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Abstract— Noise is intrinsic to many important regulatory
processes in living cells, and often forms obstacles to be
overcome for reliable biological functions. However, due to
stochastic birth and death events of all components in biomolec-
ular systems, suppression of noise of one component by another
is fundamentally hard and costly. Quantitatively, a widely-
cited severe lower bound on noise suppression in biomolecular
systems was established by Lestas et. al. in 2010, assuming
that the plant and the controller have separate birth and
death reactions. This makes the precision observed in several
biological phenomena, e.g., cell fate decision making and cell
cycle time ordering, seem impossible. We demonstrate that cou-
pling, a mechanism widely observed in biology, could suppress
noise lower than the bound of Lestas et. al. with moderate
energy cost. Furthermore, we systematically investigate the
coupling mechanism in all two-node reaction networks, showing
that negative feedback suppresses noise better than incoherent
feedforward achitectures, coupled systems have less noise than
their decoupled version for a large class of networks, and cou-
pling has its own fundamental limitations in noise suppression.
Results in this work have implications for noise suppression
in biological control and provide insight for a new efficient
mechanism of noise suppression in biology.

I. INTRODUCTION

Many important processes in living cells, such as gene
expression, are intrinsically stochastic [1]. The effect of noise
is further enhanced by several biological factors, such as the
low copy number of many important molecules including
DNA, and the fact that even controllers performing noise
suppression consists of intrinsically stochastic molecular
components themselves [1], [2], [3]. In particular, assuming
that the controller and the plant dynamics are separate
biochemical processes, Lestas et. al. [2] showed that there is
a severe lower bound on the noise for the plant component of
a chemical reaction network due to the intrinsic stochasticity
of controller components in chemical reactions. Quantita-
tively, it states that the lower bound for noise is typically
inversely proportional to the quartic root of the signaling
rate, in contrast with a square root result that is familiar
in electrical engineering and statistics. This bound implies
that significant noise is inevitable, despite the regulatory
mechanisms found in biology that could suppress noise [4].
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Specifically, the bound implies that noise suppression in
cells is usually prohibitively expensive, as reducing noise
by 10 fold would require 10,000 fold increase in signaling
rate, which corresponds to 10,000 fold faster production and
degradation of molecules.

On the other hand, we observe almost deterministic pre-
cision in many biological processes, such as the synchro-
nization of molecular oscillations in mammalian circadian
clock [5], precise timing of gene expression dynamics in
cell cycle [6] and the cell type differentiation through gene
expression patterns during development [7]. This observation
naturally urges one to seek biologically relevant low-cost
noise suppression mechanisms that are beyond the scope of
systems investigated in [2].

In this work we propose coupling as such a noise suppres-
sion mechanism that is omnipresent in biological processes.
Coupling is used here to describe chemical reactions where
the number of more than one chemical species are altered
simultaneously, e.g., reactions converting one species into
another one, or those producing one molecule each of
two species simultaneously. Hence, coupling naturally goes
beyond the assumption in [2] that the plant and the controller
dynamics are separate biochemical processes, since the in-
crease and/or decrease of a plant component and a controller
component could be coupled in a reaction once we allow
coupling.

Many natural and genetically engineered circuits in biol-
ogy have a coupling interpretation. In bacteria, genes are
commonly grouped into operons, so they are transcribed and
regulated together [8]. Non-coding RNAs with regulatory
functions such as microRNA and siRNA are commonly
or designed to be in the same transcript with the mRNA
they regulate [9], [10]. In metabolic networks, signaling
cascades and allosteric regulation, one protein may switch
from an inactivated state to an activated state by a reaction
which may be regulated by the protein or its downstream
products [8], [11]. Regulatory functions in synthetic biology
are commonly implemented in binding proteins linked with
functional domains, where the link is cut to transform
the protein-domain complex into a protein and a domain
separately, which could have different regulatory properties
than the complex [12], [13].

The fact that specific coupling mechanisms, e.g. putting
genes on the same operon, could influence the system’s per-
formance is commonly known. Coupling as a noise suppres-
sion mechanism is also rather intuitive from an information-
theoretic point of view. Indeed, earlier studies [10], [14],
[15], [16] have shown a few specific examples of coupled
reactions could have less noise than the decoupled versions.



