ge 0 & x_i = 0 \\
\nabla f_0(x)_i = 0 & x_i > 0
\end{cases}$$
Complementarity

$$\nabla f_{\theta}(x)^{T}(y-x) \geq 0, \quad y \geq 0$$

$$| (x)^{T}y \leq 0, \quad (x)^{T}y \leq 0, \quad (x)^{T}y \leq 0.$$

$$| (x)^{T}y$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Example: Diet problem

- ightharpoonup choose nonnegative quantities x_1 , ..., x_n of n foods
- ightharpoonup one unit of food j costs c_j and contains amount A_{ij} of nutrient i
- ightharpoonup healthy diet requires nutrient i in quantity at least b_i
- to find cheapest healthy diet, solve

minimize
$$c^T x$$

subject to $Ax \ge b$, $x \ge 0$

express in standard LP form as

minimize
$$c^T x$$
subject to $\begin{bmatrix} -A \\ -I \end{bmatrix} x \le \begin{bmatrix} -b \\ 0 \end{bmatrix}$

Example: Piecewise-linear minimization

- minimize convex piecewise-linear function $f_0(x) = \max_{i=1,...,m} (a_i^T x + b_i)$, $x \in \mathbf{R}^n$
- equivalent to LP

minimize
$$t$$
 subject to $a_i^T x + b_i \le t, \quad i = 1, \dots, m$

with variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$

ightharpoonup constraints describe **epi** f_0

min t
sit.
$$f_0(x) - t \le 0$$
 } $g^{(x,t) \le 0}$.
 $f_i(x) \le 0$. $o \ge 1$..., in
 $f_i(x) \ge 0$

Example: Chebyshev center of a polyhedron

Chebyshev center of $\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, ..., m\}$ is center of largest inscribed ball $\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$

 $a_i^T x \le b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

hence, x_c , r can be determined by solving LP with variables x_c , r

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$

Example: Dynamic activity planning. n activities xj(t)≥0 j=1,...,n (sectors of economy) over N timesteps t=1,...,N types of good v=1,..,m Production of good i per activity j: aij Consumption of good i per activity j: bij =) Goods produced. AXHERM, Goods consumed BX(+) ERM at timestept. • Consumption \leq Production. $B \times (t+1) \leq A \times (t+1)$ Initial goods goer. Bx(1) < go Surplus of goods: $S(0) = 9_0 - Bx(t)$ S(t) = Ax(t) - Bx(t+1) t= 1,..., N-1 S(N) = Ax(N)Maximile Value of surplus: $C^{\mathsf{T}}S(0) + \gamma C^{\mathsf{T}}S(1) + \cdots + \gamma^{\mathsf{N}}C^{\mathsf{T}}S(N)$ C is value vector 12m (N:0) 2 **.** t, 2 7>0 13 discount factor

(文) (大) か。 t=1,...,N (大) か。 t=1,...,N

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 } Quadratre subject to $Gx \le h$ } Affine. $Ax = b$

- $P \in \mathbb{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example: Least squares

- ► least squares problem: minimize $||Ax b||_2^2 = x^T A^T A \times 2 L^T A \times + L^T L$
- ▶ analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse) when unconstrained. e.g. $A^{+} = A^{T}(AA^{T})^{T}$ when A has full rowrank.
- can add linear constraints, e.g.,
 - $-x \ge 0$ (nonnegative least squares)
 - $-x_1 \le x_2 \le \cdots \le x_n$ (isotonic regression)

Example: Linear program with random cost

- ▶ LP with random cost c, with mean \bar{c} and covariance $\Sigma = \mathbb{E}(c-\bar{c})(c-\bar{c})^{\mathsf{T}}$
- ▶ hence, LP objective c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- risk-averse problem:

minimize
$$\mathbf{E} c^T x + \gamma \mathbf{var}(c^T x)$$

subject to $Gx \leq h$, $Ax = b$

- ho γ > 0 is **risk aversion parameter**; controls the trade-off between expected cost and variance (risk)
- express as QP

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$, $Ax = b$

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$
 subject to
$$(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$$
 Quadratic (convex)
$$Ax = b$$

- $P_i \in \mathbf{S}_{+}^n$; objective and constraints are convex quadratic
- ▶ if $P_1, \ldots, P_m \in \mathbb{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming (SOCP)

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $F x = g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Example: Robust linear programming

suppose constraint vectors a_i are uncertain in the LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, m,$

two common approaches to handling uncertainty

▶ deterministic worst-case: constraints must hold for all $a_i \in \mathcal{E}_i$ (uncertainty ellipsoids)

