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Abstract— For control in biomolecular systems, the most
basic objective of maintaining a small error in a target variable,
say the expression level of some protein, is often difficult due
to the presence of both large uncertainty of every type and
intrinsic limitations on the controller’s implementation. This
paper explores the limits of biochemically plausible controller
design for the problem of robust perfect adaptation (RPA),
biologists’ term for robust steady state tracking. It is well-
known that for a large class of nonlinear systems, a system
has RPA iff it has integral feedback control (IFC), which has
been used extensively in real control systems to achieve RPA.
However, we show that due to intrinsic physical limitations
on the dynamics of chemical reaction networks (CRNs), cells
cannot implement IFC directly in the concentration of a chem-
ical species. This contrasts with electronic implementations,
particularly digital, where it is trivial to implement IFC directly
in a single state. Therefore, biomolecular systems have to
achieve RPA by encoding the integral control variable into
the network architecture of a CRN. We describe a general
framework to implement RPA in CRNs and show that well-
known network motifs that achieve RPA, such as (negative)
integral feedback (IFB) and incoherent feedforward (IFF), are
examples of such implementations. We also develop methods to
solve the problem of designing integral feedback variables for
unknown plants. This standard control notion is surprisingly
nontrivial and relatively unstudied in biomolecular control. The
methods developed here connect different existing fields and
approaches on the problem of biomolecular control, and hold
promise for systematic chemical reaction controller synthesis
as well as analysis.

I. INTRODUCTION

Control theory and engineered genetic circuits have been
used to control behavior of cells or cell populations [1],
[2], [3], [4]. Since disturbances, uncertain dynamics, and
stochastics are particularly severe in biomolecular systems
[5], the simple notion of perfect adaptation has been a focus
in the biological control community [6], [7].

Perfect adaptation (PA) describes the property that the
output or error of the system goes to zero for a set of
initial conditions and constant disturbances. Robust perfect
adaptation (RPA) then describes the property that the system
has PA despite uncertain parameters or uncertain dynamics.
PA is the same as constant disturbance rejection known in
control theory community, and it has long been studied in
traditional control disciplines such as electrical and mechan-
ical engineering [8]. The internal model principle in control
theory characterizes that a system has PA if and only if there
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exists an integral control variable in the system [9], [10].
If integral control is a structural property of a system, not
dependent on uncertainty, then it also implies RPA, almost
trivially. This is easily implemented in electronics, but as we
will see, not in biochemical controllers.

RPA is central to biological systems, from chemotaxis[11],
[12] to glycolysis [13], from maintenance of homeostasis
[14] to cell signaling [15]. In pursuit of the principles behind
PA in biological systems, previous studies have focused
on discovering biomolecular network topologies that could
achieve perfect adaptation through extensive computational
studies or case studies in specific biological systems [16],
[17].

Dual to the systems biology pursuit in discovering prin-
ciples underlying PA, synthetic biologists have focused on
designing robust integral control variables that are imple-
mentable by biomolecular reactions to achieve RPA in en-
gineered cells [6]. RPA is a particularly attractive property
for synthetic biologists as it is difficult in general to have
complete knowledge of the plant or to construct precise
controller dynamics. Because detailed and precise models
are rare in biology, these integral variable design problems
are usually posed for unknown plants. The constraint that the
integral variable is implementable by biomolecular reactions
is essential, as it then can be implemented by inserting
genetic circuits into cells to achieve PA for variables of
interest.

Most previous studies could be considered “reverse en-
gineering”, where examples and case studies of natural
biological systems are thoroughly investigated to accumulate
heuristics and principles. Here we take a more “forward
engineering” approach. We use chemical reaction networks
(CRNs) as the general model for what biomolecular systems
are capable of implementing [18], [19], [20]. Starting from
physical constraints on the types of dynamics that CRNs
can take, we describe a general framework to find imple-
mentations of (R)PA in CRNs. Focusing on stochastics, [21]
employs a similar constraint-focused approach to find design
principles for noise suppression [22].

The theoretical tools used in this paper are rather elemen-
tary. However, we are able to describe perfect adaptation
in biomolecular reaction networks through a constraint-
focused control theory framework that builds on and connects
different existing fields and approaches. This work also
tries to emphasize the different focuses and questions asked
in biomolecular control compared to the more common
perspectives in control theory for engineering systems.

We first briefly review the most relevant control theory
results on perfect adaptation in Section II, and show how



(R)PA is obtained in simple electrical circuits. In Section
III-A, we show that, due to physical constraints on CRN
dynamics, integral control variables cannot be easily im-
plemented using the dynamics of chemical species. This
forces biological systems to encode integral variables in more
complex biomolecular network architecture. In Section III-C,
we develop three general approaches to implement (R)PA in
CRNs, with previously reported motifs as examples, connect-
ing results from systems biology with results from chemical
reaction network theory. In Section III-E, we address the
question of designing integral variables for unknown plants,
where sequestration feedback circuit [6] is one example.
In Section III-F, we discuss how designing a incoherent
feedforward architecture fundamentally requires knowledge
about the plant and how our framework can be used to derive
such architectures.