However, it is not known what are the general conditions
for coupling to suppress noise, the fundamental limitations
on noise suppression once we allow coupling (in the spirit
of [2]), or how to use coupling when designing biochemical
network architectures.

In this work we set off to provide some initial answers
to these problems. After reviewing the notions of chemical
reaction networks and methods to analyze them in Section II,
we show how coupling could suppress noise through a simple
example in Section III-A. We then demonstrate the power
of coupling via a biologically plausible coupled system that
suppresses noise below the lower bound of Lestas et. al. [2]
in Section III-B. Following Lestas et. al. [2], we establish
a similar bound for coupled reaction networks in Section
III-C to better understand how it compares with decoupled
systems and when is coupling most useful. Lastly, in Section
III-D, we investigate all possible two-node chemical reaction
network architectures to gain insight on the advantage of
coupled networks versus decoupled ones, feedback versus
feedforward architectures, limitations of coupling, and how
to choose network architectures to maximize coupling’s
effect on noise suppression.

II. BACKGROUND

A. Chemical Reaction Networks

Here we provide a minimum background on stochastic
chemical reaction networks (CRNs) and relevant analysis
methods. For more details, see [3], [17], [18].

A chemical reaction network (CRN) is a collection of
reactions of the following form:

x
rk(x)−−−−−−−→ x+ dk,

where x ∈ Zn≥0 is the state vector describing the number
of molecules of the n chemical species in the system,
k = 1, ...,m indexes m reactions, and rk : Rn → R≥0
is the propensity function which describes the rate of re-
action k. Technically, the system dynamics is described as
a continuous-time Markov jump process with x ∈ Zn≥0 as
states of the system, and rk(x)∆t describes the probability
that, if the system is in state x at time t, it will jump to
state x + dk within time ∆t, for small ∆t. Note that even
though the mass action law, where rk are always a special
form of polynomial of x, is commonly assumed [19], we do
not make that assumption here.

The stochastic description of the system dynamics is
described in terms of the chemical master equation (CME),
which describes the evolution of the probability distribution
for molecular counts x [20]:
d

dt
P (x, t) =

∑
k

(
rk(x− dk)P (x− dk, t)− rk(x)P (x, t)

)
where P (x, t) is the probability that the system has x
number of molecules at time t.

For the mean, we have

d

dt
〈xi〉 =

d

dt

∑
x

xiP (x, t) =

〈∑
k

dikrk(x)

〉

=

〈 ∑
k:dik>0

dikrk(x)

〉
−

〈 ∑
k:dik<0

|dik| rk(x)

〉
≡
〈
R+
i (x)

〉
−
〈
R−i (x)

〉
,

where the last equality was used as the definition for R+
i

and R−i . R+
i , the birth flux of xi, is the summed rate of all

reactions that increases xi, while R−i , the death flux, is the
summed rate of all reactions that decreases xi. Note that, at
steady state, we have

〈
R+
i

〉
=
〈
R−i
〉
.

It is worth noting that, in the limit where the reaction
volume is large while the number of molecules per volume
remains finite (made precise in [21]), the system dynamics
can be described by a deterministic rate equation:

dx̃i
dt

=

m∑
k=1

dikrk(x̃) = R+
i (x̃)−R−i (x̃),

where x̃ ∈ Rn≥0 is the continuous concentrations of chemical
species, instead of discrete molecular counts x ∈ Zn≥0.

Through similar calculations as in the equation for the
mean, we see that, at steady state, we have the following
equation for covariance:

Cov
(
xi, R

−
j −R

+
j

)
+Cov

(
xj , R

−
i −R

+
i

)
=
∑
k

dikdjk 〈rk〉 .

One major achievement of the theoretical investigations in
[3] is the re-writing of the above equation using physically
interpretable quantities. The re-written equation is as follows:

1

τj

Cov
(
xi, R

−
j −R

+
j

)
〈xi〉 〈Rj〉

+
1

τi

Cov
(
xj , R

−
i −R

+
i

)
〈xj〉 〈Ri〉

=
1

τi

〈
sj|i
〉

〈xj〉
+

1

τj

〈
si|j
〉

〈xi〉
:= Dij =

∑
k dikdjk 〈rk〉
〈xi〉 〈xj〉

.

(1)

Here τi, the average life time of an xi molecule, and
〈
si|j
〉
,

the average step sizes or co-step sizes, are introduced. As
these are key concepts utilized for this work, they are
explained in detail below.

