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1 Convex sets (2 points)
The point of problems in this section is to get you familiar with the concept of convexity.

1.1 Definition of convexity
Choose a problem from below.

1. (Exercise 2.1 of [1].) Let 𝐶 ⊆ R𝑛 be a convex set, with 𝑥1, . . . , 𝑥𝑘 ∈ 𝐶, and let 𝜃1, . . . , 𝜃𝑘 ∈ R satisfy 𝜃𝑖 ≥ 0,
𝜃1 + · · · + 𝜃𝑘 = 1. Show that 𝜃1𝑥1 + · · · + 𝜃𝑘𝑥𝑘 ∈ 𝐶. (The definition of convexity is that this holds for 𝑘 = 2;
you must show it for arbitrary 𝑘.) Hint: Use induction on k.

2. (Exercise 2.2 of [1].) Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.

3. (Exercise 2.3 of [1].) Midpoint convexity. A set 𝐶 is midpoint convex if whenever two points 𝑎, 𝑏 are in 𝐶, the
average or midpoint 𝑎+𝑏

2 is in 𝐶. Obviously a convex set is midpoint convex. It can be proved that under mild
conditions, midpoint convexity implies convexity. As a simple case, prove that if 𝐶 is closed and midpoint
convex, then 𝐶 is convex.

4. (Exercise 2.4 of [1].) Show that the convex hull of a set 𝑆 is the intersection of all convex sets that contain 𝑆.
(The same method can be used to show that the conic, or affine, or linear hull of a set 𝑆 is the intersection of
all conic sets, or affine sets, or subspaces that contain S.)

Solution : You can use this solution environment to help organize your answers.

1.2 Polyhedra
1. Show that a polyhedron {𝑥 ∈ R𝑛 : 𝐴𝑥 ⪯ 𝑏} for some 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, is convex. Recall that ⪯ means

element-wise less than or equal, which is the same as the ordering induced by the proper cone that is the
positive orthant R𝑛

+.

2. (Exercise 2.8 of [1].) Which of the following sets 𝑆 are polyhedra? If possible, express 𝑆 in the form
𝑆 = {𝑥|𝐴𝑥 ⪯ 𝑏, 𝐹𝑥 = 𝑔}. Show solution for at least one of the following sets.

(a) 𝑆 = {𝑦1𝑎1 + 𝑦2𝑎2 | −1 ≤ 𝑦1 ≤ 1, −1 ≤ 𝑦2 ≤ 1}, where 𝑎1, 𝑎2 ∈ R𝑛.

(b) 𝑆 =
{︀
𝑥 ∈ R𝑛 | 𝑥 ⪰ 0, 1⊺𝑥 = 1,

∑︀𝑛
𝑖=1 𝑥𝑖𝑎𝑖 = 𝑏1,

∑︀𝑛
𝑖=1 𝑥𝑖𝑎

2
𝑖 = 𝑏2

}︀
, where 𝑎1, . . . , 𝑎𝑛 ∈ R and 𝑏2, 𝑏2 ∈ R.

(c) 𝑆 = {𝑥 ∈ R𝑛 | 𝑥 ⪰ 0, 𝑥⊺𝑦 ≤ 1 for all 𝑦 with ‖𝑦‖2 = 1}.

(d) 𝑆 = {𝑥 ∈ R𝑛 | 𝑥 ⪰ 0, 𝑥⊺𝑦 ≤ 1 for all 𝑦 with
∑︀𝑛

𝑖=1|𝑦𝑖| = 1}.

1.3 Quadratic inequality
(Exercise 2.10 of [1].) Let 𝐶 ⊆ R𝑛 be the solution set of a quadratic inequality,

𝐶 = {𝑥 ∈ R𝑛 | 𝑥⊺𝐴𝑥 + 𝑏⊺𝑥 + 𝑐 ≤ 0},

with 𝐴 ∈ S𝑛, 𝑏 ∈ R𝑛, and 𝑐 ∈ R.

(a) Show that 𝐶 is convex if 𝐴 ⪰ 0.

(b) Show that the intersection of 𝐶 and the hyperplane defined by 𝑔⊺𝑥 + ℎ = 0 (where 𝑔 ̸= 0) is convex if
𝐴 + 𝜆𝑔𝑔⊺ ⪰ 0 for some 𝜆 ∈ R.
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1.4 Positive semidefinite cone
Give an explicit description of the positive semidefinite cone S𝑛

+ in terms of the matrix coefficients and ordinary
inequalities, for 𝑛 = 1, 2, 3. To describe a general element of S𝑛, use the notation

𝑥1,

[︃
𝑥1 𝑥2
𝑥2 𝑥3

]︃
,

⎡⎢⎣𝑥1 𝑥2 𝑥3
𝑥2 𝑥4 𝑥5
𝑥3 𝑥5 𝑥6

⎤⎥⎦.