II. ROBUST PERFECT ADAPTATION

The notion of perfect adaptation (PA) comes from systems
biology [11]. It is equivalent to constant disturbance rejection
in control theory, and has been well studied [9], [10], [12].
For completion, we define PA for the type of systems studied
here, and review related key results and relate it to incoherent
feedforward (IFF).

Consider a deterministic control-affine SISO closed loop
system with state x ∈ Rn, disturbance w ∈ R, and output
y ∈ R, with dynamics

ẋ = f(x) + g(x)w, y = h(x), (Σ)

where f, g ∈ C1(Rn,Rn), and h ∈ C1(Rn,R) are functions
with continuous derivatives.

Definition 1: System (Σ) is said to satisfy perfect adapta-
tion (PA) with open subsets (Ω0,W) ⊂ Rn×R, if y(t)→ 0
as t → ∞ for all initial conditions x(0) ∈ Ω0 and constant
disturbances w(t) ≡ w ∈ W .

We often want PA in spite of parameter variations or uncer-
tain dynamics. This corresponds to robust perfect adaptation
(RPA).

Definition 2: System (Σ) is said to satisfy robust perfect
adaptation (RPA) with open subsets (Ω0,W,M) where
M ⊂ C1(Rn,Rn)2, if the system is PA with (Ω0,W) for
all (f, g) ∈M.

The key result in control theory on perfect adaptation is the
internal model principle. For constant disturbance rejection,
the internal model principle states that the system (Σ) needs
to satisfy integral feedback. The system (Σ) is said to have
integral feedback if there exists a function of x such that it
is equal to time integral of y. More formally,

Definition 3: System (Σ) is said to have integral feedback
(IFB) if ∃` ∈ C1(Rn,R) such that z = `(x) satisfy ż = y =
h(x).

A. PA in linear systems

PA in linear systems was studied in the classic work [9].
We focus on the case of SISO systems. To build intuition,
we show how PA is equivalent to integral feedback, and how
robustness comes naturally as a consequence of stability.

Consider a SISO LTI system,[
ẋ
y

]
=

[
A b
c d

] [
x
w

]
=: M

[
x
w

]
, (Σ′)

where A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n, d ∈ R. Since the
system is linear, the set of initial conditions and disturbances
in the definition of PA can always be Rn and R. The
definition of RPA then becomes

y(t)
t→∞−−−→ 0, ∀(x(0), w) ∈ (Rn,R), ∀M ∈M,

for some open subset of parameters M⊂ R(n+1)×(n+1).
Assuming the system is stable, i.e. A is Hurwitz, then it

reaches steady state. At steady state, we have Ax+bw = 0,
so x = −A−1bw. Therefore y = (d − cA−1b)w for
any constant w, which implies d − cA−1b = 0. This
characterization has an immediate incoherent feedforward
(IFF) interpretation. When d 6= 0, disturbance w enters
output y through both d and cA−1b terms, and they cancel
each other in steady state. This type of architecture, termed
IFF in systems biology literature, has been widely found in
biological regulatory systems and is considered an equally
important architecture to IFB [23]. Note, however, that if
d 6= 0, an IFF interpretation is not as clear as IFB.

By the Schur complement formula for determinant, we see
that

det

[
A b
c d

]
= det(A)(d− cA−1b),

which is 0 if and only if d − cA−1b = 0. So, assuming
system (Σ′) is stable,

PA ⇐⇒ det

[
A b
c d

]
= 0. (1)

Note that checking whether a set of matrices has zero
determinant has efficient probabilistic algorithms [24], so
for linear systems we can efficiently check whether a set
of systems M satisfy RPA.

Now we show that PA is equivalent to integral feedback
(IFB). Consider k = cA−1. Then z = kx = cA−1x satisfy
ż = cA−1Ax + cA−1bw = cx + dw = y. So, assuming
the system (Σ′) is stable,

PA ⇐⇒ ∃k s.t. z = kx and ż = y.

Here the existence of this z variable shows the system
(Σ′) satisfies IFB. This is a special case of the internal
model principle [9], as z is a model of all possible constant
inputs when y = 0. Note that, in comparison to IFF, the
IFB interpretation is not as natural, as it requires a change
of coordinates, but the IFB argument holds without change
when d = 0.

Now we consider robustness. From (1), we see that
if A is Hurwitz and M satisfy detM = 0, then PA
is true. Therefore, system (Σ′) is RPA with set M ={[
A b
c d

]
: A Hurwitz,detM = det

[
A b
c d

]
= 0

}
.