Step sizes. For i = j, we define the average step size of
xi as

〈
si|i
〉
≡
∑
k |dik| ρik, where ρik = |dik|〈rk〉∑

k′ |dik′ |〈rk′ 〉
, the

probability that when xi changes, that change comes from
reaction k. The notation

〈
si|i
〉

signifies that this is average
step size of xi conditioning on that xi changes. For example,
if x1 has only one birth reaction x1 → x1 + 1 and one death
reaction x1 → x1 − 10, then

〈
s1|1
〉

= 1+10
2 , because birth

and death fluxes are always equal at steady state.
For i 6= j, the co-step size is defined as

〈
sj|i
〉
≡∑

k ρik |djk| sgn {dikdjk}. So
〈
sj|i
〉

is the average change of
species xj conditioning on that xi changes simultaneously in
these reactions. Note that this could be positive or negative.
From the definition, we see that the co-step size

〈
si|j
〉

captures whether birth and death of xi and xj are coupled
in some reaction. For example, if the only reaction that
have simultaneous changes to x1 and x2 is (x1, x2) →
(x1 − 1, x2 + 1), i.e. one x1 becomes one x2, and x2 have
no other birth reactions, then

〈
s1|2
〉

= − 1
2 . It is negative

because when x1 decreases, x2 increases. It is divided by 2
because this reaction accounts for all of x2’s birth, therefore
half of x2’s changes.

Note that the co-step sizes and the birth and death fluxes



are related to each other:
〈
sj|i
〉
〈Ri〉 =

〈
si|j
〉
〈Rj〉.

Life times. For general stationary stochastic processes de-
scribing the increase and decrease of a quantity, e.g. molecule
count, we can define the average life time as the average
time that one molecule lasts before its degradation. Little’s
law in queueing theory then states that the average life time
is equal to the ratio between the average number of such
molecules and its average birth or death rate, regardless of
how nonlinear the reaction rates are. This could be intuitively
understood through the following non-rigorous calculation,
where

∫ T
0
xi(t)dt is the sum of life time of all xi molecules

in T , and
∫ T
0
R+
i (t)dt is the total number of xi molecules

born in T :

τi ≡
limT→∞

∫ T
0
xi(t)dt

limT→∞
∫ T
0
R+
i (t)dt

=
limT→∞ 〈x〉T

limT→∞
〈
R+
i

〉
T

=
〈xi〉〈
R±i
〉 .

Therefore, we have τi = 〈xi〉
〈R±i 〉

, the average life time or the
time scale of xi.

B. Linear Noise Approximation
We see that the covariance equation (1) involves terms

of the form Cov
(
xi, R

±
j

)
, which would involve higher

order moments if R±j is nonlinear. The resulting system of
moment equations is generally infinite dimensional and hard
to solve. This naturally calls for moment closure methods
to approximately solve this system [22]. One particularly
simple and analytically tractable method is linear noise
approximation (LNA). LNA could be derived by assum-
ing that the mean 〈x〉 is close to a fixed point so that
〈x〉 = R+

j (〈x〉), and by simply approximating birth and
death rates by their first order Taylor expansion: R−j (x) ≈

R−j (〈x〉)+
∑m
`=1

∂R−j (〈x〉)
∂x`

∆x`. Define the logarithmic gains

Hjl ≡
(
∂R−j (〈x〉)

∂x`

〈x`〉
〈R−j 〉

− ∂R+
j (〈x〉)
∂x`

〈x`〉
〈R+

j 〉

)
[17], equation (1)

becomes
1

τj

m∑
`=1

Hjlηil +
1

τi

m∑
`=1

Hilηjl = Dij .

In matrix form, we have
Mη + ηMᵀ = D, (2)

where ηij = ηji =
Cov(xi,xj)
〈xi〉〈xj〉 , Dij = Dji = 1

τi

〈sj|i〉
〈xj〉 +

1
τj

〈si|j〉
〈xi〉 =

∑
k dikdjk〈rk〉
〈xi〉〈xj〉 , Mij =

Hij
τi

. Note that an internal
relation needs to be utilized when solving this system of
equations: 〈

si|j
〉

〈xi〉 τj
=

〈
sj|i
〉

〈xj〉 τi
, (3)

which is derived from the relation
〈
si|j
〉
〈Rj〉 =

〈
sj|i
〉
〈Ri〉.

