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Balanced biosynthesis is the hallmark of bacterial cell physiology, where the concentrations of stable proteins
remain steady. However, this poses a conceptual challenge to modeling the cell-cycle and cell-size controls in
bacteria, as prevailing concentration-based eukaryote models are not directly applicable. In this study, we revisit
and significantly extend the initiator-titration model, proposed 30 years ago, and we explain how bacteria pre-
cisely and robustly control replication initiation based on the mechanism of protein copy-number sensing. Using
a mean-field approach, we first derive an analytical expression of the cell size at initiation based on three biolog-
ical mechanistic control parameters for an extended initiator-titration model. We also study the stability of our
model analytically and show that initiation can become unstable in multifork replication conditions. Using sim-
ulations, we further show that the presence of the conversion between active and inactive initiator protein forms
significantly represses initiation instability. Importantly, the two-step Poisson process set by the initiator titration
step results in significantly improved initiation synchrony with CV ∼ 1/N scaling rather than the standard 1/

√
N

scaling in the Poisson process, where N is the total number of initiators required for initiation. Our results answer
two long-standing questions in replication initiation: (i) Why do bacteria produce almost two orders of magnitude
more DnaA, the master initiator proteins, than required for initiation? (ii) Why does DnaA exist in active
(DnaA-ATP) and inactive (DnaA-ADP) forms if only the active form is competent for initiation? The mechanism
presented in this work provides a satisfying general solution to how the cell can achieve precision control without
sensing protein concentrations, with broad implications from evolution to the design of synthetic cells.

DOI: 10.1103/PRXLife.1.013011

I. INTRODUCTION

Most biology textbooks explain biological decision-
making by emphasizing the control and sensing of key
protein concentrations through programed gene expression
and protein degradation in eukaryotes. Protein concentration
gradients can encode spatial or temporal information across
different scales, such as morphogen gradients in the French
flag model in developmental biology [1], or cyclin oscillations
in eukaryotic cell-cycle controls [2] [Fig. 1(a)]. However, in
bacterial cell physiology, balanced biosynthesis has been the
hallmark since the 1950s at the population and single-cell
levels [3–5]. Balanced biosynthesis means that the synthesis
rate of all cellular components is the same as the cell’s growth
rate in steady-state growth, wherein the concentrations of
stable proteins are steady by the balance of their production
and dilution [Fig. 1(b)].
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However, balanced biosynthesis poses a fundamental con-
ceptual challenge to modeling the cell-cycle and cell-size
controls, as the prevailing concentration-based models are
not directly applicable if the concentration of cell-cycle pro-
teins remains constant (within stochasticity). Indeed, for the
billion-year divergent model bacterial organisms Escherichia
coli and Bacillus subtilis, their size control is based on
(i) balanced biosynthesis of division initiator protein FtsZ and
(ii) its accumulation to a threshold number (not concentration)
[6]. These two conditions lead to the adder phenotype [6].
Unfortunately, a mechanistic investigation of threshold FtsZ
number sensing is a formidable challenge because division
initiation involves multiple interacting proteins with unknown
properties [7].

Replication initiation in bacteria, which is exclusively con-
trolled by the widely conserved master regulator protein,
DnaA, is an attractive problem for mechanistic investigation
because it exhibits the adder phenotype [8–11]. That is, the
added cell size between two consecutive initiation events is
independent of the cell size at initiation, as originally sug-
gested by Sompayrac and Maaloe [12]. The adder phenotype
implies that cells likely accumulate the DnaA molecules to a
threshold number [6], and the synthesis of DnaA is balanced
[13]. Furthermore, DnaA has been extensively studied, and
most properties required for modeling are known or can be
estimated [14–18]. Therefore, we view E. coli replication
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FIG. 1. Protein concentration in eukaryotes vs bacteria. (a) Left: morphogen gradient in the French flag model in developmental biology.
Right: Oscillation of cyclin concentration for eukaryotic cell-cycle control. (b) Balanced biosynthesis in bacteria.

initiation as a tractable problem to understand the mechanism
of protein copy-number sensing to control the cell cycle and
cell size, and gain mechanistic insight into the general class of
precision control in biology.

In this work, we revisit and significantly extend the
initiator-titration model proposed by Hansen, Christensen,
and Atlung 30 years ago [19], the model closest to the
protein-number-sensing idea (see Sec. II A). In Sec. II A, we
summarize the original initiator-titration model and introduce
our initiator-titration model v2. In Sec. II B, we first introduce
the “protocell” model, a minimal version of the initiator-
titration model, and derive the first expression of the protocell
size at initiation (known as the “initiation mass”). In Sec. II C,
we perform a dynamical stability analysis of the protocell
model and show the existence of initiation instability. In
Sec. II D, we extend the protocell to our “initiator-titration
model v2” and derive an analytical expression for the initi-
ation mass in a special case (the �4 mutant [13]) based on
three mechanistic biological control parameters: the expres-
sion level of DnaA, the ratio of the active versus passive
forms of DnaA, namely [DnaA-ATP]/[DnaA-ADP], and the
number of DnaA titration boxes on the chromosome. In the
same section, we show that adding the replication-dependent,
biologically observed DnaA-ATP → DnaA-ADP conver-
sion element (RIDA) restores initiation stability [20,21]. In
Sec. II E, we discuss initiation asynchrony and cell-to-cell
variability using the concept of intrinsic and extrinsic noise
in the framework of initiator-titration model v2.

Our model provides a quantitative and mechanistic ex-
planation for several long-standing questions in bacterial
replication initiation with the following findings: DnaA titra-
tion boxes are the protein-counting device that measures the
threshold number of initiator proteins, and the two forms
of DnaA (DnaA-ATP and DnaA-ADP), and especially the
replication-dependent DnaA-ATP → DnaA-ADP, are needed
to suppress initiation instability. Given the fundamental nature
of replication initiation and its profound differences from eu-
karyotic cell-cycle control, we anticipate broad applications of
our results, from the design of synthetic cells to the evolution
of biological mechanisms in precision control.

II. RESULTS AND DISCUSSION

A. The “initiator-titration model v2” and intuition

Consider engineering a synthetic cell capable of
self-replication. For such a cell to be viable, it must

meet a fundamental requirement for cell-cycle control:
initiating replication only once during cell division. A
possible “simple” strategy to implement this requirement
could be as follows [Fig. 2(a)]: (i) The chromosome has
one origin of replication. (ii) The cell produces one initiator
protein during the division cycle. (iii) The initiator protein
binds to ori (the replication origin) and immediately triggers
initiation. (iv) Upon initiation, the cell destroys the initiator
protein. While this seemingly straightforward strategy could
limit the replication origin to a single site and produce a
single initiator protein during cell division, the underlying
mechanisms required to achieve this are likely more complex.
For instance, how would the cell “know” when to produce the
initiator protein and when to degrade it?

While E. coli exhibits characteristics similar to the
hypothetical strategy described above, there are notable differ-
ences. E. coli has one replication origin (ori), but replication
initiation requires 10–20 master regulator DnaA molecules
binding to the 11 DnaA boxes at ori [15–17,22]. Furthermore,
DnaA is stable and not degraded upon initiation [15,16]. Strik-
ingly, E. coli produces approximately 300 copies of DnaA per
ori, or 30 times more than required at ori, with almost all
being titrated by DnaA boxes encoded on the chromosome
[15,16].

In 1991, Hansen and colleagues proposed the initiator-
titration model to explain these observations [Fig. 2(b)] [19].
Their model posits that DnaA is first titrated by high-affinity
DnaA boxes on the chromosome, which allows it to bind ori
with weak affinity and initiate replication only after the chro-
mosomal DnaA boxes are nearly saturated. This highlights the
importance of DnaA boxes on the chromosome as the timing
device for replication initiation.

Our model builds upon the initiator-titration model and
incorporates the knowledge in DnaA accumulated in the past
30 years [15–17,22]. Specifically, we have learned that DnaA
exists in two forms, DnaA-ATP and DnaA-ADP, with differ-
ent binding affinities to DNA [23]. DnaA-ATP is the active
form that can trigger initiation, while DnaA-ADP is inactive
as it cannot bind ori specifically [24,25]. Further genetic,
biochemical, and bioinformatic studies have revealed that
approximately 300 high-affinity DnaA boxes are distributed
across the circular chromosome [15,26,27]. By contrast, ori
contains a cluster of 11 DnaA binding sites, wherein only
three have high affinities [25,28]. Therefore, most DnaA,
whether DnaA-ATP or DnaA-ADP, will first bind the high-
affinity chromosomal DnaA boxes. Only after the titration
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FIG. 2. Initiation control. (a) Hypothetical minimal cell. (b) Initiator-titration model v1 [19]. (c) Initiator-titration model v2 (this work).

step do DnaA-ATP molecules bind the weak binding sites
within ori and trigger initiation. We refer to this updated
model as the initiator-titration model v2, in recognition of the
pioneering work of Hansen et al. [19,29].

Figure 2(c) illustrates how our initiator-titration model v2
works in more detail. To provide intuition without losing
the generality of our ideas, let us consider a naked circular
chromosome without bound DnaA.

(1) As DnaA binds to ATP or ADP tightly [23] and the
cellular concentration of ATP is almost 10× higher than
ADP [30,31], newly synthesized DnaA molecules become
DnaA-ATP. During steady-state growth, both DnaA-ATP and
DanA-ADP exist in the cell due to multiple interconversion
mechanisms [16]. (See Sec. II D and Appendix D for a de-
tailed discussion.)

(2) DnaA-ATP and DnaA-ADP will first bind to around
300 high binding-affinity chromosomal DnaA boxes (KD ≈
1 nM) [26], whereas only DnaA-ATP can bind to around 10
low-affinity boxes within ori (KD ≈ 100 nM) [26,32].

(3) When most chromosomal DnaA boxes are saturated,
the probabilities for DnaA-ATP binding to ori versus the
remaining chromosomal DnaA boxes become comparable.
Initiation is triggered once the low-affinity ori binding sites
are saturated by DnaA-ATP.

As we elaborate below, the initiator-titration model v2 an-
swers two long-standing fundamental questions:

(1) Why does E. coli produce so many more DnaA pro-
teins than required for initiation, only to be titrated?

(2) Why does E. coli maintain two forms of DnaA in the
first place if they only need DnaA-ATP for initiation?

B. The “protocell”: A minimal initiator-titration model

To gain analytical insight, we first construct a minimal
initiator-titration model, named “protocell” [Fig. 3(a)]. The
protocell has the complexity between the two versions of the
initiator-titration model [Figs. 2(b) and 2(c)]. The protocell
has one ori, the active initiator protein (e.g., DnaA-ATP in E.
coli), and the initiator binding sites on the chromosome. We
assume the following based on the experimental data:

(1) The cell grows exponentially V (t ) = V0eλt in steady-
state [3], where V (t ) is the total cell size at time t , and λ is the
growth rate. The mass-doubling time τ is given by τ = ln 2

λ
.

(2) Synthesis of the initiator protein is balanced, i.e., its
concentration is constant during growth [3]. We denote the
initiator protein copy number at time t as I (t ) and its concen-
tration as cI.

(3) The rate of DNA synthesis is constant [35,36], with
the duration of chromosome replication C, independent of the
mass-doubling time τ [37].

(4) The chromosome encodes specific DNA sequences
for binding of the initiator proteins. NB high-affinity sites
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FIG. 3. Initiation control of the protocell by initiator protein counting. (a) Model sequence of titration and initiation. (b) Change in the
copy numbers of initiators and initiator binding sites during the cell cycle under the condition of two overlapping cell cycles (C < τ < C + D).
The initiation condition is I (t = tini ) = B(t = tini ). (c) Predicted initiation mass in different growth conditions (C/τ ) by assuming that cI is a
constant [33,34].

are evenly distributed on the chromosome [15], and nB

low-affinity sites are localized at ori [16]. For the E. coli
chromosome, we set NB = 300 and nB = 10, as explained
in Sec. II A. During replication, the total number of initiator
binding sites increases as B(t ).

(5) Initiators tightly bind to the binding sites rather than
staying in the cytoplasm, and initiators preferentially bind the
chromosomal binding sites before binding to the ones at ori.
Therefore, replication initiates at t = tini when I (t = tini ) =
B(t = tini ), i.e., all binding sites are saturated by the initiator
proteins.