2 Separating hyperplane (1 point)
Strictly positive solution of linear equations. (Exercise 2.20 of [1].) We discussed the proof of the separating hyperplane
theorem and how it can be applied to obtain the theorem of alternative for strict linear inequalities. These topics
are also discussed in detail in Section 2.5.1 of the textbook [1]. In this exercise, we apply the same technique for
strictly positive solutions of linear equations.

Suppose 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, and 𝑏 is in ℛ(𝐴) = {𝐴𝑥 : 𝑥 ∈ R𝑛}, the range of 𝐴. Show that there exists an 𝑥
satisfying

𝑥 ≻ 0, 𝐴𝑥 = 𝑏

if and only if there exists no 𝜆 ∈ R𝑚 with

𝐴⊺𝜆 ≥ 0,𝐴⊺𝜆 ̸= 0, 𝑏⊺𝜆 ≤ 0.

We will work out the proof in the following steps.

1. Since we have equality 𝐴𝑥 = 𝑏, we would like to know better about this solution space. Recall from linear
algebra, that since 𝑏 is in the range of 𝐴, at least one nonzero solution exists, and we denote it 𝑥0. Let the
rank of 𝐴 be 𝑟. If 𝑟 = 𝑛, then the solution 𝑥 = 𝑥0 is unique, and can be found by taking a right-inverse of 𝐴
since 𝐴 has full column rank. Such inverse is often denoted as the pseudoinverse 𝐴† of 𝐴, satisfying 𝐴𝐴† = I.
Explicitly write down the matrix 𝐴† in this case in terms of 𝐴, 𝐴⊺ and inverses. Show that the unique solution
is 𝑥0 = 𝐴†𝑏.

2. If 𝑟 < 𝑛, this means there are infinitely many solutions, and these solutions form a subspace of dimension
𝑛 − 𝑟. This space of solutions can be expressed as 𝑥0 + 𝑣, where 𝑥0 is one particular solution, and 𝑣 is any
vector in 𝒩 (𝐴) = {𝑣 : 𝐴𝑣 = 0}, the null space of 𝐴. Check that any such 𝑥0 + 𝑣 is a solution.

3. Now, let us show the following fact from linear algebra: 𝑐⊺𝑥 = 𝑑 for all 𝑥 satisfying 𝐴𝑥 = 𝑏 if and only if
there is a vector 𝜆 such that 𝑐 = 𝐴⊺𝜆, 𝑑 = 𝑏⊺𝜆.

Hint: Use the rank-nullity theorem. Generically, the nullspace 𝒩 (𝐴) of 𝐴 is a dimension 𝑛 − 𝑟 subspace of
R𝑛, and the range of 𝐴⊺ is a dimension 𝑟 subspace of R𝑛, and these two spaces are orthogonal complements
of each other, i.e. ℛ(𝐴⊺) ⊕ 𝒩 (𝐴) = {𝑢 + 𝑣 : 𝑢 ∈ ℛ(𝐴⊺), 𝑣 ∈ 𝒩 (𝐴)} = R𝑛. In other words, if a vector 𝑢 is
orthogonal to 𝒩 (𝐴), then it is in ℛ(𝐴⊺), and conversely, if a vector is orthogonal to ℛ(𝐴⊺, then it is in 𝒩 (𝐴).
You can show that 𝑐⊺𝑣 + 𝑐⊺𝑥0 = 𝑑 for all 𝑣 ∈ 𝒩 (𝐴), which implies 𝑐⊺𝑣 = 0, so 𝑐 is orthogonal to 𝒩 (𝐴),
meaning 𝑐 ∈ ℛ(𝐴⊺).

4. Now we have all the tools we need. To prove our result about strictly positive solutions of linear equations,
we use a standard separating hyperplane argument. Consider 𝐶 = R𝑛

++ and 𝐷 = {𝑥 | 𝐴𝑥 = 𝑏}. Show that 𝐶
and 𝐷 are disjoint if and only if there exists 𝑐 ̸= 0 and 𝑑 such that 𝑐⊺𝑥 ≥ 𝑑 for all 𝑥 ∈ 𝐶, and 𝑐⊺𝑥 ≤ 𝑑 for all
𝑥 ∈ 𝐷.
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5. Show that the condition on 𝐶 means 𝑐 ⪰ 0 and 𝑑 ≤ 0. Also show that 𝑐⊺𝑥 ≤ 𝑑 on 𝐷 means 𝑐⊺𝑥 is a constant.
We can relabel 𝑑 such that it is this constant and we obtain 𝑐⊺𝑥 = 𝑑 on 𝐷. (Hint: 𝐷 is an affine set, so contains
lines.)