Equation (2) is called the fluctuation dissipation theorem
in the statistical physics community [23] and Lyapunov equa-
tion in the control community [24]. Note that the normalized
covariance η is a solution to this Lyapunov equation shows
that it is finite if and only if the linearized deterministic
system d

dtx = ∇〈x〉(R+ − R−)x is asymptotically stable,
i.e. −M is Hurwitz. Hence there exists a general relationship
between deterministic stability and stochastic variance [25].

As LNA is the main tool of analysis in this work, more
comments on the effectiveness of LNA is in order. Although
LNA was historically derived as a second order system size
approximation of the chemical master equation, resulting in
a Fokker-Planck equation with a stochastic differential equa-
tion interpretation and a Gaussian steady state distribution
[26], this is not necessary. LNA, as well as higher order
approximations, could be derived as Taylor expansions on
the moment equations [27]. In fact, it could be shown that
LNA could be interpreted as a linear propensity CRN approx-
imation that preserves discreteness and non-negativity of the
state variables (see Section V-B). So violating discreteness
and non-negativity are not valid grounds for rejecting the
usefulness of LNA. LNA fails just like how deterministic
linearization fails: when nonlinearity significantly influences
the state trajectory.

III. RESULTS

A. Coupling could reduce noise

Here we illustrate how coupling could reduce noise
through one simple example with very explicit analysis.

Consider the following feedforward network, called a
“sniffer” system in biological literature [28].

x1
w−−−−−−−→ x1 + 1, x2

w−−−−−−−→ x2 + 1,

x1
kx1x2−−−−−−−→ x1 − 1, x2

x2/τ2−−−−−−−→ x2 − 1.
(4)

It consists of two components x1 and x2, both activated by
an external input w, while x2 acts as an enzyme that catalyze
the degradation of x1. The system (4) does not couple the
birth events of x1 and x2, so they are produced with rate
w through separate reactions. The corresponding coupled
version of system (4) keeps the last two death reactions the
same while substituting the following reaction for the first
two birth reactions:

{x1, x2}
w−−−−−−−→ {x1 + 1, x2 + 1}. (5)

For both coupled and decoupled versions, we see that the
birth rates of x1 and x2 are R+

1 = R+
2 = w, their death

rates are R−1 = kx1x2, R−2 = x2/τ2, and their step sizes
are 〈s11〉 = 〈s22〉 = 1. For the coupled version, the co-step
sizes are 〈s12〉 = 〈s21〉 = 1

2 , indicating half of the flux are
through a coupled reaction where x1 and x2 are increased
or decreased with the same number, while both co-stepsizes
are 0 for the decoupled version. Applying LNA (see Section
II), the steady states are 〈x1〉 = τ2/k, 〈x2〉 = w/τ2 and the
time scales are τ1 = 1/(k 〈x2〉) = τ2

kw . The gain matrix is

H =

[
1 1
0 1

]
. The diffusion matrix D in equation (2) are

the following:

Dc =

[
2

τ1〈x1〉
1

τ2〈x1〉
1

τ1〈x2〉
2

τ2〈x2〉

]
, Dd =

[
2

τ1〈x1〉 0

0 2
τ2〈x2〉

]
,

whereDc is for the coupled case andDd is for the decoupled
case.

Solving equation (2) with D = Dd for the decoupled



case, we have

η22 =
1

〈x2〉
, η12,d = − τ2

τ1 + τ2

1

〈x2〉
,

η11,d =
1

〈x1〉
− η12,d =

1

〈x1〉
+

τ2
τ1 + τ2

1

〈x2〉
.

We see that the noise of x1 in the decoupled case, η11,d,
can be decomposed into two parts: the first term 1

〈x1〉 that
is the intrinsic noise of x1 doing birth-death by itself, and
the second term that is the noise of x2 carried over to x1
through its regulation on x1.

In comparison, solving equation (2) with D = Dc for
the coupled case, with the additional constraint τ2 〈x1〉 =
τ1 〈x2〉 which is a consequence of equation (3), we have the
following:

η22 =
1

〈x2〉
, η12,c = 0, η11,c =

1

〈x1〉
.

Note that η11,c is the same as that of a simple birth-death
process of x1 by itself, with no interaction with x2 at
all. The noise for the decoupled case is larger than the
coupled case by η11,d− η11,c = τ2

τ1+τ2
η22, x2’s noise passed

onto x1 through their interaction. This indicates that the
noise contributed to x1 from the interaction with x2 in the
decoupled case is cancelled out here due to coupling.