We might consider the zero determinant condition too
restrictive. However, when we consider M matrices that
arise from physical systems, the zero determinant condition



can easily be encoded in the physical interconnections of
the system, so that any physical parameter variations would
preserve the zero determinant condition. Therefore, as long
as parameter uncertainties preserve stability of A, the PA
property of system (Σ′) is robust to such uncertainty. To
better illustrate this point, we consider RPA in a simple RLC
electrical circuit.

B. RPA in electrical systems

Assume the RLC circuit in Figure 1 has output v, the
(unique) voltage of the circuit, and input iS, the source
current. The system can be written in the form of (Σ′) is

iS CL R

Fig. 1. Schematic diagram showing a simple RLC circuit. The input is a
source current iS, and output is voltage across the circuit components.

 v̇˙iL
v

 =

−1/RC −1/C −1/C
1/L 0 0

1 0 0

 viL
iS

 .
So detM = 0 with iL as the integral variable of output v.
We first notice that integral variables are easy to construct
in electrical circuits because natural integrator elements such
as capacitors and inductors exist. This is also the case for
cyberphysical systems we commonly face nowadays, with
integration easily performed by embedded computers on any
observed signals. We will see in Section III-A, however, that
this is not the case for biomolecular systems.

We also comment that the sparsity pattern of theM matrix
in this example is physical. This means the zeros in the
M matrix do not become nonzero by parameter uncertainty
of the system. This corresponds to structured uncertainty
in control theory literature [25]. In general, we see that as
long as the A matrix is Hurwitz and the sparsity pattern is
preserved, then the system has PA. For this specific case, any
positive parameters R,C,L makes HurwitzA. Therefore, the
PA property is naturally robust to any physical parameter
uncertainties in this system.

C. RPA in control-affine systems

PA and internal model principles have also been studied in
the more general setting of nonlinear input-output systems. A
result relevant here is Theorem 1 in the work by E.D. Sontag
[10]. It states that if system (Σ) has a uniform relative degree
and satisfies certain technical conditions, then it adapting to
a class of inputs implies that it contains an internal model
of that class of inputs. For the case of constant disturbance,
the theorem implies system (Σ) has a change of coordinates
so that it can be expressed as

ẋ′ = f̃(x′, z) + g̃(x′, z)u, ż = y, y = h̃(x′), (2)

where x′ is n− 1 dimensional and z is 1 dimensional. This
implies system (Σ) satisfies IFB.

As for robustness, the system (Σ) has PA for all uncertain
dynamics that keep the system stable and the integral variable
z unchanged. For example, if z is only a function of x1, then
any uncertain dynamics that changes x2 but keeps the system
stable still satisfies PA. Compared to the efficient-to-check
determinant condition for RPA in linear systems, we have to
discover an integral variable and look at its particular form
to determine robustness for control-affine systems.

III. RPA IN CRN

For electrical or cyberphysical systems we can simply
construct integral variables through common circuit elements
or computers. In comparison, construction of integral vari-
ables is nontrivial for biomolecular reaction networks due
to physical constraints on the type of dynamics chemical
reactions can take.

A. Physical constraints of CRN dynamics

We consider n chemical species denoted by symbols
X1, ..., Xn. We denote their concentrations by x1, ..., xn ∈
R≥0. A reaction then is an expression of the form

r1X1 + · · ·+ rnXn
k−→ p1X1 + · · ·+ pnXn,

with ri, pi ∈ Z≥0 denoting the number of Xi molecules
involved in reactants or products of this reaction. This
reaction denotes reactant species on the left, product species
on the right, and reaction rate k ∈ R≥0 above the arrow. If
we assume deterministic mass action dynamics [20], [26],
then this reaction happens with propensity kxr11 · · ·xrnn ,
increasing xi if pi > ri, decreasing xi if pi < ri, and
keeping xi unchanged if pi = ri. For example, reaction
X1 + X2

k−→ X1 keeps x1 unchanged and decreases x2
with dynamics ẋ2 = −kx1x2. A chemical reaction network
(CRN) is a finite collection of species and reactions. See [18]
for more details.

Assuming deterministic mass action kinetics, the dynamics
of concentration xi of a chemical species have to be of the
following form:

ẋi =
〈
v+,i,m(x)

〉
− xi

〈
v−,i,m(x)

〉
, (C1)

where m(x) is the vector of all monomials of x, and v+

and v− are non-negative vectors with finitely many non-
zero entries.

〈
v+,i,m(x)

〉
is the production propensity of

xi, while xi
〈
v−,i,m(x)

〉
is the degradation propensity of

xi. We see that both production and degradation have to
be polynomials of x. More importantly, the degradation
propensity of xi have to be at least first order in xi. This is
because for a well-mixed reaction system, if one molecule of
Xi is degraded with a certain rate, then each molecule will be
degraded with the same rate. So the degradation propensity
of Xi concentration has to be at least proportional to its
concentration [26], [20].