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$,

stochastic: a_i is random variable; constraints must hold with probability η - opportunistic! "

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

Deterministic worst-case approach

- uncertainty ellipsoids are $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\}$, $(\bar{a}_i \in \mathbf{R}^n, P_i \in \mathbf{R}^{n \times n})$
- lacktriangle center of \mathcal{E}_i is \bar{a}_i ; semi-axes determined by singular values/vectors of P_i
- robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from
$$\sup_{\|u\|_{2} \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2)$$

$$\sup_{\|u\|_{2} \le 1} u^T P_i^T x \implies u^* = \frac{P_i^T x}{\|P_i^T x\|_2}$$

Stochastre LP:

$$min$$
 $C^T \times$
 $s.t.$ $prob$ $(a!x \le b!) \ge 1. \quad J=1,..., m$

Stochastic approach

- ► assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$
- $ightharpoonup a_i^T x \sim \mathcal{N}(\bar{a}_i^T x, x^T \Sigma_i x)$, so

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where $\Phi(u) = (1/\sqrt{2\pi}) \int_{-\infty}^{u} e^{-t^2/2} dt$ is $\mathcal{N}(0, 1)$ CDF

- ▶ $\mathbf{prob}(a_i^T x \le b_i) \ge \eta$ can be expressed as $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i$
- for $\eta \ge 1/2$, robust LP equivalent to SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \Phi^{-1}(\eta) \|\Sigma_i^{1/2}x\|_2 \le b_i, \quad i=1,\ldots,m$

Conic form problem

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

e. 9.
$$50CP$$
.

min $C^{T}x$

s.t. - $(Aix+bi, c_{i}^{T}x+d_{i}) \leq k_{i}^{O}$.

 $Fx = 9$
 $K_{i} = \{(y,t) \in \mathbb{R}^{n-1} | \|y\|_{s} \leq t_{i}^{S}$

- right constraint $Fx + g \leq_K 0$ involves a generalized inequality with respect to a proper cone K
- Integration In a linear programming is a conic form problem with $K = \mathbf{R}_{+}^{m}$
- as with standard convex problem
 - feasible and optimal sets are convex
 - any local optimum is global

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \le 0$ $K = S_+^k$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \le 0$$

Example: Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$) equivalent SDP

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \ge 0$$
 s.t. $\|A(x)\|_2 \le t$.

- ightharpoonup variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_{2} \le t \iff A^{T}A \le t^{2}I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^{T} & tI \end{bmatrix} \ge 0$$
Schur complement.

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \le b$ subject to $\mathbf{diag}(Ax - b) \le 0$

(note different interpretation of generalized inequalities ≤ in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$
 subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

SDP: minimize
$$f^T x$$
 subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \ge 0, \quad i = 1, \dots, m$$

Outline

Optimization problems

Some standard convex problems

Transforming problems Super important !

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Change of variables

- $\phi: \mathbf{R}^n \to \mathbf{R}^n$ is one-to-one with $\phi(\mathbf{dom}\,\phi) \supseteq \mathcal{D}$
- consider (possibly non-convex) problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- rightharpoonup change variables to z with $x = \phi(z)$
- can solve equivalent problem

minimize
$$ilde{f}_0(z)$$

subject to $ilde{f}_i(z) \leq 0, \qquad i=1,\ldots,m$
 $ilde{h}_i(z)=0, \qquad i=1,\ldots,p$

where
$$\tilde{f}_i(z) = f_i(\phi(z))$$
 and $\tilde{h}_i(z) = h_i(\phi(z))$

recover original optimal point as $x^* = \phi(z^*)$

Example

non-convex problem

minimize
$$x_1/x_2 + x_3/x_1$$

subject to $x_2/x_3 + x_1 \le 1$

y is not convex.