For illustration purposes, we consider an intermediate
growth condition, where two cell cycles slightly overlap with-
out exhibiting multifork replication [37] [Fig. 3(b)]. In the
Helmstetter-Cooper model [38], this corresponds to C < τ <

C + D, where D is the duration between replication termina-
tion and cell division. As such, the cell can have two intact
chromosomes between termination and the next initiation
[Fig. 3(b)].

The steady-state curves of I (t ) and B(t ) are shown in
Fig. 3(b) (in our model, a steady state means all derived
quantities are periodic with a period of τ ). In general, I (t )
increases exponentially because of exponential growth and
balanced biosynthesis (Assumptions 1 and 2 above), whereas
B(t ) increases piecewise linearly because of replication ini-
tiation and termination (Assumptions 3 and 4). Therefore,
the number of initiators catches up with the total number of
binding sites between replication termination and the new
round of initiation at I (t = tini ) = B(t = tini ) = 2(NB + nB)
(Assumption 5). Here, the factor “2” refers to the fact that
there are two entire chromosomes and two ori’s right before
the initiation event in the specific growth condition depicted
in Fig. 3(b). Upon initiation, the number of binding sites
B(t ) increases discontinuously by 2nB due to the duplication
of both ori’s and the binding sites therein. After that, B(t )

increases at the rate 2NB/C, steeper than the slope of I (t ).
Once the cell divides, I (t ) and B(t ) drop by half, and the cell
repeats its cycle.

From this picture, the initiation mass vi, defined by cell
volume per ori at initiation [37], can be easily calculated by
the number of initiators at initiation,

vi = I (tini )

2cI
= 1

cI
(NB + nB), (1)

where cI is the initiator protein concentration, and “2” reflects
the copy number of ori before initiation.

The above result can be extended to different growth
conditions. For example, in slow growth (τ > C + D), the
replication cycles do not overlap, and all the factors “2” will
vanish in the above analysis due to the single chromosome
at initiation. This results in the same initiation mass vi as
in the intermediate growth condition. In fast-growth condi-
tions (τ < C), replication cycles overlap, exhibiting multifork
replication. Since a new round of replication starts before the
previous round of replication is completed, the initiation mass
is given by

vi = 1

cI
(αNB + nB), (2)

with the cell-cycle-dependent parameter α � 1 given as

α = 1

2n
+
(

2 − n + 2

2n

)
τ

C
, n =

⌊
C

τ

⌋
, (3)

which applies to any growth conditions (see Appendix A
for a derivation). α = 1 when τ � C (non-multifork repli-
cation), and 0 < α < 1 when τ < C (multifork replication)
[Fig. 3(c)]. Thus, α refers to the degree of overlapping repli-
cation. Some of the most salient predictions of these results
include the following: (i) The initiation mass is inversely pro-
portional to the initiator concentration cI, and (ii) the initiation
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mass linearly depends on the number of chromosomal binding
sites NB.

The basis of the protocell’s behavior is that the initiator
increases exponentially, whereas the number of binding sites
increases piecewise linearly only during DNA replication.
This allows the cell to reach the initiation point I (t ) = B(t )
from any initial conditions. Therefore, the protocell can al-
ways trigger initiation by protein number counting through
titration.

C. The protocell exhibits initiation instability

In the preceding section, we addressed whether a solution
exists in the minimal protocell model with a period of τ . We
showed that this periodic solution always exists [Eq. (2)]. We
defined it as the “steady-state” solution in the biological sense
that the cell can grow in a steady state with the periodic cell
cycle. However, since the model is dynamic, convergence to
a steady state from a given initial condition, I (0) and B(0),
is not guaranteed. Hence, in this section, we study how the
replication cycle propagates in the lineage from an arbitrary
initial condition at t = 0, and under what conditions the cycle
converges to the steady-state solution.

Intuitively, if the two consecutive initiations are separated
by τ , thus periodic, the system is in a steady state. Suppose an
initiation event at t = 0, and its initiation mass deviates from
the steady-state solution Eq. (2). Typically, the next initiation
occurs at t = t+ �= τ . However, if this time interval between
two consecutive initiations eventually converges to τ after
generations, the steady-state solution is stable under pertur-
bations on the initial conditions. Otherwise, the steady-state
solution is unstable.

In the rest of this section, we analyze a dynamical system
based on Assumptions 1–5 in Sec. II B on the protocell.

1. Setup

We consider a protocell containing one chromosome with
ongoing multifork replication [Fig. 4(a)]. We block the cell
division so the protocell grows indefinitely as the chromosome
replicates and multiplies starting from the initial condition.
As the cell size approaches infinity, does the initiation mass
have a fixed value (stable) or multiple values (unstable)? The
analysis is nontrivial, as we need to accommodate arbitrary
initial conditions.

To this end, we start with the dynamics of I (t ) and B(t ).
First, we have

I (t ) = I (0)eλt , (4)

as a consequence of exponential cell growth and balanced
biosynthesis of the initiator proteins. Next, the dynamics of
the number of binding sites B(t ) is more subtle because it
increases piecewise linearly depending on the replication state
of the chromosome and the number of replication forks. To
accommodate the possibility of arbitrary initial conditions, we
define the “multifork tracker” vector variable, ρ(t ), as follows:

ρ(t ) ≡
{

[ρ1(t ), ρ2(t ), . . . , ρd(t )] if d � 1,

0 if d = 0.
(5)

Here, the index d is the total number of generations (namely,
the total rounds of replication cycles) since the initial
chromosome, so d can grow indefinitely with time. That is, at
every new round of the replication cycle, the size of the vector
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increases by 1 from d to d + 1. d = 0 is for the initial cell
that is supposed to have an intact single chromosome without
ongoing replications.

We use the variable ρ to indicate the relative position of
a replication fork of interest between ori and ter (the repli-
cation terminus), and therefore 0 � ρ(t ) � 1 [Fig. 4(b)]. For
example, ρ would be 0.5 if a pair of forks is exactly halfway
between ori and ter [Figs. 4(a) and 4(b)]. To track multifork
replication, we use ρi(t ) to represent the group of replication
forks that are the ith closest to the ori [Fig. 4(a)]. For example,
i = 1 always refers to the newest group of replication forks.
To record the replication history, we set ρi(t ) = 1 for those
replication forks that have already reached ter [Fig. 4(b)]. By
these definitions, ρ(t ) applies to both multifork replication and
non-multifork replication.

Based on the multifork tracker vector, the number of bind-
ing sites B(t ) is completely determined by ρ as

B[ρ(t )] = NB

[
1 +

d∑
i=1

ρi(t )2d−i

]
+ 2d nB. (6)

The dynamics of ρ(t ) consists of two parts: First, between
two initiation events, ρi(t ) increases linearly with a slope
of 1/C until it reaches 1, as replication forks travel from
ori to ter [Fig. 4(b)]. Second, at initiation, the dimension
of ρ increases by 1, shifting its components to the right
as S : Rd → Rd+1, (ρ1, ρ2, . . . , ρd ) �→ (0, ρ1, ρ2, . . . , ρd ) to
accommodate the new pair of replication forks at each ori
[see also Fig. 4(a)].

2. Properties of the steady state

The steady-state solution assumes periodicity of dynam-
ics so that I (t ) and B(t ) double in each replication cycle.
We consider the mapping between two consecutive initiation
events to solve for the steady-state condition. We denote the
first initiation event as ρ(t = 0) = ρ at t = 0, and the second
initiation event as ρ(t = t+) = ρ+ at t = t+. The mapping
F : Rd−1 → Rd , ρ �→ ρ+ requires a time-translation and a
shift:

ρ+
i =
{

ρi−1 + t+
C if ρi−1 + t+

C < 1,

1 otherwise,
(7)

where the initiation time t+ is determined by the initiation
criteria that I (t = 0) = B(t = 0) and I (t = t+) = B(t = t+),
Eqs. (4) and (6),

eλt+

2

{
NB

[
2−(d−1) +

d−1∑
i=1

ρi2
−i

]
+ nB

}

= NB

(
2−d +

d∑
i=1

ρ+
i 2−i

)
+ nB. (8)

Equations (7) and (8) describe the dynamics of the system
at initiation. We can now obtain the fixed point of the mapping
F by setting d → ∞ and ρ+ = ρ (Appendix B):

t+ = τ, ρss
i =
{

i τ
C if i �

⌊
C
τ

⌋
,

1 otherwise.
(9)

The resulting expression for steady-state initiation mass is
the same as Eq. (2), i.e., the fixed point of F is the steady-state
solution (see Appendix B for more details).

Next, we study the stability of the fixed point of F by
calculating the Jacobian matrix of F at the fixed point:

J = ∂ρ+
i

∂ρ j

∣∣∣∣
ss

. (10)

This matrix can be reduced to an n × n matrix (n = 
C
τ
�),

since all other matrix elements are zero. In E. coli, 0 � n � 2
in most growth conditions; here, we consider the range of
0 � n � 3 to accommodate cells theoretically doubling as
frequently as at every τ = 10 min, with a C period of 40 min.
Therefore, we can calculate the eigenvalues of J for each n.
Stability requires the largest eigenvalue of J to be smaller than
1. Eventually, we can obtain the stable and unstable regimes
in the nB/NB versus C/τ phase diagram, as shown in Fig. 4(c)
[see Appendix B, and also Fig. 8(a)]. Importantly, the phase
diagram reveals both stable (n < 1) and unstable (small nB/NB

when n > 1) steady states [Fig. 4(c)].
What happens when the system becomes unstable? As

discussed earlier, in fast growth conditions, α < 1 in the
steady-state initiation mass expression [Eq. (2)]. Indeed, using
numerical simulations, we found that the initiation mass os-
cillates between two values [Fig. 4(c)]. This indicates that the
cell cycle can oscillate between multifork and non-multifork
replication. Mathematically, this oscillatory behavior means
that the fixed points of Fo2 = F ◦ F are stable, although the
fixed point of F is unstable. By fixing one of the fixed points
of Fo2 as ρ1 = 1, we can compute the other fixed point with
ρ1 < 1 (see Appendix C). In extreme cases, ρ1 can be as small
as 0.1. That is, the second round of replication starts only after
10% of the chromosome has been replicated by the replication
forks from the previous initiation. When the replication forks
from two consecutive rounds of initiation are too close to each
other, they cannot be separated into two division cycles. This
should result in two initiation events in one division cycle, and
no initiation in the next division cycle.

Therefore, although initiation triggering is guaranteed, the
performance of the protocell is imperfect in terms of initiation
instability in certain growth conditions. We show how the
initiator-titration model v2 resolves the instability issue in
Sec. II D.

D. The initiator-titration model v2: Replication-dependent
DnaA-ATP → DnaA-ADP conversion stabilizes the cell cycle

In the previous section, we showed that the protocell can
show initiation instability. In understanding why wild-type E.
coli initiation is stable, we have to consider unique features
of DnaA in E. coli, namely its two distinct forms: the active
DnaA-ATP and the inactive DnaA-ADP [23]. Several extrin-
sic elements, categorized into two main groups, interconvert
between these DnaA forms [16,20,21,39–42] [Fig. 5(a)].

The first group catalyzes the conversion of DnaA-ATP
→ DnaA-ADP. This includes the Regulatory Inactivation
of DnaA (RIDA) [20,21] and datA-dependent DnaA-
ATP Hydrolysis (DDAH) [39,40]. RIDA’s functionality
requires active replication forks [43], thus rendering it

013011-6



BACTERIAL REPLICATION INITIATION AS PRECISION … PRX LIFE 1, 013011 (2023)

(c)

(b)

0.0
0 1 2 3

0.1

0.2

0.3

time ( / τ)

[D
n

a
A

-A
T

P
]/

[D
n

a
A

-A
D

P
]

DARS1
duplication

datA
duplication

DARS2
duplication

termination &
RIDA deactivation

initiation &
RIDA activation

C period

ori

ori

ter

DARS1 DnaA-ATP

DnaA-ADP

DARS2

DnaA-ATP

DnaA-ADP

DnaA-ATP

DnaA-ADP

DnaA-ATP

DnaA-ADP
RIDA

datA

datA
DnaA-ATP

DnaA-ADP
DDAH

DnaA boxes

(a)
in

it
ia

ti
o

n
 m

a
ss

 v
i

1 2 3

Δ4 + RIDA

WT

1 2 3

Δ4 + DDAH

Δ4 + DARS1 & DARS2

C / τ
0 1 2 3

0

1

2

3

theory

Δ4
unstable regime

stable initiation unstable (oscillatory) initiation

termination &
RIDA deactivation

unstable (oscillatory) initiation

initiation &
RIDA activation

wt

Δ4

FIG. 5. Initiator-titration model v2 predictions (see Sec. II D for more details). (a) External DnaA-ATP ↔ DnaA-ADP conversion elements
in E. coli. RIDA is the only component that depends on the active replication forks. (b) [DnaA-ATP]/[DnaA-ADP] varies during the cell cycle
predicted by computer simulations in the wild-type cells. By contrast, the �4 mutant that lacks all extrinsic DnaA-ATP ↔ DnaA-ADP
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constant [DnaA] [33,34]. RIDA, the replication-dependent DnaA-ATP → DnaA-ADP mechanism alone can restore stability as long as titration
is present. None of the other extrinsic DnaA-ATP ↔ DnaA-ADP conversion elements can restore the initiation stability.

replication-dependent, while DDAH’s datA, a DnaA binding
chromosomal locus, fosters DnaA-ATP hydrolysis.