6. Use our conclusion from part 3 to show the full result.

3 Perspective and epigraph (2 points)
3.1 Perspective function
The perspective function is defined by 𝑃 : R𝑛+1 → R𝑛, with domain R𝑛 × R++, with 𝑃 (𝑧, 𝑡) = 𝑧

𝑡 . Intuitively, the
perspective function is a mapping of images through a pin-hole camera, so it maps a convex set to a convex set,
and vice versa. This problem guides you through the proof of this statement.

1. Show that the perspective function maps a line segment to a line segment. (Hint: consider two points,
𝑥 = (�̃�, 𝑥𝑛+1) and 𝑦 = (𝑦, 𝑦𝑛+1) in R𝑛+1, with 𝑥𝑛+1, 𝑦𝑛+1 > 0, then the line segment between them is
{𝜃𝑥 + (1 − 𝜃)𝑦 : 𝜃 ∈ [0, 1]}. Calculate 𝑃 (𝜃𝑥 + (1 − 𝜃)𝑦) and write it as the convex combination of 𝑃 (𝑥) and
𝑃 (𝑦).)

2. Show that if 𝐶 is convex, then 𝑃 (𝐶) is convex, by showing that any line segment in 𝐶 is also mapped to a line
segment in 𝑃 (𝐶).

3. Show that if 𝐶 is convex, then 𝑃 −1(𝐶) is also convex.

4. Image of polyhedral sets under the perspective function. (Exercise 2.17 of [1].) For at least one of the following sets
𝐶, give a simple description of 𝑃 (𝐶).

(a) The polyhedron 𝐶 = conv{(𝑣1, 𝑡1), . . . , (𝑣𝑘, 𝑡𝑘)} where 𝑣𝑖 ∈ R𝑛 and 𝑡𝑖 > 0.

(b) The hyperplane 𝐶 = {(𝑣, 𝑡) | 𝑓⊺𝑣 + 𝑔𝑡 = ℎ} (with 𝑓 and 𝑔 not both zero).

(c) The halfspace 𝐶 = {(𝑣, 𝑡) | 𝑓⊺𝑣 + 𝑔𝑡 ≤ ℎ} (with 𝑓 and 𝑔 not both zero).

(d) The polyhedron 𝐶 = {(𝑣, 𝑡) | 𝐹𝑣 + 𝑔𝑡 ⪯ ℎ}.
3.2 Epigraph
Recall that the graph of a function 𝑓 : R𝑛 → R is {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ dom 𝑓}, a subset of R𝑛+1. The epigraph of
𝑓 : R𝑛 → R is epi 𝑓 = {(𝑥, 𝑡) | 𝑥 ∈ dom 𝑓, 𝑓(𝑥) ≤ 𝑡}. (Epi means above.) And 𝑓 is a convex function if and only if
epi 𝑓 is a convex set.

Use Epigraph to prove the matrix fractional function, 𝑓 : R𝑛 × S𝑛 → R, 𝑓(𝑥, 𝑌 ) = 𝑥⊺𝑌 −1𝑥, is convex on dom 𝑓 =
R𝑛 × S𝑛

++. This is a generalization of the quadratic-over-linear function 𝑓(𝑥, 𝑦) = 𝑥2/𝑦, dom 𝑓 = R × R++.

1. The tool of Schur complement. Consider a block matrix

𝑋 =
[︃

𝐴 𝐵
𝐵⊺ 𝐶

]︃

where 𝐴 and 𝐶 are symmetric and 𝐶 ≻ 0, then the Schur complement of 𝐶 in 𝑋 is 𝑆 = 𝐴 − 𝐵𝐶−1𝐵⊺.

Consider the quadratic function

𝑔(𝑥, 𝑦) = 𝑥⊺𝐴𝑥 + 2𝑥⊺𝐵𝑦 + 𝑦⊺𝐶𝑦 =
[︃
𝑥
𝑦

]︃⊺[︃
𝐴 𝐵
𝐵⊺ 𝐶

]︃[︃
𝑥
𝑦

]︃
.
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Assume this function is convex in 𝑥, 𝑦, i.e. 𝑋 ⪰ 0. Then consider the function ℎ(𝑥) = inf𝑦 𝑓(𝑥, 𝑦). Show that
it is ℎ(𝑥) = 𝑥⊺(𝐴 − 𝐵𝐶−1𝐵⊺)𝑥 = 𝑥⊺𝑆𝑥.