Note that this specific form is a physical constraint on the
CRN dynamics. That means this constraint is only true for
physical variables xi that are concentrations of species. It is
not necessarily true if we change coordinates. For example,
the degradation propensity of variable z = x1 − x2 is a



sum of the degradation propensity of x1 and the production
propensity of x2. So it could be x1 + x22, which does not
have factor (x1 − x2).

This physical constraint is severe, in the sense that it
makes it impossible to directly implement integral variables
as concentrations of chemical species in many cases. This is
discussed in Section III-B.

To describe the entries of v+,i and v−,i, we let v+,iα denote
the entry in v+,i that is coefficient of monomial xα =
xα1
1 · · ·xαn

n for α ∈ Zn≥0 in the production polynomial, while
we use v−,iα to denote the coefficient of the same monomial
in the degradation polynomial. Note that (C1) then implies
v−,iα = 0 if αi = 0.

Another physical constraint of CRN dynamics is more
subtle.

For i = j, vσ,iα 6= vσ
′,i

α′ for all α 6= α′. For all i 6= j,
a necessary condition for vσ,iα = vσ

′,j
α′ is α = α′.

Here σ, σ′ ∈ {+,−}.
(C2)

For example, we may want the production term k1x2 of x1 to
match degradation term k2x2 of x2 by setting k1 = k2 so that
we can cancel these two terms in dynamics of x1 +x2. This
violates (C2). In contrast, any terms from the same reaction
can have matching rates. For example, ∅ k−→ X1 +X2 results
in matching constant production terms k in both ẋ1 and ẋ2,
sequestration reaction X1 +X2

k−→ ∅ adds the term −kx1x2
in both ẋ1 and ẋ2, while X1

k−→ X2 adds −kx1 term to ẋ1
but kx1 term to ẋ2.

The physical reason behind this constraint is that CRNs
are mesoscopic models of biomolecular reactions [26], so the
reaction rate parameters in CRNs are lumped parameters with
uncertainty. Therefore, precise matching of reaction rates
between different reactions is very unlikely to happen. The
only way left to match terms in dynamics of two different
species then is for those terms to come from the same
reaction.

The significance of constraint (C2) is mostly in elimination
of unreasonable solutions when we derive conditions on
CRNs that satisfy PA, such as in Section III-E.

B. Concentration adaptation

To see the effect of the above physical constraints on
dynamics of CRN, for the rest of this work we consider
one specific type of output: y = x1 − µ or y = µ − x1,
where µ ∈ R is a constant, and x1 is the concentration of
species X1. This means the goal is to drive the concentration
of X1 to a fixed constant, despite constant disturbances and
uncertain dynamics. We call this concentration adaptation.
For the rest of the paper, we will take y = µ−x1, as almost
all results carries over to the case y = x1 − µ. We make
the additional assumption that x1 is not an integral variable
itself to make the problem nontrivial.

Concentration adaptation has been the central focus of
studies on perfect adaptation in biomolecular systems [23],
[12], [6]. Other topics of interest can often be formulated
as a close variant of a concentration adaptation problem.
For example, the fold change detection problem can be

formulated with output y = µ− log x1, where log is approx-
imately implemented by allosteric proteins [27]. Similarly,
concentration tracking can be formulated with output y =
w − x1, so x1 tracks input w.

With the concentration adaptation control objective in
mind, we immediately see that integral variables cannot
be implemented via a chemical species. This is because
both ż = x1 − µ and ż = µ − x1 do not satisfy the
physical constraint (C1) if z is concentration of a chemical
species other than x1. This forces integral variables to be
implemented in CRN network architectures.

C. Implementation of integral variables in CRN
Here we describe three general ways of implementing

integral variables in CRN and illustrate each through net-
work motifs well-known in systems biology. Network motifs
are diagrammatic representations of circuits widely used as
guiding principles for controller design in systems biology
and synthetic biology [17], [23].

1) Constrained integral variable: One way to approxi-
mately implement an integral variable is to relax the con-
straint ż = y. We want the concentration of some chemical
species satisfy ż = P (x, z)y, so z reaching steady state
does not in general guarantee y = 0 everywhere. This
makes integral variables directly implementable by chemical
species, but sacrifices the effectiveness of integral variables
achieving the control objective.

We consider an example from cell population control
that also uses this approach [4], [2], [3]. The CRN is the
following:

X2
k−→ X1 +X2, X1

γ−→ ∅, X2
µ−→ 2X2, X2 +X1

1−→ X1.