with implicit constraint x > 0

• change variables using $x = \phi(z) = \exp z$ to get

minimize
$$\exp(z_1 - z_2) + \exp(z_3 - z_1)$$

subject to $\exp(z_2 - z_3) + \exp(z_1) \le 1$

which is **convex**

Transformation of objective and constraint functions

suppose

- $ightharpoonup \phi_0$ is monotone increasing
- $\psi_i(u) \leq 0$ if and only if $u \leq 0$, i = 1, ..., m
- $\varphi_i(u) = 0$ if and only if u = 0, i = 1, ..., p

standard form optimization problem is equivalent to

Change of feeretron, not change of variable

minimize
$$\phi_0(f_0(x))$$

subject to $\psi_i(f_i(x)) \leq 0$, $i = 1, \dots, m$
 $\varphi_i(h_i(x)) = 0$, $i = 1, \dots, p$

example: minimizing ||Ax - b|| is equivalent to minimizing $||Ax - b||^2$

Converting maximization to minimization

- ightharpoonup suppose ϕ_0 is monotone decreasing
- the maximization problem

maximize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

is equivalent to the minimization problem

minimize
$$\phi_0(f_0(x))$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- examples:
 - $-\phi_0(u)=-u$ transforms maximizing a concave function to minimizing a convex function
 - $-\phi_0(u)=1/u$ transforms maximizing a concave positive function to minimizing a convex function $|x| \to |x| \to |x|$

Eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some $z \in \mathbb{R}^k$ where F and F are such that $Ax = b \iff x = Fz + x_0$ for some $z \in \mathbb{R}^k$ rank (A)

$$(= x_0 + V.$$
 $v \in Null(A).$

$$F: \mathbb{R}^n$$

 $V \in \text{Null}(A)$.
 $V \in \text{Null}(A)$.
 $K = \dim = n - \text{rank}(A)$

Introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

minimize (over
$$x$$
, y_i) $f_0(y_0)$
subject to $f_i(y_i) \le 0$, $i = 1, \ldots, m$
 $y_i = A_i x + b_i$, $i = 0, 1, \ldots, m$

Introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \le b_i, \quad i = 1, ..., m$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$
subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$
 $s_i \ge 0, \quad i = 1, \dots m$

1: x feasible. then

(x,s) is feasible in considering since take
$$s_i = b_i - a_i^T x$$
.

T: $s_i = b_i - a_i^T x \ge 0$.

then x is feasible in the into

Epigraph form

standard form convex problem is equivalent to

minimize (over
$$x$$
, t) t subject to
$$f_0(x) - t \le 0$$
 } why convex ?
$$f_i(x) \le 0, \quad i = 1, \dots, m$$

$$Ax = b$$

= Linear objective is universel'.

Minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \le 0$, $i = 1, ..., m$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ subject to $f_i(x_1) \leq 0$, $i = 1, \ldots, m$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

Convex relaxation

- > start with nonconvex problem: minimize h(x) subject to $x \in C$
- ▶ find convex function \hat{h} with $\hat{h}(x) \le h(x)$ for all $x \in \operatorname{dom} h$ (i.e., a pointwise lower bound on h)
- ▶ find set $\hat{C} \supseteq C$ (e.g., $\hat{C} = \mathbf{conv} C$) described by linear equalities and convex inequalities

$$\hat{C} = \{x \mid f_i(x) \le 0, i = 1, \dots, m, f_m(x) \le 0, Ax = b\}$$

convex problem

minimize
$$\hat{h}(x)$$
 subject to $f_i(x) \leq 0$, $i = 1, \ldots, m$, $Ax = b$

is a convex relaxation of the original problem

optimal value of relaxation is lower bound on optimal value of original problem

Example: Boolean LP

mixed integer linear program (MILP):

minimize
$$c^T(x,z)$$

subject to $F(x,z) \leq g$, $A(x,z) = b$, $z \in \{0,1\}^q$

with variables $x \in \mathbb{R}^n$, $z \in \mathbb{R}^q$

- $ightharpoonup z_i$ are called **Boolean variables**
- this problem is in general hard to solve
- ▶ LP relaxation: replace $z \in \{0, 1\}^q$ with $z \in [0, 1]^q$
- optimal value of relaxation LP is lower bound on MILP
- > can use as heuristic for approximately solving MILP, e.g., relax and round

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Disciplined convex program

- specify objective as
 - minimize {scalar convex expression}, or
 - maximize {scalar concave expression}
- specify constraints as
 - {convex expression} <= {concave expression} or</pre>
 - {concave expression} >= {convex expression} or
 - {affine expression} == {affine expression}
- curvature of expressions are DCP certified, *i.e.*, follow composition rule
- DCP-compliant problems can be automatically transformed to standard forms, then solved

CVXPY example

math:

minimize
$$||x||_1$$

subject to $Ax = b$
 $||x||_{\infty} \le 1$

- \triangleright x is the variable
- ightharpoonup A, b are given

CVXPY code:

```
import cvxpy as cp

A, b = ...

x = cp.Variable(n)
obj = cp.norm(x, 1)
constr = [
   A @ x == b,
    cp.norm(x, 'inf') <= 1,
]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()</pre>
```