Then conclude by the minimization rule of convex functions that 𝑆 ⪰ 0. In other words, given 𝐶 ≻ 0, 𝑋 ⪰ 0
if and only if 𝑆 ⪰ 0.

2. Show that the epigraph of 𝑓 can be written as

epi 𝑓 =
{︃

(𝑥, 𝑌, 𝑡)
⃒⃒⃒⃒
⃒
[︃

𝑌 𝑥
𝑥⊺ 𝑡

]︃
⪰ 0, 𝑌 ≻ 0

}︃
,

using the Schur complement condition for positive semidefiniteness of a block matrix. Then conclude that
epi 𝑓 is convex in (𝑥, 𝑌, 𝑡). (Hint: Linear matrix inequality.)

3. First order condition of convex functions and supporting hyperplane for epigraphs. Given 𝑓 is convex, show that if
(𝑦, 𝑡) ∈ epi 𝑓 then [︃

∇𝑓(𝑥)
−1

]︃⊺(︃[︃
𝑦
𝑡

]︃
−
[︃

𝑥
𝑓(𝑥)

]︃)︃
≤ 0.

Conclude that the hyperplane defined by normal vector (∇𝑓(𝑥), −1) supports epi 𝑓 at the boundary point
𝑥, 𝑓(𝑥).

3.3 Perspective of a function and epigraph
The perspective of a function 𝑓 : R𝑛 → R is the function 𝑔 : R𝑛+1 → R defined by 𝑔(𝑥, 𝑡) = 𝑡𝑓(𝑥/𝑡), with
domain dom 𝑔 = {(𝑥, 𝑡) | 𝑥/𝑡 ∈ dom 𝑓, 𝑡 > 0}. We show that the perspective operation preserves convexity using
epigraphs and the perspective mapping.

For 𝑡 > 0, show that a point (𝑥, 𝑡, 𝑠) in epi 𝑔 if and only if (𝑥/𝑡, 𝑠/𝑡) ∈ epi 𝑓 .

Then, recognize that epi 𝑔 is the inverse image of epi 𝑓 under the perspective mapping, and conclude that epi 𝑔 is
convex, therefore 𝑔 is convex.
3.4 Linear fractional mapping and conditional probabilities
The linear fractional function is the composition of the perspective function with an affine function. Let
𝑔 : R𝑛 → R𝑚+1 be an affine function, i.e.

𝑔(𝑥) =
[︃

𝐴 𝑏
𝑐⊺ 𝑑

]︃[︃
𝑥
1

]︃
,

where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛, and 𝑑 ∈ R. Then the linear fractional function is 𝑓 = 𝑃 ∘ 𝑔, where 𝑃 is the
perspective map, so

𝑓(𝑥) = 𝐴𝑥 + 𝑏

𝑐⊺𝑥 + 𝑑
, dom 𝑓 = {𝑥 | 𝑐⊺𝑥 + 𝑑 > 0}.

Note that when 𝑐 = 0 and 𝑑 > 0, 𝑓 becomes an affine function and dom 𝑓 is all of R𝑛, so we can consider affine
and linear functions as special cases of linear fractional functions.

We will use the convexity of linear fractional mapping to show that the set of conditional probabilities is
convex.

Consider random variables 𝑈 and 𝑉 that take on values in {1, . . . , 𝑛} and {1, . . . , 𝑚}, respectively, and let 𝑝𝑖𝑗

denote the joint probability prob(𝑢 = 𝑖, 𝑣 = 𝑗). Let 𝐶 ⊆ R𝑛𝑚 denote the set of all possible joint probabilities
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of (𝑈, 𝑉 ), so 𝐶 is the probability simplex in R𝑛𝑚, which is convex, with each vertex corresponding to the joint
probability distribution having 𝑝𝑖𝑗 = 1 for each (𝑖, 𝑗).

Then the conditional probability is

𝑓𝑖𝑗 = prob(𝑢 = 𝑖 | 𝑣 = 𝑗) = 𝑝𝑖𝑗∑︀𝑛
𝑘=1

𝑝𝑘𝑗 .

Let 𝐷 denote the set of all conditional probabilities. Show that 𝐷 is convex.