Here X2 is the number of cells that self-replicates, and X1

is a toxin that kills the cells. The dynamics satisfy

d

dt

[
x1
x2

]
=

[
kx2 − γx1
µx2 − x1x2

]
=

[
kx2 − γx1
x2(µ− x1)

]
.

We see that x2 acts as the integral variable for y = µ − x1
with additional steady state x2 = 0.

2) Change of coordinates: Another implementation
method relaxes the constraint that z is a chemical species. We
take z = `(x), so z is a virtual variable.One network motif
that is an example of this approach is incoherent feedforward
(IFF) [23]. The simplest such example is the “Sniffer” model
[15] with the following reactions:

W
1−→W+X1, W

k−→W+X2, X2+X1
α−→ X2, X2

γ−→ ∅.

Here W acts as an enzyme that produces proteins X1 and
X2, while X2 is in turn a protease that degrades X1. This
system has dynamics

d

dt

[
x1
x2

]
=

[
w − αx1x2
kw − γx2

]
.

At steady state, x2 = k
γw, and x1 = γ

αk . So x1 is
independent of w and initial conditions. This system has PA
for concentration tracking output y = µ−x1 where µ = γ

αk .
Consider z = kx1− x2, we have ż = αkyx2. So z acts as a
constrained integral variable.



3) Approximation: The third approach is to circumvent
the physical constraint (C1) by approximations, including
time-scale separation and asymptotics in large parameters.
One network motif that is an example of this approach is
called integral negative feedback (IFB) [12], [28].

Consider the following reaction network:

X1 +X2
k1−→ X ′1 +X2, W +X ′1

k2−→W +X1,

X1 +X ′2
k+
3−−⇀↽−−
k−3

C1

k
f
3−−→ X1 +X2, E +X2

k+
4−−→

k−4

C2

k
f
4−−→ E +X ′2.

X1 and X ′1 are two states of the same protein, X2 and X ′2
are two states of another protein, C1 and C2 are interme-
diate complexes, W is input, an enzyme that catalyzes the
transformation of X ′1 to X1, and E is some external enzyme
that catalyzes the transformation of X2 to X ′2.

This system has the following dynamics after taking quasi
steady state approximations to obtain Hill functions [1]:

d

dt

[
x1
x2

]
=

[
k2w(1− x1)− k1x1x2
(1−x2)

K3+(1−x2)
x1 − x2

K4+x2
kf4E

]
,

where K3 =
k−3 +kf3
k+3

, and K4 =
k−4 +kf4
k+4

. In addition, we
normalized units of x1 and x2 to make N1 = x1 + x′1 =
1, N2 = x2 + x′2 = 1, and normalized time so that kf3 = 1.

In the limit that K3,K4 are very small, we have approx-
imation ẋ2 ≈ x1 − kf4E. So, at steady state, x1 = kf4E,
independent of w. Here x2 acts as the integral feedback
variable for output y = x1 − kf4E.

Note that since K3 and K4 are assumed to be small
compared to x2 and 1 − x1, we need the steady state of
x2 to be far from 0 or 1. While x1 steady state does not
depend on w, x2 steady state does (it is 1

kf4E

w
w+k1/k2

). This
puts a constraint on what the constant disturbances can be.

D. Connection with Absolute Concentration Robustness
In addition to systems biology and synthetic biology

literature, a special class of PA called absolute concentration
robustness (ACR) has also been studied using very different
approaches in the field of chemical reaction network theory
(CRNT) [18], [19]. ACR is relevant for CRNs with conser-
vation classes. For example, in X1 
 X2, x1 + x2 = N
is conserved during time evolution of the system. ACR then
describes the property that the concentration of one chemical
species has a positive steady state that is independent of the
conserved quantity N . Through an example, we show how
our constraint-focused perspective with general implementa-
tion methods can be used to understand ACR as well.

Consider the following CRN that satisfies ACR:

X1
k1←− X3

k2−⇀↽−
1
X2, X2 +X1

k3−→ X2 +X3.

Note that there is a conserved quantity x1 + x2 + x3 = N
as no molecules are created or destroyed in this CRN. ACR
theory then states that species X1 has ACR, meaning x1
has a positive steady state that is independent of the total
concentration N . The dynamics of the system satisfy[

ẋ1
ẋ2

]
=

[
k1(N − x2 − x1)− k3x2x1
k2(N − x2 − x1)− x2

]
.

Let z = x1 − k1
k2
x2, then z has dynamics ż = k3x2( k1

k2k3
−

x1).
So z acts as a constrained integral variable for output y =

µ − x1 where µ = k1
k2k3

. This system uses both the linear
change of coordinates method and the constrained integral
variable method. Note that ACR is a special case of PA, as PA
could reject disturbances other than the total concentration.