How CVXPY works

- ightharpoonup starts with your optimization problem \mathcal{P}_1
- finds a sequence of equivalent problems $\mathcal{P}_2, \ldots, \mathcal{P}_N$
- Final problem \mathcal{P}_N matches a standard form (e.g., LP, QP, SOCP, or SDP)
- ightharpoonup calls a specialized solver on \mathcal{P}_N
- retrieves solution of original problem by reversing the transformations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Geometric programming

monomial function:

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 1$, $i=1,\ldots,m$ Posynomial inequality $h_i(x)=1$, $i=1,\ldots,p$ Monomial equality.

with f_i posynomial, h_i monomial

Geometric program in convex form

- rightharpoonup change variables to $y_i = \log x_i$, and take logarithm of cost, constraints
- monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

Posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^{T} y + b_{0k}) \right)$$
subject to
$$\log \left(\sum_{k=1}^{K} \exp(a_{ik}^{T} y + b_{ik}) \right) \leq 0, \quad i = 1, \dots, m$$
$$Gy + d = 0$$

Examples: Frobenius norm diagonal scaling

- we seek diagonal matrix $D = \operatorname{diag}(d)$, d > 0, to minimize $\|DMD^{-1}\|_F^2$
- express as

$$||DMD^{-1}||_F^2 = \sum_{i,j=1}^n \left(DMD^{-1}\right)_{ij}^2 = \sum_{i,j=1}^n M_{ij}^2 d_i^2 / d_j^2$$

- ightharpoonup a posynomial in d (with exponents 0, 2, and -2)
- in convex form, with $y = \log d$,

$$\log \|DMD^{-1}\|_F^2 = \log \left(\sum_{i,j=1}^n \exp\left(2(y_i - y_j + \log |M_{ij}|)\right) \right)$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0: \mathbb{R}^n \to \mathbb{R}$ quasiconvex, $f_1, ..., f_m$ convex can have locally optimal points that are not (globally) optimal

minimize $f_0(x)$ subject to $f_i(x) \le 0$, $i=1,\ldots,m$ } Quasiconvex constraint Ax=b \ \(\(\(\chi_1, \ldots, f_m \) convex $(x) \le 0$ \\ \(\(\chi_1, \ldots, f_m \) convex $(x) \le 0$

Linear-fractional program

linear-fractional program

minimize
$$(c^Tx + d)/(e^Tx + f)$$

subject to $Gx \le h$, $Ax = b$

with variable x and implicit constraint $e^Tx + f > 0$

ightharpoonup equivalent to the LP (with variables y, z)

minimize
$$c^Ty + dz$$

subject to $Gy \le hz$, $Ay = bz$
 $e^Ty + fz = 1$, $z \ge 0$

recover $x^* = y^*/z^*$

$$\frac{c^{T}x+d}{e^{T}x+f} = \frac{(c^{T}y+d^{2})/2}{(e^{T}y+f^{2})/2}.$$

Von Neumann model of a growing economy

- $> x, x^+ \in \mathbb{R}^n_{++}$: activity levels of n economic sectors, in current and next period
- $(Ax)_i$: amount of good i produced in current period
- \triangleright $(Bx^+)_i$: amount of good i consumed in next period
- \triangleright $Bx^+ \leq Ax$: goods consumed next period no more than produced this period
- $\rightarrow x_i^+/x_i$: growth rate of sector i
- allocate activity to maximize growth rate of slowest growing sector

maximize (over
$$x$$
, x^+) $\min_{i=1,...,n} x_i^+/x_i$ } why quasiconvex? subject to $x^+ \ge 0$, $Bx^+ \le Ax$

ightharpoonup a quasiconvex problem with variables x, x^+

Convex representation of sublevel sets

- ightharpoonup if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:
 - $-\phi_t(x)$ is convex in x for fixed t
 - t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e., $f_0(x) \le t \iff \phi_t(x) \le 0$

Recall. e.s. o fex $| \le t$ $\phi_t(x) = \begin{cases} 0 & \text{fex} | \le t \\ \infty & \text{else} \end{cases}$ $\phi_t(x) = \text{dist}(x, \{ \ge | \text{fez} | \le t \})$

example:

- $ightharpoonup f_0(x) = p(x)/q(x)$, with p convex and nonnegative, q concave and positive
- ► take $\phi_t(x) = p(x) tq(x)$: for $t \ge 0$,
 - $-\phi_t$ convex in x
 - $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Bisection method for quasiconvex optimization

 \triangleright for fixed t, consider convex feasiblity problem

er convex feasiblity problem
$$\phi_t(x) \leq 0, \qquad f_i(x) \leq 0, \qquad i=1,\ldots,m, \qquad Ax = b \qquad (f_0(x) \leq t) \\ \text{conclude that } t \geq p^*; \text{ if infeasible, } t \leq p^* \qquad (1)$$

if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

bisection method:

given $l \le p^*$, $u \ge p^*$, tolerance $\epsilon > 0$. repeat

- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u := t; else l := t. until $u - l \leq \epsilon$.

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Multicriterion optimization

multicriterion or multi-objective problem:

minimize
$$f_0(x) = (F_1(x), \dots, F_q(x))$$
 Vector objective. subject to $f_i(x) \leq 0, \quad i = 1, \dots, m, \quad Ax = b$

- objective is the vector $f_0(x) \in \mathbf{R}^q$
- ightharpoonup q different objectives F_1, \ldots, F_q ; roughly speaking we want all F_i 's to be small
- feasible x^* is **optimal** if y feasible $\implies f_0(x^*) \leq f_0(y)$ partial order optimal.
- this means that x^* simultaneously minimizes each F_i ; the objectives are **noncompeting**
- not surprisingly, this doesn't happen very often

Pareto optimality

- feasible x dominates another feasible \tilde{x} if $f_0(x) \leq f_0(\tilde{x})$ and for at least one i, $F_i(x) < F_i(\tilde{x})$
- \triangleright i.e., x meets \tilde{x} on all objectives, and beats it on at least one
- feasible x^{po} is **Pareto optimal** if it is not dominated by any feasible point
- rightharpoonup can be expressed as: y feasible, $f_0(y) \leq f_0(x^{po}) \implies f_0(x^{po}) = f_0(y)$
- there are typically many Pareto optimal points
- for q = 2, set of Pareto optimal objective values is the **optimal trade-off curve**
- for q = 3, set of Pareto optimal objective values is the **optimal trade-off surface**

Optimal and Pareto optimal points

set of achievable objective values $O = \{f_0(x) \mid x \text{ feasible}\}$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is Pareto optimal if $f_0(x)$ is a minimal value of O

 x^{po} is Pareto optimal

Regularized least-squares

- minimize $(\|Ax b\|_2^2, \|x\|_2^2)$ (first objective is loss; second is regularization)
- ightharpoonup example with $A \in \mathbf{R}^{100 \times 10}$; heavy line shows Pareto optimal points

Risk return trade-off in portfolio optimization

- riable $x \in \mathbb{R}^n$ is investment portfolio, with x_i fraction invested in asset in
- $ightharpoonup ar{p} \in \mathbf{R}^n$ is mean, Σ is covariance of asset returns
- Portfolio return has mean $\bar{p}^T x$, variance $x^T \Sigma x$
- ► minimize $(-\bar{p}^T x, x^T \Sigma x)$, subject to $\mathbf{1}^T x = 1$, $x \ge 0$
- Pareto optimal portfolios trace out optimal risk-return curve

Example

Scalarization

- **scalarization** combines the multiple objectives into one (scalar) objective
- a standard method for finding Pareto optimal points
- ightharpoonup choose $\lambda > 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$, $h_i(x) = 0$, $i = 1, \dots, p$

- $ightharpoonup \lambda_i$ are relative weights on the objectives
- \triangleright if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
- for convex problems, can find (almost) all Pareto optimal points by varying $\lambda > 0$

Example

Example: Regularized least-squares

- regularized least-squares problem: minimize $(\|Ax b\|_2^2, \|x\|_2^2)$
- Take $\lambda = (1, \gamma)$ with $\gamma > 0$, and minimize $||Ax b||_2^2 + \gamma ||x||_2^2$

Example: Risk-return trade-off

- risk-return trade-off: minimize $(-\bar{p}^Tx, x^T\Sigma x)$ subject to $\mathbf{1}^Tx = 1$, $x \ge 0$
- with $\lambda = (1, \gamma)$ we obtain scalarized problem

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \geq 0$

- objective is negative risk-adjusted return, $\bar{p}^T x \gamma x^T \Sigma x$
- \triangleright γ is called the risk-aversion parameter