4 Convex functions (1 point)
4.1 Geometric mean

Show that the geometric mean 𝑓(𝑥) = (
∏︀𝑛

𝑖=1 𝑥𝑖)1/𝑛 is concave on dom 𝑓 = R𝑛
++ by showing its Hessian ∇2𝑓(𝑥) is

negative-semidefinite. (Hint: this is similar to how we showed the convexity of log-sum-exp.)
4.2 Sum of largest elements
Show the sum of 𝑟 largest elements, defined by 𝑓(𝑥) =

∑︀𝑟
𝑖=1 𝑥[𝑖], where 𝑥[𝑖] is the 𝑖th largest element of 𝑥 ∈ R𝑛, is a

convex function. Hint: use pointwise maximum.
4.3 Entropy and perspectives of negative log
Recall that log is concave, so 𝑓(𝑥) = − log 𝑥 on R++ is convex.

1. The relative entropy of two scalars (𝑥, 𝑡) ∈ R2
++ is 𝑔(𝑥, 𝑡) = 𝑡 log 𝑡

𝑥 . Show this is a convex function. (Hint:
perspective on negative log.)

2. Show that the relative entropy of two vectors, 𝑢, 𝑣 ∈ R𝑛
++,

𝑔(𝑢, 𝑣) =
𝑛∑︁

𝑖=1
𝑢𝑖 log 𝑢𝑖

𝑣𝑖
,

is convex in (𝑢, 𝑣).

3. Show that the Kullback-Leibler divergence (KL-divergence) between 𝑢, 𝑣 ∈ R𝑛
++, given by

𝐷kl(𝑢, 𝑣) =
𝑛∑︁

𝑖=1
𝑢𝑖 log 𝑢𝑖

𝑣𝑖
− 𝑢𝑖 + 𝑣𝑖

is convex.

Note that the KL-divergence satisfies 𝐷kl(𝑢, 𝑣) ≥ 0 and 𝐷kl(𝑢, 𝑣) = 0 if and only if 𝑢 = 𝑣, so it can be used as
a measure of deviation between two positive vectors. When applied to probability vectors, i.e. 𝑢 and 𝑣 satisfy
1⊺𝑢 = 1⊺𝑣 = 1, the KL-divergence and the relative entropy are the same.

4. Show the normalized entropy function,

ℎ(𝑢) = −
𝑛∑︁

𝑖=1
𝑢𝑖 log 𝑢𝑖∑︀𝑛

𝑘=1 𝑢𝑘
,

is concave in 𝑢. (Hint: take 𝑣𝑖 = 1⊺𝑢 in the relative entropy function.) Note the normalized entropy is equal
to the entropy scaled by a constant, ℎ(𝑢) = 1⊺𝑢𝐻(𝑧), where 𝑧 is the normalized version of 𝑢, 𝑧𝑖 = 𝑢𝑖∑︀𝑛

𝑘=1 𝑢𝑘
,

and 𝐻(𝑧) = −
∑︀𝑛

𝑖=1 𝑧𝑖 log 𝑧𝑖 is the entropy function over probability vectors 𝑧.
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5 CVXPY practice (2 points)
(Problem 5 of homework 1 from [3].)

As introduced in class, CVX implements disciplined convex programming (DCP), a systematic way of specifying and
recognizing convex functions using compositional rules. This allows us to quickly formulate convex optimization
problems without worrying about the technicalities of solving a convex optimization problem. For large scale
problems that needs efficiency and speed, other convex optimization frameworks such as MOSEK will work better,
but may require specifications of the optimization problem on a more detailed level. So, for our purpose, to quickly
setup and solve diverse types of problems, CVX is a great tool. Take this exercise to quickly get your hands on
CVX and solve some optimization problems.

CVX is accessible in several languages, but CVXPY for python is strongly recommended. The link for download
and some tutorials is here: http://www.cvxpy.org/.

5.1 Least squares

Get it set up on your laptop or on the cloud and make sure you can solve the least squares min𝛽‖𝑦 − 𝑋𝛽‖2
2 for an

arbitrary vector 𝑦 and matrix 𝑋 . Check your answer with the closed-form solution 𝛽* = (𝑋⊺𝑋)−1𝑋𝑦.

5.2 Support vector machine
Support vector machine is a way to find the classification for a set of data points. When there are two classes, for
example, it finds a boundary that maximizes the margin between points in the two classes. We explore this a bit
using convex optimization, mainly as an exercise to get familiar with CVX.