By contrast, the second group, comprised of DARS1 and
DARS2 (types of DnaA Reactivating Sequences), facilitates
the ADP → ATP exchange for DnaA-ADP [41,42].

Importantly, DnaA harbors intrinsic ATPase activity that
facilitates its own conversion from DnaA-ATP → DnaA-
ADP [23,28], a feature not depicted in Fig. 5(a). Intriguingly,
�4 cells—cells with a full deletion of all extrinsic DnaA-
ATP ↔ DnaA-ADP interconversion pathways—exhibit a
nearly identical initiation phenotype to that of wild-type
cells [13], solely relying on DnaA’s intrinsic ATPase
activity.

Figure 5(b) presents our numerical simulation results il-
luminating the alterations in the [DnaA-ATP]/[DnaA-ADP]
ratio during the cell cycle in a DNA replication-dependent
manner (see Appendix E for simulation details). Notably, this
ratio should remain steady in �4 cells during cell elongation
in a steady state [13]. Furthermore, reinitiation is prohibited
within a certain time frame postinitiation (approximately 10
min; the “eclipse period”), attributable to the sequestration of
newly synthesized DNA by SeqA [44].

In this section, we integrate each of these features into
our protocell model to formulate our initiator-titration model
v2 and compute the initiation stability phase diagram. Our
findings reveal that the replication-dependent DnaA-ATP →
DnaA-ADP conversion by RIDA largely alleviates initiation

instability, thus reinstating the stability characteristic of wild-
type cells.

1. Analytical expression of the initiation mass
in the initiator-titration model v2 with a constant

DnaA-ATP/DnaA-ADP ratio (�4 cells)

First, we incorporate the two forms of DnaA with the
intrinsic DnaA-ATP → DnaA-ADP activity by DnaA into
the protocell model to construct the �4 cells, a minimal ver-
sion of the initiator-titration model v2 [Fig. 2(c)]. As noted
earlier, both DnaA-ATP and DnaA-ADP can bind the chro-
mosomal DnaA boxes because of their strong binding affinity
(KD ∼ 1 nM [15,26,45]), whereas only DnaA-ATP can bind
the weak DnaA boxes at ori with KD ∼ 102 nM [15,26,46].
With the same Assumptions 1–4 in Sec. II B and this addi-
tional assumption, we can derive an analytical expression for
steady-state initiation mass for �4 E. coli (see Appendix D
for the derivation):

vi = αNB + (1 + [DnaA-ADP]
[DnaA-ATP]

)
nB

[DnaA] − (1 + [DnaA-ADP]
[DnaA-ATP]

)
Keff nB

, (11)

where Keff is the effective dissociation constant of DnaA
at ori, and α is in Eq. (3). Therefore, this equation brings
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together the expression level of DnaA via [DnaA], the ra-
tio [DnaA-ATP]/[DnaA-ADP], and the degree of overlapping
replication (α).

Note that, under physiological conditions, Keff nB �
[DnaA] (Appendix D). If [DnaA-ATP] � [DnaA-ADP], all
DnaA molecules are in their active form DnaA-ATP, and the
�4 E. coli converges to the protocell [i.e., Eq. (11) converging
to Eq. (2)].

2. The �4 cells show initiation instability

We also investigated the initiation stability of the �4
cells using numerical simulations [Fig. 5(c)] (see Appendix E
for simulation details). The initiation stability phase diagram
is analogous to that of the protocells in Fig. 4(c), show-
ing an island of instability regime. This occurs during the
transition into multifork replication, wherein initiation mass
alternates between two values. Importantly, changing the
[DnaA-ATP]/[DnaA-ADP] ratio does not significantly impact
the stability [Fig. 8(b)].

3. Replication-dependent DnaA-ATP → DnaA-ADP
by RIDA alone can restore initiation stability

Next, we implemented the extrinsic DnaA-ATP ↔ DnaA-
ADP conversion elements in the �4 cells. In contrast to
the constant [DnaA-ATP]/[DnaA-ADP] in �4, the extrinsic
conversion elements induce temporal modulations in [DnaA-
ATP]/[DnaA-ADP] during cell elongation [47]. This ratio
reaches its maximum at initiation and its minimum at termina-
tion due to the activation/deactivation of the RIDA mechanism
[Fig. 5(b)] [48].

We also investigated the initiation stability across growth
conditions [Fig. 5(c) and Fig. 9 in Appendix E]. Among
all the known extrinsic conversion elements we tested, the
replication-dependent DnaA-ATP → DnaA-ADP by RIDA
alone was sufficient to restore initiation stability [Fig. 5(c)
and Fig. 9 in Appendix E]. Other elements only had mild
effects on the stability. RIDA is replication-dependent, thus it
immediately decreases the level of DnaA-ATP upon initiation.
This reduction in the initiation-competent DnaA-ATP level is
likely the reason for suppressing premature reinitiation.

Although we found RIDA to be the initiation stabilizer, it
still significantly delays initiation due to the reduced level of
DnaA-ATP. Our simulations show that the delayed initiation
can be alleviated by the other DnaA-ADP → DnaA-ATP
conversion elements without causing instability [Fig. 5(c)
and Fig. 9 in Appendix D]. Interestingly, the initiation mass
becomes nearly invariant across a wide range of growth
conditions in the presence of all four extrinsic conversion
elements [Fig. 5(c)], as long as the concentration [DnaA]
is growth-condition-independent. We previously used this
growth-condition-independent [DnaA] hypothesis to explain
the invariance of initiation mass [37], and the data so far
support the hypothesis [33,34].

Based on these results, we conclude that the replication-
dependent DnaA-ATP → DnaA-ADP by RIDA can sig-
nificantly enhance the initiation stability, and the other
DnaA-ADP → DnaA-ATP conversion elements keep the
initiation mass nearly constant against physiological pertur-
bations.

4. The eclipse period or origin sequestration
does not improve stability

We also tested the effect of the eclipse period [44] in
our simulations (see Fig. 10 in Appendix E). During the
predefined eclipse period, we did not allow the binding of
the initiator to ori. Surprisingly, the eclipse period did not
improve stability significantly in the multifork replication
regime. However, the amplitude of the initiation mass oscil-
lation decreased slightly (Fig. 10 in Appendix E). Therefore,
we predict the effect of SeqA on steady-state stabilization to
be modest.

5. Comparison with previous modeling by Berger
and ten Wolde and recent experimental work

In their recent study, Berger and ten Wolde [11] conducted
a thorough investigation into E. coli DNA replication. They
utilized extensive numerical simulations that factored in the
known dynamics between DnaA-ATP and DnaA-ADP con-
version, as well as the aspects of DnaA titration. To our
knowledge, Berger and ten Wolde were the first to suggest
possible instability during multifork replication.

Under relatively fast growth conditions (with the doubling
time 35 min and the C period 40 min), their observations noted
oscillations in the initiation mass between two distinct values,
which occurred in the absence of DnaA-ATP ↔ DnaA-ADP
conversion. Our instability phase diagram [Fig. 4(c)] explains
this observation. For example, in the case of �4 mutant cells,
the initiation mass should oscillate between two values when
1 < C/τ < 1.8 [Fig. 5(c)]. However, the complexity of these
instability regimes needs to be noted. Our phase diagrams
show that multifork replication does not always lead to in-
stability [Fig. 5(c) and Fig. 8 in Appendix B].

Berger and ten Wolde propose the DnaA-ATP ↔ DnaA-
ADP conversion as the key mechanisms in initiation control,
as DnaA-ATP ↔ DnaA-ADP conversion could avoid ini-
tiation instability in the absence of titration boxes in their
simulations. By contrast, we favor the idea that titration plays
a more fundamental role in initiation control, because it is
the protein counting device in the protocell and also the �4
cells, where DnaA-ATP ↔ DnaA-ADP conversion is absent.
Furthermore, titration boxes, which are prevalent in bacteria,
ensure synchronous initiation (as explained in Sec. II E), and
they explain why bacteria produce significantly more DnaA
molecules than necessary for ori. Although titration is funda-
mental in our model, its performance is not perfect in terms
of initiation instability, and we demonstrated that RIDA is the
key conversion element required for initiation stability when
titration is in place.

While the details of molecular effects on initiation are
beyond the scope of this theory work, we suggest recent work
by Elf and colleagues [49] and by us on various deletion
mutants, including �4 [13], for single-cell level experimental
investigation as confirmations of some of our predictions.

E. Asynchrony and cell-to-cell variability of initiation
in the initiator-titration framework

Initiation stability raises a related issue of stochasticity in
initiation. In the systems biology literature, “noise” is mainly
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discussed in the context of stochasticity in gene expression,
decomposed into “intrinsic” versus “extrinsic” components
[50–53]. In our view, there are parallel observations in repli-
cation initiation: the initiation asynchrony among ori’s within
the same cell [13,54,55], and the cell-to-cell variability of
the initiation mass [6,13,56], as illustrated in Fig. 6(a). In
this section, we discuss their origins and statistical properties
within our initiator-titration model v2 framework.

1. Definition of the intrinsic and extrinsic noise

During overlapping cell cycles, the cell contains multiple
replication origins at initiation. These origins share the same
biochemical environment within one cell, so their initiation
events are correlated; the initiation timing in different cells
can vary because of stochasticity in biological processes, such
as gene expression [50,53]. On the other hand, since these
origins in the same cell do not interact with each other, they
can initiate asynchronously due to the innate stochasticity of
initiator accumulation at origins [29,54].

To quantify initiation asynchrony and cell-to-cell variabil-
ity, we consider two overlapping replication cycles. Suppose
the two ori’s initiate at initiation mass v

(1)
i and v

(2)
i , respec-

tively. Similar to stochastic gene expression [50], we can
define the intrinsic noise and the extrinsic noise of the initi-
ation mass by the coefficient of variation as

CV 2
int =

〈(
v

(1)
i − v

(2)
i

)2〉
2
〈
v

(1)
i

〉〈
v

(2)
i

〉 , CV 2
ext =

〈
v

(1)
i v

(2)
i

〉− 〈v(1)
i

〉〈
v

(2)
i

〉
〈
v

(1)
i

〉〈
v

(2)
i

〉 .

(12)
Note that this definition fulfills the relation CV 2

tot = CV 2
int +

CV 2
ext, where CVtot is the coefficient of variation of the single

variable v
(1)
i or v

(2)
i (Appendix F).

We use CVint as a measure of asynchrony. Visually, CVint

describes the width of the off-diagonal axis of the ellipsoid,
while CVext describes the elongation extent of the diagonal
axis compared to the short axis [Fig. 6(a)]. For example,
if CVext = 0, v

(1)
i and v

(2)
i are fully uncorrelated, and the

ellipsoid becomes a circle. In this case, the intrinsic noise
is the sole source of cell-to-cell variability. Generally, while

asynchrony is fully determined by the intrinsic noise, the
cell-to-cell variability is a result of both the intrinsic noise and
the extrinsic noise (see Appendix F for details).

2. A first-passage-time model based on a one-step Poisson process

To study the behavior of the extrinsic noise and the intrinsic
noise, we convert the initiation mass variables, v

(1)
i and v

(2)
i ,

into first-passage-time (FPT) variables [57], T (1) and T (2), re-
spectively. That is, the initiator proteins bind to binding sites at
ori, increasing its occupancy O(t ), and they initiate replication
as soon as ori is fully saturated [O(t ) = nB]. Although the
relation between vi and FPT is nonlinear, to the zeroth-order
approximation, we have

CV 2
int ≈ 〈(T (1) − T (2) )2〉

2〈T (1)〉〈T (2)〉 ,

CV 2
ext ≈ 〈T (1)T (2)〉 − 〈T (1)〉〈T (2)〉

〈T (1)〉〈T (2)〉 . (13)

To obtain the scaling law of the noise of FPT, we assume
the production of initiator proteins as a Poisson process with
a constant production rate β [53]. We further assume that all
cells are characterized by the same set of physiological param-
eters without noise. (By this assumption, we are considering
the lower bound of the extrinsic noise, and we discuss the
contribution of parameter noises in Sec. II E 4.)