Fig. 2. Graphical depiction of various constructions of integral variable
for unknown plants with the concentration adaptation output. (A) Graph
showing the general task of designing an integral variable for an unknown
plant, assuming we can have reactions involving X1 (solid arrow), while
postponing feedback actuation for future considerations (dashed arrow). (B)
Integral variable constructed via the constrained integral method. Here Z
self-replicate itself with rate µ, and X1 catalyze degradation of Z with rate
1. (C) Integral variable constructed via the change of coordinate method.
Here Z1 and Z2 annihilate each other, Z2 is produced at constant rate
µ, and X1 catalyze production of Z2 with rate 1. (D) Integral variable
constructed via the approximation method. Here Z is produced at constant
rate µ, and X1 acts as an enzyme that catalyzes degradation of Z through
a first order Hill function kinetics.

E. Integral variable design for unknown plants

Previous studies in biological control mostly focused on
discovering integral variables in specific circuits found in
nature. Because there is no clear divide between the plant
and the controller in a closed loop system, the constructions
of integral variables previously found usually depend heavily
on the specific biomolecular mechanisms of that system [12].
This dependence has limited the use of these constructions
in biological control.

Following the separation of controllers and plants in con-
trol theory, we consider the problem of constructing integral
variables for arbitrary plants, which is useful for biological
control. This is easy in electrical and cyberphysical systems,
but nontrivial and relatively unstudied in biological control.
Indeed, the first success in finding an integral variable
construction for arbitrary plants in 2016, the sequestration
feedback controller, has led to theoretical and experimental
progress in biological control [6].

To illustrate the power of the “forward” approach taken in
this paper, we show how we can analytically solve for such
constructions. We derive two new constructions of integral
variables for unknown plants that has biological relevance.

The general situation we consider is illustrated in Figure
2-A. For unknown plants, we want to design an integral
variable implemented by controller species Z1, ..., Zm to
drive one plant species X1 to a fixed concentration µ that
we can tune externally. This corresponds to designing CRN
dynamics of chemical species Z1, ..., Zm. Since we only
know that the plant will contain species X1 while knowing
nothing else about the plant, dynamics of zi’s can only
depend on each other and x1, but nothing else. From (C1),



we have

żi =
〈
v+,i,m(x1, z)

〉
− zi

〈
v−,i,m(x1, z)

〉
, (3)

where i = 1, ...,m, z = (z1, ..., zm) ∈ Rm is the vector
of concentrations of species Z1, ..., Zm, and m(x1, z) is the
vector of all monomials in x1, z1, ..., zm.

The goal is to use change of coordinates, constrained
integral feedback, and approximation methods to find z∗ =
`(z1, ..., zn) for some function ` such that ż∗ ≈ P (x1, z)y
for some polynomial P , where y = µ − x1. In general,
the solution set is too large to be useful for biological
construction, so we want to pose additional constraints to
focus on solutions that are implementable and interpretable.
In the following, we focus on deriving the simplest possible
integral variable constructions in CRN using only one of the
three approaches.

1) Constrained integral feedback: The easiest to derive
is the constrained integral variable method. Since we do not
use approximations or change of coordinates, we require z∗

to be the concentration of one of the Zi chemical species
with dynamics ż∗ = P (x1, z)y.

We consider m = 1, so we only have one controller
chemical species, Z. Its concentration, z, has dynamics

ż =
〈
v+,m(x1, z)

〉
− z

〈
v−,m(x1, z)

〉
. (4)

It can be shown through routine calculations that ż = (µ−
x1)P (x, z)z satisfies the form of (4) for any polynomial P ,
while no lower degree production or degradation terms does.
Therefore, taking P (x, z) to be 0 degree, i.e. a constant,
gives the simplest possible implementation. Focusing on the
y = µ− x1 case, we have z dynamics

ż = (µ− x1)z,

which can be implemented by the simple chemical reactions

Z
µ−→ 2Z, X1 + Z

1−→ X1.

A graphical depiction of this integral variable design is
shown in Figure 2-B. Note that population control circuits
are often special cases of this design [4], [3], [2].

2) Change of variable: The sequestration feedback con-
struction of an integral variable uses change of coordinates
[6]. We can derive this construction by restricting to linear
change of coordinates and posing constraints on the number
of controller species allowed (m) as well as on the degrees of
monomials allowed for production (dp) and degradation (dd)
terms. Since we do not use approximations or constrained
integral variables, the goal is to find z∗ = aᵀz such that
ż∗ = y = µ− x1.

We know that m = 1 is infeasible, as z∗ cannot be x1.
So the lowest possible m is 2. For this case, we can take
z∗ = z1 + az2 for constant a ∈ R, then according to (C1),
z∗ satisfy

ż∗ =
〈
v+,1 + av+,2,m(x1, z1, z2)

〉
−
(〈
z1v
−,1 + az2v

−,2,m(x1, z)
〉)

=µ− x1.
(5)

In terms of notation, we use v+,1ijk to denote the coefficient
of monomial xi1z

j
1z
k
2 in the production polynomial of z1,

and v−,1ijk to denote the coefficient of the same monomial in
the degradation polynomial of z2. Recall that (C1) forces
v−,1i0k = 0, for example.