Given labels 𝑦 ∈ {−1, 1}𝑛, and a feature matrix 𝑋 ∈ R𝑛×𝑝, with rows 𝑥1, . . . , 𝑥𝑛, the support vector machine (SVM)
problem is the following.

min
𝛽, 𝛽0, 𝜁

1
2‖𝛽‖2

2 + 𝐶
𝑛∑︁

𝑖=1
𝜁𝑖

s.t. 𝜁𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

𝑦𝑖(𝑥⊺
𝑖 𝛽 + 𝛽0 ≥ 1 − 𝜁𝑖, 𝑖 = 1, . . . , 𝑛

(1)

1. Load the training data in xy_train.csv. This is a matrix of 𝑛 = 200 row and 3 columns. The first two
columns give the first 𝑝 = 2 features, and the third column gives the labels. Using CVX, solve the SVM
problem with 𝐶 = 1. Report the optimal criterion value, and the optimal coefficients 𝛽 ∈ R2 and intercept
𝛽0 ∈ R.

2. The SVM solution defines a hyperplane
𝛽0 + 𝛽⊺𝑥 = 0,

which serves as the decision boundary for the SVM classifier. Plot the training data and color the points from
the two classes differently. Draw the decision boundary on top.

3. Define �̃� ∈ R𝑛×𝑝 to have rows �̃�𝑖 = 𝑦𝑖𝑥𝑖, 𝑖 = 1, . . . , 𝑛, and solve using CVX the following problem

min
𝑤

− 1
2𝑤⊺�̃��̃�⊺𝑤 + 1⊺𝑤

s.t. 0 ≤ 𝑤 ≤ 𝐶1,

𝑤⊺𝑦 = 0

(2)

http://www.cvxpy.org/
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Report the optimal criterion value. It should match that from part 1. Also report �̃�⊺𝑤 at optimal 𝑤. This
should match the optimal 𝛽 from part 1. Note: this is an example of duality, which will be discussed in week
4.

4. Investigate many values of the cost parameter 𝐶 = 2𝑎 as 𝑎 varies from −5 to 5. For each 𝑎, solve the SVM
problem, form the decision boundary, and calculate the misclassification error on the test data in xy_test.csv.
Make a plot of misclassification error (𝑦-axis) versus 𝐶 (𝑥-axis, in log scale.)

5.3 Disciplined convex programming
Let us practice to specify valid convex problems in disciplined convex programming. Recall from class that certain
ways of specifying a convex function may make it easier to be recognized as a convex function by DCP than others.
See the website http://dcp.standord.edu for info on DCP. For each of the following expression, first explain
why they define a convex set. Then, give an equivalent DCP expression along with a brief explanation of why the
DCP expression is equivalent to the original. To test whether your specification is recognized as a convex function
by DCP, use the analyzer at this website http://dcp.stanford.edu/analyzer.

1. ‖(𝑥, 𝑦, 𝑧)‖2
2 ≤ 1

2.
√

𝑥2 + 1 ≤ 3𝑥 + 𝑦

3. 1/𝑥 + 2/𝑦 ≤ 5, 𝑥 > 0, 𝑦 > 0

4. (𝑥 + 𝑦)2/
√

𝑦 ≤ 𝑥 − 𝑦 + 5, 𝑦 > 0

5. (𝑥 + 𝑧)𝑦 ≥ 1, 𝑥 + 𝑧 ≥ 0, 𝑦 ≥ 0

6. ‖(𝑥 + 2𝑦, 𝑥 − 𝑦)‖2 = 0

7. 𝑥
√

𝑦 ≥ 1, 𝑥 ≥ 0, 𝑦 ≥ 0

8. log(𝑒𝑦−1 + 𝑒𝑥/2) ≤ −𝑒𝑥

6 Linear matrix inequality (LMI) for stability of biomolecular dynamical systems (2
points)

6.1 Linear matrix inequality (LMI) and stability
1. Define 𝐴(𝑥) = 𝑥1𝐴1 + · · · + 𝑥𝑚𝐴𝑚, where 𝐴𝑖, 𝐵 ∈ S𝑝. 𝐴(𝑥) ⪯ 𝐵 is called a linear matrix inequality (LMI) in

𝑥. Show that the solution set {𝑥 : 𝐴(𝑥) ⪯ 𝐵} is convex. (Hint: consider the function 𝑓 : R𝑛 → S𝑚 given by
𝑓(𝑥) = 𝐵 − 𝐴(𝑥) and its inverse image.)

2. Lyapunov inequality for local stability. In 1890, Lyapunov established the following result: for a linear time
invariant dynamical system

𝑑

𝑑𝑡
𝑥 = 𝐴𝑥

where 𝐴 ∈ R𝑛×𝑛, it is stable, i.e. all trajectories converge to zero, if and only if there exists a positive definite
matrix 𝑃 ∈ S𝑛

++ such that
𝐴⊺𝑃 + 𝑃𝐴 < 0.