Let us first consider a simple scenario of initiation without
initiator-titration. In this scenario, there is no chromosomal
binding site; all nB binding sites are localized at each ori,
and the initiator protein has an equal probability of binding
to either ori. That is, the two ori’s accumulate the initiator
proteins independently. This results in uncorrelated T (1) and
T (2) and hence CVext = 0 based on Eq. (13). The intrinsic
noise then becomes

CVint = σT (1)

〈T (1)〉 , (14)

where 〈T (1)〉 is the mean FPT at ori1 and σT (1) is the standard
deviation.
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In this simplest scenario, the accumulation at ori1 is a
Poisson process with a rate of β followed by a binomial trial
with equal probability, leading to a Gamma distribution of
T (1), with the mean 〈T (1)〉 = 2nB/β and the standard devi-
ation σT (1) = 2

√
nB/β (see Appendix G). Thus, the CVint is

independent of β [57,58],

CVint = 1√
nB

=
√

2

N
, (15)

where N = 2nB is the mean total number of initiator proteins
needed for triggering initiation at both ori’s (Appendix G).

Therefore, in this one-step Poisson process, the intrinsic
noise of FPT scales with the square root of the required total
number of initiators N . If the number of binding sites at ori is
nB ≈ 10, we have CVint ≈ 30% [Fig. 6(b)]. If the cell localizes
all NB ≈ 300 DnaA boxes at each ori to increase the threshold,
the noise will decrease to CVint = 1/

√
300 ≈ 6% [Fig. 6(c)].

The reason for the 1/
√

N intrinsic noise scaling is that
the stochasticity in gene expression fully propagates to the
initiation timing, and T (1) and T (2) are uncorrelated. As we
explain below, E. coli suppresses the intrinsic noise using an
ingenious two-step Poisson process by compressing T (1) and
T (2) into a narrow range during the cell cycle using titration.
In other words, titration of the initiator proteins redirects most
gene expression noise to the extrinsic noise, effectively syn-
chronizing T (1) and T (2).

3. A two-step Poisson process in the initiator-titration framework
predicts the 1/N scaling of the intrinsic noise,

leading to initiation synchrony

Due to the significant differences in the binding affinity
between the chromosomal binding sites (KD ≈ 1 nM) and ori
(KD ≈ 100 nM), E. coli titrates DnaA sequentially in two
steps: (i) saturation of the ∼NB chromosomal DnaA boxes
by DnaA-ATP and DnaA-ADP, followed by (ii) accumulation
of DnaA-ATP at ori with nB � NB binding sites. Thus, we
modify the one-step Poisson process by adding the titration
step, namely a two-step Poisson process [Fig. 6(c)]. The
first step delays the accumulation processes at ori1 and ori2
and they synchronize their initiations, and the intrinsic noise
(asynchrony) is a result of stochasticity in the second step.

To analyze the two-step Poisson process, we rewrite the
two FPT variables T (1) and T (2) as T (1) = T (0) + �T (1),
T (2) = T (0) + �T (2). Here, T (0) is the time required to satu-
rate the chromosomal binding sites, whereas �T (1) and �T (2)

denote the additional respective times for the two ori’s to ac-
cumulate the initiator proteins to trigger initiation. We assume
that T (0), �T (1), and �T (2) are three independent stochastic
variables. Specifically, T (0) follows the original Poisson pro-
cess with an accumulation rate of β, while �T (1) and �T (2)

each independently follows the same Poisson process with an
accumulation rate of β/2 (initiator proteins produced at the
rate β bind the two ori’s), as derived in Appendix G. By this
decomposition, Eq. (13) can be rewritten as

CVint = σ�T (1)

〈T (1)〉 , CVext = σT (0)

〈T (1)〉 . (16)

According to the corresponding Gamma distributions, the
mean FPT reads 〈T (1)〉 = N/β, where N is the mean total

number of initiator proteins needed for triggering initiation
at both ori’s; the standard deviation of the first-step FPT
reads σT (0) = √

N − 2nB/β, and the standard deviation of the
second-step FPT reads σ�T (1) = 2

√
nB/β (see Appendix G).

Therefore, based on Eq. (16), we obtain the CV’s scaling law
as

CVint = 2
√

nB

N
, CVext =

√
N − 2nB

N
≈ 1√

N
. (17)

This result indicates that CVint decays in ∼1/N , much faster
than the total noise CVtot ∼ 1/

√
N , and CVext becomes the

dominant noise component when N is large. For example,
if nB = 10, NB ≈ 300, and N ≈ 2(NB + nB) ≈ 600 (two
overlapping cell cycles ), the noise of the two-step processes
decreases dramatically from ∼30% to only 1%, while the
extrinsic noise is around 4%.

To test the predictions of the two-step Poisson process,
we conducted a simulation by considering a Poissonian
protein production followed by a partitioning among three
destinations: chromosomal binding sites, ori1, and ori2 (see
Appendix G for model settings). As shown in Fig. 6(d), the
scaling behavior of the intrinsic noise and the extrinsic noise
is consistent with Eq. (17).

In summary, the chromosomal titration boxes effectively
synchronize the accumulation of DnaA-ATP at multiple ori’s
by titration, compressing their initiation timing into a nar-
row temporal window during the cell cycle [54,59]. This
is consistent with long-standing experimental observations
of synchronous initiation of minichromosomes [60,61], and
more recent observations of ectopic chromosomal origins
[62]. This improvement in precision by two sequential binding
processes is reminiscent of the ratchetlike kinetic proofread-
ing model, and our results are generalizable.

4. Other noise sources not quantified in this work

In the previous section, we have mainly discussed asyn-
chrony and cell-to-cell variability in initiation resulting from
stochastic protein production, which predicts CVint ≈ 1% and
CVext ≈ 4% in E. coli. However, experimentally measured
CVint is about 3–4% [13] and CVtot is about 10% [6,13,56],
both larger than the prediction. For mutants lacking DnaA-
ATP ↔ DnaA-ADP conversion elements, the cell-to-cell vari-
ability can increase up to 20% [13]. The likely sources of ad-
ditional asynchrony and cell-to-cell variability are as follows.

For the intrinsic noise, the initiator accumulation at the two
ori’s can be negatively correlated because of the new round
of replication. Once the first initiation event is triggered at
one ori, the newly produced DnaA boxes will titrate DnaA,
and the newly activated RIDA decreases the DnaA-ATP pool
[Fig. 5(b)], further delaying the initiation of the second ori.
This anticorrelation between two asynchronous initiations
should increase the intrinsic noise CVint.

For the extrinsic noise, we suggest two extra main
sources other than the 1/

√
N for titration by Poisson process

[Eq. (17)]: (i) cell-to-cell variability in the initiator con-
centration [53,63,64], DnaA-ATP/ADP ratio, doubling time
[9,65], and C period [37,66], and (ii) the growth-condition
(C/τ )-dependent initiation instability discussed in Sec. II D
[Figs. 4(c) and 5(c)]. In principle, even without noises in C
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period and doubling time, instability can cause a bimodal
distribution of the initiation mass that significantly increases
the extrinsic noise [11]. The noise caused by initiation in-
stability should be significant in mutants without the RIDA
mechanism, such as the �4 cells [13].

For the quantification of these noise contributions, we leave
a more detailed analysis to future work.

III. CONCLUSION AND PERSPECTIVE

In this work, we have provided a comprehensive quan-
titative explanation of how bacteria control the cell cycle
under balanced growth, particularly focusing on replication
initiation as a tractable problem. Our analysis builds upon the
original initiator-titration model proposed by Hansen and col-
leagues [19], which offered valuable insights into the two-step
initiation process.

Over the past three decades, significant progress has
been made in understanding the conserved master repli-
cation initiator protein, DnaA. One perplexing aspect has
been the coexistence of two forms of DnaA (DnaA-ATP
and DnaA-ADP), with only DnaA-ATP being initiation-
competent. Expanding upon the original model by Hansen
and colleagues, we developed the initiator-titration model v2,
which incorporates the two-state DnaA model and accounts
for DnaA box distribution. We have derived an analytical
expression for the initiation mass in terms of three mechanis-
tic parameters for DnaA: its concentration, the average ratio
[DnaA-ATP]/[DnaA-ADP], and the number of DnaA titration
boxes [Eq. (11)]. However, through our dynamical stability
analysis, we have also revealed a previously unexplored in-
stability in initiation within this model [Fig. 4(c)], thereby
elucidating recent observations from numerical simulations
by Berger and ten Wolde [11]. We have demonstrated that the
replication-dependent DnaA-ATP → DnaA-ADP conversion
(by RIDA) alone restores initiation stability [67]. Addition-
ally, when considering all extrinsic DnaA-ATP ↔ DnaA-ADP
elements, the initiation mass remains remarkably invariant
across a wide range of growth conditions, in agreement with
experimental observations [34,37,68].

Moreover, we have discovered that the titration process
of the chromosomal DnaA boxes suppresses the intrinsic
noise or asynchrony in initiation by CV ∼ 1/N scaling.
This finding represents a significant improvement over the
naively expected standard coefficient of variation scaling
CV ∼ 1/

√
N for a Poisson process. It underscores the ex-

traordinary consequences of the two-step initiation processes
in the initiator-titration models, highlighting the remarkable
precision achieved by bacteria.

In conclusion, we propose that titration may have been a
pivotal evolutionary milestone, acting as a protein-counting
mechanism that co-evolved with balanced biosynthesis. This
system would not only enable bacteria to homeostatically
control their size via the adder principle, but also lead to
synchronous initiation by effectively separating titration and
initiation in two steps. Our results thus illuminate how bacteria
employ a seemingly straightforward yet efficient titration-
based strategy to address fundamental biological challenges.
This differentiates them from eukaryotes, which use pro-
gramed gene expression and protein degradation to sense and

control protein concentrations. While our findings focus on a
specific case of initiation control, they also trigger intriguing
questions about the potential pervasiveness of titration-based
precision control in diverse biological systems. Uncovering
additional examples of such mechanisms will significantly
advance our overall understanding of precision control and
pave the way for practical applications, including the design
of synthetic cells.
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APPENDIX A: DERIVATION OF THE STEADY-STATE
INITIATION MASS FORMULA IN

THE PROTOCELL MODEL

We consider one generation from cell birth to cell division
in the steady state. First, due to exponential growth and bal-
anced biosynthesis of DnaA, we have

V (t ) = V (0)eλt , (A1)

I (t ) = I (0)eλt , (A2)

where V (t ) is the cell volume, I (t ) is the number of initiators,
λ = ln 2

τ
is the growth rate, and 0 � t � τ .

We denote the number of chromosomal binding sites as
B̃(t ). The behavior of B̃(t ) is complicated and depends on the
ratio of C/τ . Suppose nτ � C � (n + 1)τ , where n ≡ 
C

τ
�.

The shape of B̃(t ) also depends on the relative timing of
initiation and termination. For example, Fig. 7(a) shows when
n = 0 and tini > tter, and Fig. 7(b) shows when n = 1 and
tini < tter. We will discuss the two cases tini � tter and tini > tter

separately.

1. tini � tter

As illustrated in Fig. 7(c), in this case the termination time
is determined by τ , C, and tini as

tter = tini + C − nτ. (A3)

The condition for this situation is tter � τ , which gives

tini � (n + 1)τ − C. (A4)

As shown in Fig. 7(c), the curve B̃(t ) consists of three seg-
ments with different slopes. By mathematical induction, we
can obtain the expression of each slope,

k1 = (2n − 1)k, 0 � t < tini, (A5a)

k2 = (2n+1 − 1)k, tini � t < tter, (A5b)

k3 = (2n+1 − 2)k, tter � t � τ, (A5c)
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FIG. 7. The time trajectory of the number of chromosomal initiator binding sites (titration boxes) B̃(t ) in different scenarios in the steady
state. (a) n = 0 and tini > tter . (b) n = 1 and tini < tter . (c) The general case when tini � tter . (d) The general case when tini > tter .

where k is the replication rate of the DnaA boxes by a pair of
replication forks, i.e., following Assumptions 3 and 4,

k ≡ NB

C
. (A6)

The initial value B̃(0) is B̃(τ )/2, hence we have

B̃(0) = k1tini + k2(tter − tini ) + k3(τ − tter ).