With (5), we can look at the polynomials on the two sides
of the equation and match the coefficients term by term. For
dp = 0, there can be no linear term in x1, so the lowest
possible dp is 1. Taking dp = 1, dd = 0, we find that (5)
can only be satisfied if there is no degradation at all (e.g.
v−,1010 = v−,2001 = 0), or if there is matching parameters that
cannot be from the same reaction, i.e. v−,1010 = v+,1010 and
v−,2001 = v+,2001 . The former results in instability, while the
latter violates constraint (C2).

So we are forced to look at dp = dd = 1. For this case, the
only way for (5) to be satisfied without instability or violation
of (C2) is to have v+,1000 + av+,2000 = µ, v+,1100 + av+,2100 = −1,
v−,1011 = v−,2011 6= 0, and the other parameters zero. Among
these, v−,1011 = v−,2011 6= 0 is allowed if they come from the
same reaction Z1 +Z2 → C, where C is some set of species
not including Z1 and Z2, such as ∅ or X1.

The following set of reactions satisfies the above:

X1
1−→ X1 + Z2, Z1 + Z2

η−→ ∅, ∅ µ−→ Z1.

Here X1 catalyzes the production of Z2, Z1 is produced with
a constant rate µ that is our reference, and Z1 together with
Z2 annihilate each other. This design is found by ingenuity
in [6], while we can formally derive it. A graphical depiction
of this design is shown in Figure 2-C.

3) Approximation: The goal here is to find z∗ that is
the concentration of one of the Zi chemical species with
dynamics ż∗ ≈ y = µ−x1, since we use only approximation.

To systematically search for possible constructions of in-
tegral variables, we need to search through dynamics that are
possible through time scale separation and large parameter
asymptotics. This can be done with the help of general
theories on time scale separation in CRNs developed in,
e.g., [29], [30], and is a goal for furture work. Here we
restrict ourselves to first degree Hill functions that are readily
implementable by enzymatic reactions that satisfy Michaelis
Menten dynamics.

We again consider the simplest possible case where m =
1, so z∗ = z, concentration of the only controller species
Z. In addition, we require dd = dp = 0, with Hill function
degradation term catalyzed by x1. This gives

ż = v+0 − v
−
0 z − vh

K

K + z
x1. (6)

By taking v+0 = µ, v−0 = 0, vh = 1, and the approximation
that K is very small compared to z, we have ż ≈ µ−x1 = y.
The dynamics of z can be implemented by the following
reactions:

∅ µ−→ Z, X1 + Z
k+−−⇀↽−−
k−

C
kf−→ X1.

Here Z is produced with constant rate µ, and X1 acts as an
enzyme that catalyzes the degradation of Z. Under quasi-
steady state approximation [1], z satisfy (6) with vh = kf



and K = k−+kf

k+ . The graphical depiction of this construction
is shown in Figure 2-D.

The above examples show that we can systematically
derive constructions of integral variables for unknown plants,
starting from constraint (C1) with the help of constraint (C2).
When we know more about the plant, such as when we know
X2 produces X1, we can perform similar calculations to
derive constructions of integral variables suitable for these
cases.

F. Integral variable design for incoherent feedforward

The drawback of the above approach in integral variable
design is that it always gives rise to a feedback system.
This is because the integral variable is constructed by con-
troller species outside the plant, as the plant is unknown
or unmodifiable. Hence the integral variable has to be fed
back to the plant to be effective. Technically, feedback is
usually required to guarantee that the closed loop system is
stable. However, many regulatory networks with PA found
in biological systems are of the form called incoherent
feedforward (IFF), which does not have feedback [28], [23].
IFF networks have the input disturbance influencing two
branches of the network that both influence the target species,
one activating, and one inhibiting. IFF networks then need
to guarantee that the magnitude of the activating branch
matches that of the inhibiting branch through structured
physical interconnections, so as to obtain perfect adaptation.

Due to this canceling mechanism of IFF, it can only be
obtained by a design problem where we are given how the
disturbance enters the target variable while we can design
the entire closed loop system. Since we need to construct
a feedforward system that has a feedback interpretation, we
have to use the change of coordinates method as it is the only
one of the three methods that can transform a feedforward
system into a feedback one. Furthermore, to design an IFF
system we need to design a closed loop system with stability
considered, which is distinctively different from the integral
variable design problem with unknown plants where design
of feedback actuation and stability are postponed to the
moment when we know more about the plant.

We show below that we can derive IFF structures through
similar procedures as in integral variable design for unknown
plants in Section III-E.