The linear matrix inequality in 𝑃 of the above form is called a Lyapunov inequality.

It is also well-known that the above system is stable if and only if the real part of the eigenvalues of 𝐴 are all
negative. 𝐴 matrices with this property is called Hurwitz.

http://dcp.standord.edu
http://dcp.stanford.edu/analyzer
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Check that, for 𝑛 = 2, the condition for 𝐴 to have a solution to the Lyapunov inequality and for 𝐴 to be
Hurwitz are the same. You can check this by algebraic manipulations or check this by computational
scanning.

6.2 Special structure of biomolecular reaction networks
Biological organisms exhibit fantastically diverse and versatile behaviors, yet they maintain a resilient state
of livelihood that is stable and robust to disturbances. Underneath the hood, cells have millions of complex
biomolecules interacting through thousands of chemical reactions that, albeit bewilderingly complicated, maintains
a homeostasis and adapts towards certain goals. One marvelous fact about biomolecular systems in cells is that
they achieve such stability and robustness without intricate and precise machinery like our computers, but instead
only rely on floppy biomolecules’ random collisions that form noisy and bursty chemical reactions. How could
such stable and robust behaviors come out of such unreliable components?

We study this briefly through the perspective of the biomolecular systems’ stability despite uncertainty in the
parameters, and the answer comes out to be in terms of linear matrix inequalities!

This problem is based on results in [4].

1. Generically, biomolecular systems exhibit nonlinear behavior. When studying a nonlinear dynamical system,
we write the system in the following form:

𝑑

𝑑𝑡
𝑥 = 𝑓(𝑥),

where 𝑓 : R𝑛 → R𝑛 is some generic function satisfying certain regularity conditions such that the solution
over all 𝑡 > 0 exists.

To study the stability of such a nonlinear system, it is usually hard to conclude whether the system is globally
stable, i.e. converging to 0 as 𝑡 → ∞ from arbitrary initial conditions. On the other hand, if we already know
a fixed point, i.e. a point 𝑥* ∈ R𝑛 such that 𝑓(𝑥*) = 0, then we can study whether this fixed point is locally
stable by linearizing the system around this fixed point. Define 𝐴 = 𝑑

𝑑𝑥𝑓(𝑥*), the derivative of 𝑓 evaluated at
𝑥*, we obtain the first order approximation of the dynamics in terms of variable 𝛿𝑥 = 𝑥 − 𝑥*:

𝑑

𝑑𝑡
𝛿𝑥 = 𝐴𝛿𝑥.

Then the fixed point 𝑥* is locally stable, i.e. starting from a point 𝑥 = 𝑥* + 𝛿𝑥 very close to 𝑥* then 𝑥(𝑡) will
converge to 𝑥* over time, if 𝐴 is Hurwitz.

Since 𝐴 is Hurwitz is equivalent to 𝐴 has a solution to the Lyapunov inequality, we can easily test this using
CVX.

Consider the following system, which is adapted from the heat shock response system in bacteria (see [2] for
more details on the biology). Linearize it by hand, and test for a bunch of parameter values to see that the
fixed point seems always stable. (Note that the parameters should all be positive.)
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𝑑

𝑑𝑡
𝑥𝜎 = 𝑘𝑝 − 𝑘𝑝𝑟𝑥𝜎𝑥𝐷𝑥𝐹

𝑑

𝑑𝑡
𝑥𝑚𝐷 = 𝑘𝑚𝐷𝑥𝜎 − 𝑘𝑚𝑑𝑥𝑚𝐷

𝑑

𝑑𝑡
𝑥𝑚𝐹 = 𝑘𝑚𝐹 𝑥𝜎 − 𝑘𝑚𝑑𝑥𝑚𝐹

𝑑

𝑑𝑡
𝑥𝐷 = 𝑘𝑝𝑥𝑚𝐷 − 𝑘𝑝𝑑𝑥𝐷

𝑑

𝑑𝑡
𝑥𝐹 = 𝑘𝑝𝑥𝑚𝐹 − 𝑘𝑝𝑑𝑥𝐹

𝑑

𝑑𝑡
𝑥𝑃 𝑢𝑛 = 𝑘𝑢𝑛 − 𝑘𝑓 𝑥𝑃 𝑢𝑛𝑥𝐷

2. The exploration of the system above may make you wonder: could it be that the system is stable for all
parameters? Indeed, this is quite often the case for biomolecular systems. For example, the simplest dynamics
of a biomolecule’s concentration is that it is produced at a constant rate and degraded in first order,

𝑑

𝑑𝑡
𝑥 = 𝜇 − 𝛾𝑥,

where 𝑥 ∈ R++ is a scalar, 𝜇 > 0 is a production rate constant, and 𝛾 > 0 is a degradation rate constant. It is
easy to see that this system is globally stable for all parameter values of 𝜇 and 𝛾. So maybe biological systems
tend to be stable despite parameter variations because of some special structure?