Using Eqs. (A3) and (A5), we obtain

B̃(0) = NB

[
1 + (2n+1 − n − 2)

τ

C
− (2n − 1)

tini

C

]
. (A7)

Once we obtain the expressions of B̃(0) and the slopes k1, k2,
and k3, B̃(t ) is fully determined. Of our particular interest, we
have

B̃(tini ) = NB

[
1 + (2n+1 − n − 2)

τ

C

]
, (A8)

which is independent of tini.

2. tini > tter

As illustrated in Fig. 7(d), in this case the termination time
can be written as

tter = tini + C − (n + 1)τ. (A9)

The condition for this situation is tter � 0, which gives

tini > (n + 1)τ − C. (A10)

Similarly, we obtain

k1 = (2n+1 − 1)k, 0 � t < tter, (A11a)

k2 = (2n+1 − 2)k, tter � t < tini, (A11b)

k3 = (2n+2 − 2)k, tini � t � τ, (A11c)

and the initial value B̃(0) reads

B̃(0) = k1tter + k2(tini − tter ) + k3(τ − tini )

= NB

[
1 + (2n+2 − n − 3)

τ

C
− (2n+1 − 1)

tini

C

]
.

(A12)

Likewise, Eqs. (A11) and (A12) allow us to calculate B̃(t ) at
any time. In particular, at initiation,

B̃(tini ) = 2NB

[
1 + (2n+1 − n − 2)

τ

C

]
, (A13)

which is again independent of tini.

3. Initiation mass formula

Now B̃(t ) can be fully determined by the given parame-
ters. Let us go back to Eqs. (A1) and (A2). To calculate the
initiation mass, we only need to calculate I (tini ). Based on
our initiation criteria, I (tini ) = B(tini ) = B̃(tini ) + nB · #ori, we
have

I (tini ) =
{

B̃(tini ) + 2nnB, tini � (n + 1)τ − C,

B̃(tini ) + 2n+1nB, tini > (n + 1)τ − C.
(A14)
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The cell volume at initiation reads

V (tini ) = I (tini )

cI
, (A15)

and the initiation mass, by definition, reads

vi ≡ V (tini )

#ori
=
{

V (tini )
2n , tini � (n + 1)τ − C,

V (tini )
2n+1 , tini > (n + 1)τ − C.

(A16)

By plugging Eqs. (A15), (A14), (A8), and (A13) into this
formula, we obtain the full expression of the initiation mass,

vi = 1

cI

{[
1

2n
+ (2 − n + 2

2n
)
τ

C

]
NB + nB

}
, n =

⌊
C

τ

⌋
.

(A17)

This is exactly Eq. (2) in Sec. II B in the main text. As we can
see, the initiation mass is independent of the initiation time
tini.

APPENDIX B: DERIVATION OF THE STABILITY
REGIMES FOR THE INITIATION MAPPING F

We start from the initiation mapping F : Rd−1 → Rd ,

ρ �→ ρ+ derived in Sec. II C in the main text,

ρ+
i =
{
ρi−1 + t+

C if ρi−1 + t+
C < 1,

1 otherwise,
(B1)

where the initiation time t+ is determined by

NB

(
2−d +

d∑
i=1

ρ+
i 2−i

)
+ nB

= eλt+

2

[
NB

(
2−(d−1) +

d−1∑
i=1

ρi2
−i

)
+ nB

]
. (B2)

1. Steady state

First, note that for any finite d , the image space of the map
F is different from its preimage space, so there is no fixed
point of F . However, we can consider the d → ∞ limit. The
reason is as follows.

Consider the left-hand side of Eq. (B2). Due to the defini-
tion of ρi, if d → ∞, there exists n � 0, s.t., ρn+1 = 1, and
we have

NB

(
2−d +

d∑
i=1

ρi2
−i

)
= NB

⎛
⎝2−d +

n∑
i=1

ρi2
−i +

d∑
i=n+1

2−i

⎞
⎠

= NB

(
2−d +

n∑
i=1

ρi2
−i + 2−n − 2−d

)

= NB

(
2−n +

n∑
i=1

ρi2
−i

)
. (B3)

This indicates that if d is large enough, we can seek the “fixed-
point”-like solution that

ρ+
i = ρi if ρi < 1. (B4)

Plugging this solution into Eq. (B2) and taking Eq. (B3) into
consideration, we obtain

eλt+
ss = 2 or t+

ss = τ. (B5)

This is exactly the steady-state periodic assumption in Ap-
pendix A. Thus, the steady-state solution with a period of τ is
mathematically equivalent to the “fixed-point” solution when
d → ∞. According to Eqs. (B1) and (B4), we obtain

ρss
i =
{

i τ
C if i � n,

1 otherwise,
(B6)

where

n ≡
⌊

C

τ

⌋
(B7)

is the number of overlapping replication cycles in the steady
state. In the steady state, we can also calculate the number of
initiators at initiation I (tini ),

I (tini ) = B(tini )

= NB

(
2d +

d∑
i=1

ρss
i 2d−i

)
+ 2d nB

= 2d

[
NB

(
2−d +

d∑
i=1

ρss
i 2−i

)
+ nB

]

= 2d

[
NB

(
2−n +

n∑
i=1

ρss
i 2−i

)
+ nB

]

= 2d

[
NB

(
2−n + τ

C

n∑
i=1

i2−i

)
+ nB

]

= 2d

{
NB

[
2−n +

(
2 − n + 2

2n

)
τ

C

]
+ nB

}
. (B8)

The steady-state initiation mass vss
i is then given by

vss
i = I (tini )

2d cI
,

which is the same as Eq. (A17).

2. The Jacobian matrix at the steady state

To analyze the stability of the steady state above, we need
to compute the Jacobian matrix at the steady state,

J = ∂ρ+
i

∂ρ j

∣∣∣∣
ss

. (B9)

Stability requires that the largest magnitude of the eigenvalues
of the Jacobian matrix is smaller than 1.

Based on Eqs. (B1) and (B6), at the steady state, J is
reduced to an n-dimensional matrix since other derivatives are
zeros. Thus, we have

∂ρ+
i

∂ρ j

∣∣∣∣
ss

= δi−1, j + 1

C

∂t+

∂ρ j

∣∣∣∣
ss

, i, j = 1, 2, . . . n, (B10)

where δi, j is the Kronecker delta.
The partial derivatives of t+ can be computed by taking

the partial derivatives at both sides of Eq. (B2) based on the
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implicit function theorem, and substituting Eq. (B1) and the
steady-state values. The result reads

1

C

∂t+

∂ρn

∣∣∣∣
ss

=
[

2n(1 − 2 ln 2) + (n + 2) ln 2 − 1

− ln 2

(
1 + 2n nB

NB

)
C

τ

]−1

≡ a, (B11a)

1

C

∂t+

∂ρi

∣∣∣∣
ss

= 2n−i−1a, i = 1, 2, . . . , n − 1. (B11b)

Hence, the Jacobian matrix has the following form:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2n−2a 2n−3a · · · 2a a a
1 + 2n−2a 2n−3a · · · 2a a a

2n−2a 1 + 2n−3a · · · 2a a a
...

...
. . .

...
...

...

2n−2a 2n−3a · · · 1 + 2a a a
2n−2a 2n−3a · · · 2a 1 + a a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B12)

It may look difficult to write down a general characteristic
equation for this matrix. In the following sections, we will dis-
cuss the situations when n � 3, which already covers almost
all the experimental growth conditions in E. coli.

3. Stability regimes

a. n = 0 (C < τ), slow and intermediate growth conditions

In this simplest case, ρ+
i = 1 near the steady state, which

means the map F is a constant map, i.e., J = 0. Thus, the
steady state is always stable.

b. n = 1 (τ � C < 2τ), fast growth conditions

In this case,

J = a =
[

1 − ln 2 − ln 2

(
1 + 2

nB

NB

)
C

τ

]−1

.

The stability condition is |a| < 1, which gives out
nB

NB
>

(
1

ln 2
− 1

2

)
τ

C
− 1

2
. (B13)

Note that at τ → C, there is a critical point for nB,

nB = nB,1 =
(

1

ln 2
− 1

)
NB ≈ 0.44NB.

If nB > nB,1, the steady state is always stable in this regime.

c. n = 2 (2τ � C < 3τ), very fast growth conditions

In this case,

J =
(

a a
1 + a a

)
,

where

a =
[

3 − 4 ln 2 − ln 2

(
1 + 4

nB

NB

)
C

τ

]−1

.

Note that since nB/NB � 0 and 2 � C/τ < 3, we have a ∈
(−1, 0). The characteristic equation for J reads

λ2 − 2aλ − a = 0,

which has two imaginary roots,

λ± = a ± i
√

−a2 − a.

Stability requires

|λ±| = −a < 1.

Thus, we obtain the condition
nB

NB
>

(
1

ln 2
− 1

)
τ

C
− 1

4
. (B14)

However, since τ
C ∈ ( 1

3 , 1
2 ], the right-hand side of the inequal-

ity is always negative, which means the steady state is always
stable for any positive nB in this regime.

d. n = 3 (3τ � C < 4τ), extremely fast growth conditions

In this case,

J =

⎛
⎜⎝ 2a a a

1 + 2a a a
2a 1 + a a

⎞
⎟⎠,

where

a =
[

7 − 11 ln 2 − ln 2

(
1 + 8

nB

NB

)
C

τ

]−1

.

According to the range of C and nB, we have a ∈ (−3, 0). The
characteristic equation for J reads

λ3 − 4aλ2 − 2aλ − a = 0.

By computing the discriminant of this cubic equation, we
know that it has one real root λ = λ1 and two imaginary
roots λ = ξ ± iθ . The critical situation has three possibili-
ties: λ1 = 1, λ1 = −1, and ξ 2 + θ2 = 1. We find that only
λ1 = −1 satisfies the range of a. Thus, the stability boundary
requires a = −1/3. Further perturbation analysis gives out the
inequality of stability condition,

a > − 1
3 ,

leading to

nB

NB
>

(
5

4 ln 2
− 11

8

)
τ

C
− 1

8
. (B15)

Note that at τ → C/3, there is another critical point for nB,

nB = nB,2 =
(

5

ln 2
− 7

)
NB

12
≈ 0.018NB.

If nB > nB,2, the steady state is always stable in this regime
[see Fig. 8(a)].

APPENDIX C: A SIMPLE DERIVATION FOR THE FIXED
POINTS OF MAPPING F o2 IN n = 1

In principle, we can analyze the fixed points of Fo2 ≡
F ◦ F based on the expression of F [Eqs. (B1) and (B2)].
However, since we know from simulation [Fig. 4(c)] that one
of the fixed points of Fo2 corresponds to

v
(1)
i = 1

cI
(α(1)NB + nB), α(1) = 1, (C1)

we can derive the second fixed point α(2) based on it.

013011-14



BACTERIAL REPLICATION INITIATION AS PRECISION … PRX LIFE 1, 013011 (2023)

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0.05

0.1

0.15

0.2

0.25

0.3

n B
 / 

N
B

C / τ
max(vi) - min(vi)

max(vi) + min(vi)

-1

-0.5

0

0.5

1

0 1 2 3

0.1

0.2

0.3

C / τ

lo
g

1
0
 γ

max(vi) - min(vi)

max(vi) + min(vi)

(a) (b)
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(b) In the initiator-titration model v2 with a constant γ , we fixed nB/NB = 1/30, and we simulate the unstable regimes on the phase diagram
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τ
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Consider the initiation event with α(1) = 1 at t = 0. The
initiator number at initiation reads

I (0) = 2(NB + nB). (C2)

After initiation, I (t ) increases exponentially, whereas B(t )
first jumps by 2nB and then increases linearly with a slope
of 2NB/C for a duration time of C, as discussed in Sec. II B
in the main text. Suppose the next initiation time is at t = t+.
According to the initiation criterion I (t+) = B(t+), we have

2(NB + nB)2
t+
τ = 2(NB + nB) + 2nB + 2NB

C
t+, (C3)

which provides a transcendental equation to determine t+,

2
t+
τ = 2 + NB

NB + nB

(
t+

C
− 1

)
. (C4)

By drawing the curves for the left-hand side and the right-hand
side, it is easy to see that t+ < τ , and t+ exists only when
C > τ , which is consistent with the instability condition.
Thus, based on Eq. (C3), the initiation mass at the second
initiation event reads

v
(2)
i = I (t+)

4cI
=
[

NB

2

(
1 + t+

C

)
+ nB

]/
cI

= 1

cI
(α(2)NB + nB). (C5)

Hence, the second fixed point reads

α(2) = 1

2

(
1 + t+

C

)
, (C6)

where t+ is given by Eq. (C4). Because of t+ < τ , this value
is smaller than the steady-state α = (1 + τ/C)/2, given by
Eq. (3) with n = 1. This is consistent with our simulation
[Fig. 4(c)]. Thus, the eventual picture is that in the unstable
regime, the initiation mass oscillates around the steady-state
value Eq. (3) in two values v

(1)
i and v

(2)
i given by Eqs. (C1)

and (C5).