Consider the simplest IFF design problem where distur-
bance W enters plant species X1 by catalyzed production
W

1−→ W + X1. Since we do not modify how disturbance
enters x1, by (C1) x1 has dynamics

ẋ1 = w +
〈
v+,1,m(x1, x2)

〉
− x1

〈
v−,1,m(x1, x2)

〉
.

The simplest inhibiting branch would have one additional
plant species, call it x2, with dynamics

ẋ2 =
〈
v+,2,m(x1, x2, w)

〉
− x2

〈
v−,2,m(x1, x2, w)

〉
.

Note that the monomials include w in dynamics of x2 as we
can design how disturbance enters in the inhibiting branch.

Assuming we use linear change of coordinates and con-
strained integral variables but not approximations, the goal

is to find z = x1 + ax2 with constant a ∈ R such that
ż = P (x1, x2)y = P (x1, x2)(µ − x1) for some polynomial
P .

Now we can again constrain the degree of monomials in
the production (dp) and degradation (dd) terms to find the
simplest possible design. The (dp, dd) = (0, 0) and (1, 0)
cases are impossible as both require x2 to have a vanishing
degradation propensity. The (0, 1) case is impossible as
disturbance w cannot enter x2 to construct z. So the simplest
case is the (dp, dd) = (1, 1) case, where the system dynamics
satisfy

ẋ1 =v+,1
00 + (v+,1

10 − v−,1
10 )x1 + v+,1

01 x2 + w − v−1
20 x2

1 − v−,1
11 x1x2,

ẋ2 =v+,2
000 + v+,2

100x1 + (v+,2
010 − v−,2

010 )x2 + v+,2
001w

− v−,2
020x

2
2 − v−,2

110x1x2 − v011x2w.

Looking at ż = d
dt (x1 +ax2) = P (x1, x2)(µ−x1), we can

just match coefficients term by term to see the constraints.
If P (x1, x2) = P (x1), the equation for ż cannot be satisfied
as it again requires all degradation terms of x2 to have
coefficient 0 if we satisfy constraint (C2). So the simplest
case beyond these is P (x1, x2) = x2. For this case the

constraints turns out to be a = −
(
v+,2001

)−1
to cancel out

the w term, v+,101 + av+,2010 − av−,2010 = µ for the x2 term,
and v−,111 + av−,2110 = 1 for the x1x2 term. One special case
that satisfies the above is the “Sniffer” model presented in
Section III-E.2.

We see from this example that we can systematically de-
rive CRNs that satisfy IFF as well, given how the disturbance
enters one branch of the network.

IV. DISCUSSION

In this work we investigated a control theory framework
to understand perfect adaptation in biomolecular reaction
networks. This framework is of a “ground-up” or “forward
engineering” flavor, with strong focus on the physical con-
straints on the dynamics of chemical reaction networks.
Considering the task of concentration adaptation, we showed
that physical constraints force biological systems to encode
perfect adaptation properties in the network architecture
instead of dynamics of some chemical species. We then
developed systematic ways to derive reaction networks with
perfect adaptation and constructions of integral variables for
unknown plants.

We saw that the severe constraints on possible dynam-
ics enabled rather different approaches to control problems
for biomolecular systems. Notably, constraints on possible
controller dynamics is highly relevant not only to biological
control. For example, in legged robotics, hard constraints
built into the robot by good mechanical design could result in
much easier to control robots (see page 25 in [31]). However,
in contrast with cyberphysical controller design where all
calculations are done in computers, the design of these hard
constraints falls into this category of controller synthesis with
severe physical constraints. For control problems where the
cyberphysical approach of sensor-computer-actuator work
flow encounters difficulties, controller synthesis that results
in physically implementable dynamics may point to alterna-
tive solutions.



In this work, we mostly focused on methods that can
derive integral variables that are implementable by chemical
reactions. It should be emphasized that designing an integral
variable is only the first step of solving the concentration
adaptation problem. The system only performs as desired if
we also have stability, which is mostly ignored in integral
variable design. In general, we also need to design feedback
actuations that use integral variables to actuate the plant to
guarantee stability (the dashed arrows in Figure 2). These
feedback actuation designs are rooted in characterizations of
stability, which is an important topic to be studied further
with this physical constraints based framework.

As was discussed in Section II, the PA property of a CRN
is naturally robust to uncertainties that preserve stability
of the system and structure of the integral variable. This
has nontrivial biological implications. For example, for the
population control CRN described in Section III-E.1, the
detailed dynamics of the toxin does not matter as long as the
cell population dynamics is intact and the system is stable.

Lastly, the physical constraints this work focused on can
act as a parameterization scheme of possible controllers with
perfect adaptation property. This parameterization together
with nonlinear controller synthesis methods [32] may lead to
a general controller synthesis method for chemical reaction
systems.
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