Biological systems have a special structure that all quantities are positive! The variables are concentrations of
biomolecules, which is positive. They change by reactions that produce or degrate them, and the flux of
these reactions is also positive. So we can always write a biological system in the following birth-death form:

𝑑

𝑑𝑡
𝑥𝑖 = 𝑓𝑖(𝑥) = 𝑓+

𝑖 (𝑥) − 𝑓−
𝑖 (𝑥),

where 𝑥 ∈ R𝑛
++ is the concentration of biomolecules involved, 𝑓+

𝑖 : R𝑛
++ → R++ is the rate of production of

𝑥𝑖, positive, and similarly 𝑓−
𝑖 : R𝑛

++ → R++ is the rate of degradation of 𝑥𝑖, also positive.

Motivated by all the quantities being positive, we could take log over these variables and consider fold
change, rather than linear difference. For a given fixed point 𝑥*, take 𝛿𝑥𝑖 = 𝑥𝑖−𝑥*

𝑖
𝑥𝑖

to be the fold-change of 𝑥 in
the 𝑖th coordinate, relative to the fixed point. Then, in terms of first order approximation, rather than the
additive difference corresponding to linear derivative, we have multiplicative difference corresponding to log
derivatives.

Show that
𝑑

𝑑𝑡
𝛿𝑥 = diag(𝜏*)−1

(︁
𝐻+ − 𝐻−

)︁
𝛿𝑥 = diag(𝜏*)−1𝐻𝛿𝑥,

where 𝐻±
𝑖𝑗 = 𝜕 log 𝑓±

𝑖
𝜕 log 𝑥𝑗

evaluated at 𝑥* is the reaction order (or log derivative) of the production or degradation
flux of 𝑥𝑖 to 𝑥𝑗 , and 𝜏*

𝑖 = 𝑥*
𝑖

𝑓±
𝑖 (𝑥*) (note 𝑓+

𝑖 (𝑥*) = 𝑓−
𝑖 (𝑥*)) is the timescale of 𝑥𝑖’s turnover. diag(𝜏*) is a diagonal

matrix with 𝜏* on the diagonal entries.

Show the above is true using chain rule of calculus.
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3. Compared to the additive linearization where the dynamics is just one 𝐴 matrix, the above fold-change
linearization decomposes the dynamics as the product of two matrices: diag(𝜏*)−1𝐻 . The parameters that
tend to change and are uncertain, such as concentrations and reaction rates, are contained in 𝜏*, while 𝐻
contains reaction orders, which tend to vary much more slowly or are constant.

Indeed, the reaction orders are defined by log derivatives, which gets the “exponent”. For example, if
𝑓(𝑥, 𝑦) = 𝑘𝑥𝑎𝑦𝑏, then 𝜕 log 𝑓

𝜕 log 𝑥 = 𝑎, and 𝜕 log 𝑓
𝜕 log 𝑦 = 𝑏. The log derivative only gets the exponent, ignoring the rate

constant in front.

Show that the 𝐻 matrix for the heat shock system from part 1 is the following:

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 −1 −1 0
1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

4. Diagonal stability of a matrix. Given that the fold change linearization yields a decomposition of the dynamics
into two parts, the diagonal matrix containing uncertain timescales diag(𝜏*), and the structural reaction
order matrix 𝐻 , we naturally want to ask, could the stability despite parameter variations in biology be due
to stability that only depends on 𝐻 despite all possible values of 𝜏*? This means, could it be that the matrix
𝐴 = diag(𝜏*)𝐻 is stable for all 𝜏*? This would imply that the system is stable in a structural sense, regardless
of parameter variations.

Just like 𝐴 is stable corresponds to having a solution to the Lyapunov inequality, there is also a similar LMI
for 𝐻 is structurally stable, i.e. stable despite left-multiplication by any diagonal matrix with positive entries.
A sufficient condition is the following, which is called diagonal stability: there exists a positive diagonal matrix
𝑃 such that

𝐻⊺𝑃 + 𝑃𝐻 < 0.

Use CVX to test the 𝐻 matrix from the heat shock example is indeed diagonal stable, i.e. find a positive
diagonal 𝑃 such that the Lyapunov inequality holds for 𝐻 .

This shows that fixed points of the heat shock system is locally stable for all variations in the parameters.
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