APPENDIX D: DERIVATION OF THE STEADY-STATE
INITIATION MASS FORMULA IN THE

INITIATOR-TITRATION MODEL V2 WITH A
STATIC DnaA-ATP/DnaA-ADP RATIO

In our initiator-titration model v2, we first considered a
constant DnaA-ATP/DnaA-ADP ratio, named γ hereafter,
which is likely the case of the �4 mutant [13]. In �4 mutant,
there is only DnaA de novo synthesis and ATP hydrolysis
by intrinsic ATPase activity of DnaA [23]. We denote the
intrinsic DnaA-ATP hydrolysis rate as ν. We further assume
that this hydrolysis rate is the same for free DnaA-ATP or
bound DnaA-ATP on chromosomal binding sites. Addition-
ally, since the free ATP/ADP ratio is high in the cytoplasm,
we assume that newly expressed DnaA will immediately form
DnaA-ATP. Denoting the total number of DnaA-ATP and
DnaA-ADP as IT and ID, respectively, we have

dIT

dt
= λ(IT + ID) − νIT, (D1a)

dID

dt
= νIT. (D1b)

For DnaA-ATP and DnaA-ADP concentrations, [IT] = IT/V
and [ID] = ID/V , we have

d[IT]

dt
= λ[ID] − ν[IT], (D2a)

d[ID]

dt
= −λ[ID] + ν[IT], (D2b)

and the steady-state ratio is given by

[IT]

[ID]
≡ γ = λ

ν
. (D3)

The timescale for the intrinsic DnaA-ATP hydrolysis is about
15 min in wild-type E. coli [13]. If the doubling time ranges
from 15 min to 2.5 h, then γ ranges from 0.1 to 1.

Now we consider that there are bound DnaA on the chro-
mosome and free DnaA in the cytoplasm. We assume that the
two forms of DnaA have the same strong binding affinity with
chromosomal binding sites, but only DnaA-ATP can bind to
DnaA boxes at ori binding sites with a relatively weak binding
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affinity. We denote the number of DnaA-ATP and DnaA-ADP
bound to the chromosomal binding sites as IT

b and ID
b , re-

spectively, the number of free DnaA-ATP and DnaA-ADP in
the cytoplasm as IT

f and ID
f , respectively, and the number of

DnaA-ATP at ori as IT
o . Based on Eq. (D3), we have

IT
b + IT

f + IT
o

ID
b + ID

f

= γ . (D4)

The DnaA binding and unbinding processes are fast compared
to the doubling time, so we can assume binding reactions are
in rapid equilibrium, which gives

IT
f

(
Btot − IT

b − ID
b

) = IT
b KbV, (D5)

ID
f

(
Btot − IT

b − ID
b

) = ID
b KbV, (D6)

IT
f

(
Otot − IT

o

) = IT
o KoV, (D7)

where Kb and Ko are the dissociation constant for chromoso-
mal binding sites and for ori binding sites, respectively; Btot is
the total number of chromosomal binding sites, and Otot is the
total ori binding sites that must be larger than nB at each ori.
Moreover, we have the equation of balanced biosynthesis for
total DnaA,

cIV = IT
b + IT

f + IT
o + ID

b + ID
f . (D8)

To determine the initiation mass vi, suppose there are 2d

ori’s at initiation, then V = 2dvi, IT
o = 2d nB, and Otot − IT

o =
2d�B, where �B is the number of remaining binding sites at
each ori at initiation. As discussed in Appendixes A and B,
Btot at initiation is fully determined by the replication fork
progress that is a function of growth rates: Btot = 2dαNB,
where α was defined in Eq. (3) in the main text.

In principle, by substituting these parameters into
Eqs. (D4)–(D8), we can solve the unknown variables IT

f , ID
f ,

IT
b , ID

b , and vi. However, it is hard to obtain a simple expression
by solving Eqs. (D4)–(D8) directly because we need to solve
a polynomial equation. To simplify the solution, notice that
Btot should be almost saturated at initiation because of strong
binding affinity, so approximately

IT
b + ID

b ≈ Btot. (D9)

On the other hand, since 0.1 � γ � 1, IT
b ∼ γ /(1 + γ )Btot >

IT
o , so we can fairly assume IT

b + IT
f � IT

o . By Eqs. (D5) and
(D6), Eq. (D4) becomes

IT
b

ID
b

≈ IT
f + IT

o

ID
f

= γ . (D10)

These approximations make it easy to solve the original
Eqs. (D4)–(D8), and finally we obtain

vi =
αNB + (1 + 1

γ

)
nB

cI − (1 + 1
γ

)
Keff nB

, (D11)

where Keff = Ko/�B. This is exactly Eq. (9) in the main text.
The dissociation constant Ko at ori should be much larger

than Kb most of the time. In our simulation, we set cI =
400 μm−3, nB = 1, Kb = 1 μm−3, and Ko > 10 μm−3 [26].
These values result in a very large vi. This is because we
do not assume cooperativity of DnaA binding to ori, so that

the binding process at ori will be slowed down significantly
when the occupancy is close to the threshold nB. To resolve
this effect, we consider that Ko can decrease with IT

o because
of the stabilized filamentous structure of DnaA proteins at
ori, which has been found in E. coli [16]. In this case, the
rapid-equilibrium assumption may not hold, but we assume
that it is not too far away. Hence, we treat Keff as a fitting
parameter. In our simulation, we assumed a linear decrease of
Ko from 50 to 1 μm−3 when the occupancy rises from 0 to the
threshold. We fitted the numerical results with the initiation
expression Eq. (D11), and we found that Keff = 2μm−3 is
almost a perfect fit for the stable regimes [Fig. 5(c) in the main
text].

APPENDIX E: THE NUMERICAL MODEL SETUP
AND SUPPLEMENTARY RESULTS

In this Appendix, we include the effects of RIDA, DDAH,
DARS1, and DARS2. First, it is reported that RIDA accel-
erates the conversion of DnaA-ATP to DnaA-ADP by the
Hda protein that binds to the DNA-loaded β-clamp at the
replisome [20,21,43]. We assume that Hda proteins work at
the saturation level, so the RIDA activity is proportional to the
number of replication forks, Nfork. Second, DDAH promotes
the conversion of DnaA-ATP to DnaA-ADP by the locus datA
on the chromosome [39,40]. Thus, we assume DDAH activity
to be proportional to the copy number of datA loci, NdatA.
Third, DARS1 and DARS2 are the two loci on the chromo-
some that promote the reactivation of DnaA-ADP [41,42],
hence we assume that their activities are proportional to the
copy number of DARS1 and DARS2 loci, NDARS1 and NDARS2,
respectively. We further assume that these reactions follow the
Michaelis-Menten form. Based on these assumptions, we have

dIT

dt
= λ(IT + ID) − νIT − (kRIDANfork + kDDAHNdatA)

× [IT]

[IT] + KT
+ (kDARS1NDARS1 + kDARS2NDARS2)

× [ID]

[ID] + KD
, (E1a)

dID

dt
= νIT + (kRIDANfork + kDDAHNdatA)

[IT]

[IT] + KT

− (kDARS1NDARS1 + kDARS2NDARS2)
[ID]

[ID] + KD
,

(E1b)

where kRIDA, kDDAH, kDARS1, and kDARS2 are the reaction
rate constants corresponding to RIDA, DDAH, DARS1, and
DARS2, respectively; KT and KD are the Michaelis-Menten
constants for DnaA-ATP to DnaA-ADP conversion and the
other way around, respectively. We have assumed that the
Michaelis-Menten constant is the same for RIDA and DDAH,
and for DARS1 and DARS2, for simplicity. When we study
the absence of some of the mechanisms, we set the corre-
sponding reaction rate constants to be zero.

We are particularly interested in the dynamics of γ =
IT/ID. Based on Eqs. (E1), we can obtain the ODE
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FIG. 9. The initiation mass behavior in different combinations of the DnaA-ATP/DnaA-ADP conversion elements, i.e., hda (RIDA), datA
(DDAH), DARS1, and DARS2. The situations with hda and without hda are plotted together in each plot to show the contrast.

for γ :

dγ

dt
= (1 + γ )

[
λ − νγ − kRIDANfork + kDDAHNdatA

cIV

× γ
γ

1+γ
+ K∗

T

+ kDARS1NDARS1 + kDARS2NDARS2

cIV

× 1
1

1+γ
+ K∗

D

]
, (E2)

where K∗
T = KT/cI and K∗

D = KD/cI.
Now we consider the bound and unbound forms of DnaA:

DnaA bound to chromosomal binding sites Ib = IT
b + ID

b , free
DnaA in cytoplasm If = IT

f + ID
f , and DnaA bound to ori

binding sites Io. Equation (D10) is still assumed here. We
denote the binding and unbinding rate constant on the chromo-
somal binding sites as kb

on and kb
off , and those on the ori binding

sites as ko
on and ko

off . Thus, the ODEs for Ib, If , and Io read

dIb

dt
= kb

on
If

V
(Btot − Ib) − kb

off Ib, (E3a)

dIf

dt
= λ(If + Ib + Io) − kb

on
If

V
(Btot − Ib) + kb

off Ib

− γ

1 + γ
ko

on
If

V
(Otot − Io) + ko

off Io, (E3b)

dIo

dt
= γ

1 + γ
ko

on
If

V
(Otot − Io) − ko

off Io, (E3c)

where Btot follows the same dynamics determined by ρ(t ) as
derived in Appendix B. In this way, we conducted a deter-
ministic simulation based on Eqs. (E2) and (E3). The results
with all 16 combinations of the four mechanisms are shown
in Fig. 9. Additionally, we simulated the effect of SeqA in our
deterministic model [Fig. 10(a)]. We found that SeqA does not
significantly change the results in any of the above 16 cases.
As an example for its mild effect, Figs. 10(b) and 10(c) show
how SeqA affects the initiation stability in the protocell.

APPENDIX F: RELATION BETWEEN THE
INTRINSIC/EXTRINSIC NOISE AND INITIATION

ASYNCHRONY/CELL-TO-CELL VARIABILITY

We defined the intrinsic noise and the extrinsic noise for the
initiation mass based on one of their conventional definitions
[50] in Sec. II E. However, we will show that they are not
equivalent to the intuitive concepts of asynchrony and cell-
to-cell variability, though these two groups of concepts are
closely related [see Fig. 6(a)].

For asynchrony versus cell-to-cell variability, by intuition,
we can quantify them as the coefficients of variation along the
diagonal axis and off-diagonal axis on the ori1-ori2 initiation

protocell
protocell + seqA
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FIG. 10. The effect of SeqA in the protocell model. (a) We consider the SeqA sequestration effect at ori binding sites, which results in no
initiation events in a duration time of tseq = 10 min. (b) The unstable range does not shrink with the existence of seqA. (c) The amplitude of
the initiation mass oscillation, defined by (max vi − min vi )/(max vi + min vi ), is slightly reduced when C/τ is relatively large in the unstable
regime. Here, we set nB/NB = 1/30.
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mass plot [Fig. 6(a) in the main text], respectively. That is,
if we transform the initiation mass variables v

(1)
i and v

(2)
i by

a rotation of the coordinates, u(1)
i = (v(1)

i + v
(2)
i )/

√
2, u(2)

i =
(v(1)

i − v
(2)
i )/

√
2, initiation cell-to-cell variability (CVccv) and

initiation asynchrony (CVasyn) can be properly defined as

CV 2
ccv =

〈
u(1) 2

i

〉− 〈u(1)
i

〉2
〈
u(1)

i

〉2 , CV 2
asyn =

〈
u(2) 2

i

〉− 〈u(2)
i

〉2
〈
u(1)

i

〉2 . (F1)

We want to use the statistics of v
(1)
i and v

(2)
i to represent these

two new CVs. We assume that 〈v(1)
i 〉 = 〈v(2)

i 〉, and 〈v(1) 2
i 〉 =

〈v(2) 2
i 〉, because two ori’s are identical such that v

(1)
i and v

(2)
i

should follow the same distribution. Therefore, their coeffi-
cients of variation should be the same and equal to the total
CV:

CV (1) 2 = CV (2) 2 = CV 2
tot =

〈
v2

i

〉− 〈vi〉2

〈vi〉2 . (F2)

Substituting the definition of u(1)
i and u(2)

i into Eq. (F1), we
have

CV 2
ccv = 1 + r

2
CV 2

tot, CV 2
asyn = 1 − r

2
CV 2

tot, (F3)

where r is the Pearson correlation coefficient between v
(1)
i and

v
(2)
i ,

r =
〈
v

(1)
i v

(2)
i

〉− 〈v(1)
i

〉〈
v

(2)
i

〉
√〈

v
(1) 2
i

〉− 〈v(1)
i

〉2 ·
√〈

v
(2) 2
i

〉− 〈v(2)
i

〉2 . (F4)

On the other hand, based on the conventional definition
[50], the intrinsic noise and the extrinsic noise for the initi-
ation mass are defined in Eq. (12) in Sec. II E 1. Following the
above derivations, we have

CV 2
int = (1 − r)CV 2

tot, CV 2
ext = rCV 2

tot. (F5)

However, this definition is only valid when 0 � r � 1 given
that CVext has to be a real number, which means it only applies
when two variables are non-negatively correlated. Based on
Eqs. (F3) and (F5), we obtain the relation between intrin-
sic/extrinsic noise and asynchrony/cell-to-cell variability,

CV 2
asyn = 1

2CV 2
int, CV 2

ccv = CV 2
ext + 1

2CV 2
int. (F6)

We have the summation relation of the two groups of con-
cepts,

CV 2
ccv + CV 2

asyn = CV 2
ext + CV 2

int = CV 2
tot. (F7)

Hence, the intrinsic/extrinsic noise and asynchrony/cell-to-
cell variability are just two decompositions of the total noise.
The first works only at the regime 0 � r � 1, while the second
works for any correlation situation, i.e., −1 � r � 1.

APPENDIX G: DERIVATION OF THE CVS’ SCALING
LAWS IN THE FIRST-PASSAGE-TIME MODELS

Our first model in Sec. II E 2 assumes that (i) the initiator
proteins are produced in a Poisson process with a constant
production rate β, and (ii) after production, the initiator pro-
tein has an equal chance to bind to either ori1 or ori2, namely

a Bernoulli trial. Thus, the probability of ori1 to accumulate
one protein during the time interval (t, t + dt] reads

P [O1(t + dt ) = m + 1|O1(t ) = m] = βdt · 1
2 , (G1)

which is equivalently a Poisson process with a production rate
of β ′ = β

2 .
For a Poisson process with a production rate of β ′, the

waiting time for each jump event follows an exponential dis-
tribution with a decay rate β ′, and the first-passage-time (FPT)
T (1) is the sum of nB identical waiting-time variables. This
gives out a Gamma distribution of T (1),

P(T ; nB, β ′) = βnB T nB−1e−β ′T

(nB − 1)!
. (G2)

Thus, 〈T (1)〉=nB/β ′=2nB/β and σT (1) = √
nB/β ′ = 2

√
nB/β.

Based on Eq. (14), we obtain

CVint = 1√
nB

. (G3)

On the other hand, the total number of proteins produced
before time T follows the original Poisson distribution:

P(N ; T ) = (βT )N

N!
e−βT , (G4)

which gives a mean value 〈N〉 = βT . Thus, the mean total
protein at the FPT (〈T (1)〉 = 2nB/β) is 〈N〉 = 2nB. Therefore,

CVint =
√

2

〈N〉 , (G5)

which is essentially Eq. (15).
Next, for the two-step Poisson process, we have decom-

posed T (1) and T (2) into three independent variables, T (1) =
T (0) + �T (1), T (2) = T (0) + �T (2) in the main text. To cal-
culate Eq. (16), we need to obtain 〈T (1)〉, σ�T (1) , and σT (0) .
To avoid the instability issue, we consider the stable cases
of two-overlapping cell cycles (non-multifork replication). In
this situation, The threshold for the titration step is roughly
2NB, and for the ori1 accumulation step it is nB. The first
titration step has an accumulation rate of β, while the second
step has an accumulation rate of β ′ = β/2, similar to the
simple Poisson process case above. Thus,

〈T (0)〉 = 2NB

β
, 〈�T (1)〉 = nB

β ′ = 2nB

β
; (G6)

σT (0) =
√

2NB

β
, σ�T (1) =

√
nB

β ′ = 2
√

nB

β
. (G7)

Hence, 〈N〉 = β〈T (1)〉 = 2(NB + nB)/β. We rewrite Eq. (G7)
in terms of 〈N〉 and obtain

CVint = 2
√

nB

〈N〉 , CVext =
√〈N〉 − 2nB

〈N〉 ≈ 1√〈N〉 , (G8)

which is the same as Eq. (17) in the main text.
To verify that the decomposition is valid, we performed

Monte Carlo simulation. In the simulation, the initiator protein
is generated based on the Poisson process with a constant rate
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β. Once a protein is generated, it will undergo a trial among
titration sites, ori1, and ori2. The probability of the protein to
bind to different destinations is proportional to their binding
affinities, and we set the binding affinity difference between
titration sites and ori’s to be 100-fold, based on the E. coli case
we mentioned in the main text. Further, we assumed that when
the occupancy of one ori reaches the threshold, it will keep

accumulation rather than waiting for the other ori. This is to
assure that the stochastic process is not changed after one ori
reaches the threshold. We notice that although these detailed
settings are necessary to get numbers very close to what are
predicted in Eq. (17) [Fig. 6(d), dashed gray lines], the 1/N
versus 1/

√
N scaling laws are quite conserved in settings with

different details.

[1] L. Wolpert, Positional information and the spatial pattern of
cellular differentiation, J. Theor. Biol. 25, 1 (1969).

[2] T. Evans, E. T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt,
Cyclin: a protein specified by maternal mRNA in sea urchin
eggs that is destroyed at each cleavage division, Cell 33, 389
(1983).

[3] S. Jun, F. Si, R. Pugatch, and M. Scott, Fundamental principles
in bacterial physiology—history, recent progress, and the future
with focus on cell size control: A review, Rep. Prog. Phys. 81,
056601 (2018).

[4] M. Schaechter, O. Maaløe, and N. O. Kjeldgaard, Dependency
on medium and temperature of cell size and chemical com-
position during balanced growth of salmonella typhimurium,
Microbiology 19, 592 (1958).

[5] N. O. Kjeldgaard, O. Maaloe, and M. Schaechter, The transition
between different physiological states during balanced growth
of salmonella typhimurium, J. Gen. Microbiol. 19, 607 (1958).

[6] F. Si, G. Le Treut, J. T. Sauls, S. Vadia, P. A. Levin, and S.
Jun, Mechanistic origin of cell-size control and homeostasis in
bacteria, Curr. Biol. 29, 1760 (2019).

[7] T. den Blaauwen, L. W. Hamoen, and P. A. Levin, The divisome
at 25: The road ahead, Curr. Opin. Microbiol. 36, 85 (2017).

[8] M. Campos, I. V. Surovtsev, S. Kato, A. Paintdakhi, B. Beltran,
S. E. Ebmeier, and C. Jacobs-Wagner, A constant size extension
drives bacterial cell size homeostasis, Cell 159, 1433 (2014).

[9] S. Taheri-Araghi, S. Bradde, J. T. Sauls, N. S. Hill, P. A. Levin,
J. Paulsson, M. Vergassola, and S. Jun, Cell-size control and
homeostasis in bacteria, Curr. Biol. 25, 385 (2015).

[10] S. Jun and S. Taheri-Araghi, Cell-size maintenance: Universal
strategy revealed, Trends Microbiol. 23, 4 (2015).

[11] M. Berger and P. R. T. Wolde, Robust replication initiation from
coupled homeostatic mechanisms, Nat. Commun. 13, 6556
(2022).

[12] L. Sompayrac and O. Maaloe, Autorepressor model for control
of DNA replication, Nat. New Biol. 241, 133 (1973).

[13] T. Boesen, G. Charbon, H. Fu, C. Jensen, D. Li, S. Jun, and
others, Robust control of replication initiation in the absence of
DnaA-ATP DnaA-ADP regulatory elements in Escherichia coli,
bioRxiv (2022).

[14] A. C. Leonard, P. Rao, R. P. Kadam, and J. E. Grimwade,
Changing perspectives on the role of DnaA-ATP in orisome
function and timing regulation, Front. Microbiol. 10, 2009
(2019).

[15] F. G. Hansen and T. Atlung, The DnaA tale, Front. Microbiol.
9, 319 (2018).

[16] T. Katayama, K. Kasho, and H. Kawakami, The DnaA
cycle in Escherichia coli: Activation, function and inacti-
vation of the initiator protein, Front. Microbiol. 8, 2496
(2017).

[17] L. Riber, J. Frimodt-Møller, G. Charbon, and A. Løbner-
Olesen, Multiple DNA binding proteins contribute to timing of
chromosome replication in E. coli, Front. Mol. Biosci. 3, 29
(2016).

[18] T. Katayama, S. Ozaki, K. Keyamura, and K. Fujimitsu, Regu-
lation of the replication cycle: Conserved and diverse regulatory
systems for DnaA and oric, Nat. Rev. Microbiol. 8, 163 (2010).

[19] F. G. Hansen, B. B. Christensen, and T. Atlung, The initia-
tor titration model: Computer simulation of chromosome and
minichromosome control, Res. Microbiol. 142, 161 (1991).

[20] T. Katayama, T. Kubota, K. Kurokawa, E. Crooke, and K.
Sekimizu, The initiator function of DnaA protein is negatively
regulated by the sliding clamp of the E. coli chromosomal
replicase, Cell 94, 61 (1998).

[21] J. Kato and T. Katayama, Hda, a novel DnaA-related protein,
regulates the replication cycle in Escherichia coli, EMBO J. 20,
4253 (2001).

[22] A. C. Leonard and J. E. Grimwade, The orisome: Structure and
function, Front. Microbiol. 6, 545 (2015).

[23] K. Sekimizu, D. Bramhill, and A. Kornberg, ATP activates dnaa
protein in initiating replication of plasmids bearing the origin of
the E. coli chromosome, Cell 50, 259 (1987).

[24] S. Nishida, K. Fujimitsu, K. Sekimizu, T. Ohmura, T. Ueda,
and T. Katayama, A nucleotide switch in the Escherichia coli
DnaA protein initiates chromosomal replication: Evidence from
a mutant DnaA protein defective in regulatory ATP hydrolysis
in vitro and in vivo, J. Biol. Chem. 277, 14986 (2002).

[25] K. C. McGarry, V. T. Ryan, J. E. Grimwade, and A. C. Leonard,
Two discriminatory binding sites in the Escherichia coli repli-
cation origin are required for DNA strand opening by initiator
DnaA-ATP, Proc. Natl. Acad. Sci. USA 101, 2811 (2004).

[26] S. Schaper and W. Messer, Interaction of the initiator protein
DnaA of Escherichia coli with its DNA target, J. Biol. Chem.
270, 17622 (1995).

[27] R. S. Fuller, B. E. Funnell, and A. Kornberg, The dnaA protein
complex with the E. coli chromosomal replication origin (oric)
and other DNA sites, Cell 38, 889 (1984).

[28] H. Kawakami, K. Keyamura, and T. Katayama, Formation of an
ATP-DnaA-specific initiation complex requires DnaA arginine
285, a conserved motif in the AAA+ protein family, J. Biol.
Chem. 280, 27420 (2005).

[29] J. Herrick, M. Kohiyama, T. Atlung, and F. G. Hansen, The
initiation mess? Mol. Microbiol. 19, 659 (1996).

[30] M. H. Buckstein, J. He, and H. Rubin, Characterization of nu-
cleotide pools as a function of physiological state in Escherichia
coli, J. Bacteriol. 190, 718 (2008).

[31] L. S. Hsieh, J. Rouviere-Yaniv, and K. Drlica, Bacterial DNA
supercoiling and [ATP]/[ADP] ratio: Changes associated with
salt shock, J. Bacteriol. 173, 3914 (1991).

013011-19

https://doi.org/10.1016/S0022-5193(69)80016-0
https://doi.org/10.1016/0092-8674(83)90420-8
https://doi.org/10.1088/1361-6633/aaa628
https://doi.org/10.1099/00221287-19-3-592
https://doi.org/10.1099/00221287-19-3-607
https://doi.org/10.1016/j.cub.2019.04.062
https://doi.org/10.1016/j.mib.2017.01.007
https://doi.org/10.1016/j.cell.2014.11.022
https://doi.org/10.1016/j.cub.2014.12.009
https://doi.org/10.1016/j.tim.2014.12.001
https://doi.org/10.1038/s41467-022-33886-6
https://doi.org/10.1038/newbio241133a0
https://doi.org/10.1101/2022.09.08.507175
https://doi.org/10.3389/fmicb.2019.02009
https://doi.org/10.3389/fmicb.2018.00319
https://doi.org/10.3389/fmicb.2017.02496
https://doi.org/10.3389/fmolb.2016.00029
https://doi.org/10.1038/nrmicro2314
https://doi.org/10.1016/0923-2508(91)90025-6
https://doi.org/10.1016/S0092-8674(00)81222-2
https://doi.org/10.1093/emboj/20.15.4253
https://doi.org/10.3389/fmicb.2015.00545
https://doi.org/10.1016/0092-8674(87)90221-2
https://doi.org/10.1074/jbc.M108303200
https://doi.org/10.1073/pnas.0400340101
https://doi.org/10.1074/jbc.270.29.17622
https://doi.org/10.1016/0092-8674(84)90284-8
https://doi.org/10.1074/jbc.M502764200
https://doi.org/10.1046/j.1365-2958.1996.432956.x
https://doi.org/10.1128/JB.01020-07
https://doi.org/10.1128/jb.173.12.3914-3917.1991


FU, XIAO, AND JUN PRX LIFE 1, 013011 (2023)

[32] More precisely, there are 11 DnaA boxes clustered within ori,
with three high-affinity sites and eight low-affinity sites. Only
DnaA-ATP can bind to the eight low-affinity sites. For simplic-
ity, we used “10” to denote the number of low-affinity binding
sites at ori throughout this paper.

[33] F. G. Hansen, T. Atlung, R. E. Braun, A. Wright, P. Hughes,
and M. Kohiyama, Initiator (DnaA) protein concentration as
a function of growth rate in Escherichia coli and salmonella
typhimurium, J. Bacteriol. 173, 5194 (1991).

[34] H. Zheng, Y. Bai, M. Jiang, T. A. Tokuyasu, X. Huang, F.
Zhong, Y. Wu, X. Fu, N. Kleckner, T. Hwa, and C. Liu, General
quantitative relations linking cell growth and the cell cycle in
Escherichia coli, Nat Microbiol 5, 995 (2020).

[35] T. M. Pham, K. W. Tan, Y. Sakumura, K. Okumura, H.
Maki, and M. T. Akiyama, A single-molecule approach to
DNA replication in Escherichia coli cells demonstrated that
DNA polymerase III is a major determinant of fork speed,
Mol. Microbiol. 90, 584 (2013).

[36] D. Bhat, S. Hauf, C. Plessy, Y. Yokobayashi, and S. Pigolotti,
Speed variations of bacterial replisomes, Elife 11, e75884
(2022).

[37] F. Si, D. Li, S. E. Cox, J. T. Sauls, O. Azizi, C. Sou, A. B.
Schwartz, M. J. Erickstad, Y. Jun, X. Li, and S. Jun, Invariance
of initiation mass and predictability of cell size in Escherichia
coli, Curr. Biol. 27, 1278 (2017).

[38] S. Cooper and C. E. Helmstetter, Chromosome replication and
the division cycle of Escherichia coli Br, J. Mol. Biol. 31, 519
(1968).

[39] R. Kitagawa, H. Mitsuki, T. Okazaki, and T. Ogawa, A novel
DnaA protein-binding site at 94.7 min on the Escherichia coli
chromosome, Mol. Microbiol. 19, 1137 (1996).

[40] K. Kasho and T. Katayama, DnaA binding locus datA promotes
DnaA-ATP hydrolysis to enable cell cycle-coordinated replica-
tion initiation, Proc. Natl. Acad. Sci. USA 110, 936 (2013).

[41] K. Fujimitsu, T. Senriuchi, and T. Katayama, Specific genomic
sequences of E. coli promote replicational initiation by directly
reactivating ADP-DnaA, Genes Dev. 23, 1221 (2009).

[42] K. Kasho, K. Fujimitsu, T. Matoba, T. Oshima, and T.
Katayama, Timely binding of IHF and Fis to DARS2 regulates
ATP-DnaA production and replication initiation, Nucl. Acids
Res. 42, 13134 (2014).

[43] M. C. Moolman, S. T. Krishnan, J. W. J. Kerssemakers, A. van
den Berg, P. Tulinski, M. Depken, R. Reyes-Lamothe, D. J.
Sherratt, and N. H. Dekker, Slow unloading leads to DNA-
bound β2-sliding clamp accumulation in live Escherichia coli
cells, Nat. Commun. 5, 5820 (2014).

[44] M. Lu, J. L. Campbell, E. Boye, and N. Kleckner, SeqA: A
negative modulator of replication initiation in E. coli, Cell 77,
413 (1994).

[45] F. G. Hansen, B. B. Christensen, C. B. Nielsen, and T. Atlung,
Insights into the quality of DnaA boxes and their cooperativity,
J. Mol. Biol. 355, 85 (2006).

[46] T. A. Rozgaja, J. E. Grimwade, M. Iqbal, C. Czerwonka,
M. Vora, and A. C. Leonard, Two oppositely oriented ar-
rays of low-affinity recognition sites in oric guide progressive
binding of DnaA during Escherichia coli pre-RC assembly,
Mol. Microbiol. 82, 475 (2011).

[47] W. D. Donachie and G. W. Blakely, Coupling the initiation
of chromosome replication to cell size in Escherichia coli,
Curr. Opin. Microbiol. 6, 146 (2003).

[48] K. Kurokawa, S. Nishida, A. Emoto, K. Sekimizu, and T.
Katayama, Replication cycle-coordinated change of the adenine
nucleotide-bound forms of DnaA protein in Escherichia coli,
EMBO J. 18, 6642 (1999).

[49] A. Knöppel, O. Broström, K. Gras, J. Elf, and D. Fange, Regula-
tory elements coordinating initiation of chromosome replication
to the Escherichia coli cell cycle, Proc. Natl. Acad. Sci. USA
120, e2213795120 (2023).

[50] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain,
Stochastic gene expression in a single cell, Science 297, 1183
(2002).

[51] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene
regulatory networks, Proc. Natl. Acad. Sci. USA 98, 8614
(2001).

[52] J. Paulsson, Summing up the noise in gene networks,
Nature (London) 427, 415 (2004).

[53] Y. Taniguchi, P. J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn,
A. Emili, and X. Sunney Xie, Quantifying E. coli proteome and
transcriptome with single-molecule sensitivity in single cells,
Science 329, 533 (2010).

[54] K. Skarstad, E. Boye, and H. B. Steen, Timing of initiation
of chromosome replication in individual Escherichia coli cells,
EMBO J. 5, 1711 (1986).

[55] A. Løbner-Olesen, K. Skarstad, F. G. Hansen, K. von
Meyenburg, and E. Boye, The DnaA protein determines the
initiation mass of Escherichia coli K-12, Cell 57, 881 (1989).

[56] J. T. Sauls, S. E. Cox, Q. Do, V. Castillo, Z. Ghulam-Jelani, and
S. Jun, Control of bacillus subtilis replication initiation during
physiological transitions and perturbations, mBio 10, e02205-
19 (2019).

[57] P. P. Pandey, H. Singh, and S. Jain, Exponential trajectories, cell
size fluctuations, and the adder property in bacteria follow from
simple chemical dynamics and division control, Phys. Rev. E
101, 062406 (2020).

[58] K. R. Ghusinga, J. J. Dennehy, and A. Singh, First-passage
time approach to controlling noise in the timing of intracellular
events, Proc. Natl. Acad. Sci. USA 114, 693 (2017).

[59] M. Wallden, D. Fange, E. G. Lundius, Ö. Baltekin, and J.
Elf, The synchronization of replication and division cycles in
individual E. coli cells, Cell 166, 729 (2016).

[60] A. C. Leonard and C. E. Helmstetter, Cell cycle-specific repli-
cation of Escherichia coli minichromosomes, Proc. Natl. Acad.
Sci. USA 83, 5101 (1986).

[61] C. E. Helmstetter and A. C. Leonard, Coordinate initiation of
chromosome and minichromosome replication in Escherichia
coli, J. Bacteriol. 169, 3489 (1987).

[62] X. Wang, C. Lesterlin, R. Reyes-Lamothe, G. Ball, and D. J.
Sherratt, Replication and segregation of an Escherichia coli
chromosome with two replication origins, Proc. Natl. Acad. Sci.
USA 108, E243 (2011).

[63] H. Salman, N. Brenner, C.-K. Tung, N. Elyahu, E. Stolovicki, L.
Moore, A. Libchaber, and E. Braun, Universal Protein Fluctu-
ations in Populations of Microorganisms, Phys. Rev. Lett. 108,
238105 (2012).

[64] P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei,
A. Wright, and S. Jun, Robust growth of Escherichia coli,
Curr. Biol. 20, 1099 (2010).

[65] M. Schaechter, J. P. Williamson, J. R. Hood, Jr., and A. L. Koch,
Growth, cell and nuclear divisions in some bacteria, J. Gen.
Microbiol. 29, 421 (1962).

013011-20

https://doi.org/10.1128/jb.173.16.5194-5199.1991
https://doi.org/10.1038/s41564-020-0717-x
https://doi.org/10.1111/mmi.12386
https://doi.org/10.7554/eLife.75884
https://doi.org/10.1016/j.cub.2017.03.022
https://doi.org/10.1016/0022-2836(68)90425-7
https://doi.org/10.1046/j.1365-2958.1996.453983.x
https://doi.org/10.1073/pnas.1212070110
https://doi.org/10.1101/gad.1775809
https://doi.org/10.1093/nar/gku1051
https://doi.org/10.1038/ncomms6820
https://doi.org/10.1016/0092-8674(94)90156-2
https://doi.org/10.1016/j.jmb.2005.10.036
https://doi.org/10.1111/j.1365-2958.2011.07827.x
https://doi.org/10.1016/S1369-5274(03)00026-2
https://doi.org/10.1093/emboj/18.23.6642
https://doi.org/10.1073/pnas.2213795120
https://doi.org/10.1126/science.1070919
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1038/nature02257
https://doi.org/10.1126/science.1188308
https://doi.org/10.1002/j.1460-2075.1986.tb04415.x
https://doi.org/10.1016/0092-8674(89)90802-7
https://doi.org/10.1128/mBio.02205-19
https://doi.org/10.1103/PhysRevE.101.062406
https://doi.org/10.1073/pnas.1609012114
https://doi.org/10.1016/j.cell.2016.06.052
https://doi.org/10.1073/pnas.83.14.5101
https://doi.org/10.1128/jb.169.8.3489-3494.1987
https://doi.org/10.1073/pnas.1100874108
https://doi.org/10.1103/PhysRevLett.108.238105
https://doi.org/10.1016/j.cub.2010.04.045
https://doi.org/10.1099/00221287-29-3-421


BACTERIAL REPLICATION INITIATION AS PRECISION … PRX LIFE 1, 013011 (2023)

[66] G. Le Treut, F. Si, D. Li, and S. Jun, Quantitative examination
of five stochastic cell-cycle and cell-size control models for
Escherichia coli and bacillus subtilis, Front. Microbiol. 12,
721899 (2021).

[67] L. Riber, J. A. Olsson, R. B. Jensen, O. Skovgaard, S. Dasgupta,
M. G. Marinus, and A. Løbner-Olesen, Hda-mediated

inactivation of the DnaA protein and dnaA gene autoregula-
tion act in concert to ensure homeostatic maintenance of the
Escherichia coli chromosome, Genes Dev. 20, 2121 (2006).

[68] W. D. Donachie, Relationship between cell size and time of
initiation of DNA replication, Nature (London) 219, 1077
(1968).

013011-21

https://doi.org/10.3389/fmicb.2021.721899
https://doi.org/10.1101/gad.379506
https://doi.org/10.1038/2191077a0