This example shows that coupling could indeed reduce
noise. In fact, similar circuits have been analyzed in [14],
[10] that report specific RNA circuit designs with coupling
could suppress gene expression noise.

B. Coupling suppresses noise below Lestas et. al. bound

We show here through a biologically plausible example
that coupled systems could have noise below the bound
described in [2].

Consider the following system:

x1
x1/τ1−−−−−−−→ x1 − 1, x2

k/x1−−−−−−−→ x2 + 1,

{x1, x2}
x2/(nτ2)−−−−−−−→ {x1 + 1, x2 − n}.

(6)

Here n molecules of x2 can be converted to 1 molecule of
x1, resulting in a negative coupled reaction. Besides this, x1
has first order death reaction by itself, while x2 is produced
through a reaction that is suppressed by x1.

When n = 1, the coupled reaction could be an enzyme
switching from an inactive state x2 into an active state x1,
which in turn suppresses the production of this enzyme x2.
Alternatively, it could be a binding protein in complex with
a functional domain x2 being digested into separate parts,
where the free binding protein x1 suppresses the production
of this complex x2. When n > 1, the coupled reaction
could be protein subunits x2 forming a protein complex
x1 involving n such subunits (e.g. n = 2 corresponds
to a dimer), while x1 has one of its active functions the
suppression of subunit x2’s production. Therefore, this sys-
tem is biologically plausible with potential straight-forward
implementations through tools in synthetic biology.

To compare with the Lestas et. al. bound, we need to delve
into the details of their work [2]. Lestas et. al. considered

reaction networks of the following form:

x1
u[It(x2)]−−−−−−−→ x1 + 1, x1

γx1−−−−−−−→ x1 − 1,

x2
f(x1)−−−−−−−→ x2 + 1, x2

g(x2)−−−−−−−→ x2 − 1,
(7)

where x1 is the plant species whose noise is to be controlled,
while x2 is the signaling controller species whose informa-
tion on x1 is the only source of information on x1 we could
use to suppress its noise. The signaling of x2 is through
its birth events, as the birth rate f is dependent on x1. For
example, if f(x1) = x1, so x1 catalyzes the production of
x2, then we would estimate x1 to be large if we observe
a high density of x2’s birth events. Therefore, information
about x1’s abundance could be extracted through a trajectory
of x2’s birth events. Because x2’s death rate g does not
depend on x1, the death events does not give any information
about x1. So we ignore death events and focus on x2’s birth
events. On the other hand, with the information about x1
extracted through observations on x2, we try to suppress x1’s
noise by controlling its (possibly non-Markovian) production
rate, u[It(x2)], which could be an arbitrary non-anticipatory
functional allowing dependence of all the information It(x2)
of past x2. In control theory terms, x1 is the plant, birth
events of x2 with signaling rate f is the sensor, and x1’s
birth rate u is the controller actuation.

Lestas et. al. then proceeded to use sensor and actuator
separation in order to first bound the channel capacity in
terms of f and then bound the noise in terms of channel
capacity. The bounds are the following:

C = 〈f〉 log

{
1 +

Var {f}
〈f〉2

}
, η11 ≥

1

〈x1〉
1

Cτ1 + 1
, (8)

where C is an achievable upper bound for the channel
capacity of x2’s birth events assuming finite mean and
variance of f , and τ1 is the average life time of x1 as defined
in Section II, which is equal to 1/γ for system (7). If we
can write the mean and variance of f in terms of those of
x1 (e.g. when f ∝ x1), then these two bounds could be
combined to produce a lower bound of x1 in terms of only
x1’s mean, variance, and time scales. Importantly, when f
is a linear function of x1, i.e., f = αx1, this bound is:

η11 ≥
1

〈x1〉
2

1 +
√

1 +N2/N1

, (9)

where N1 = 〈x1〉 and N2 = α 〈x1〉 τ1 are the effective
signaling rates, defined as the number of birth events of x1
and x2 during an average life time of x1, i.e., τ1, respectively.
This is the quartic bound for the coefficient of variation
(
√
η11) mentioned in Section I.
Going back to our example (6), we see that the number of

x2 molecules consumed in the coupled reaction, n, is equal to
the relative signaling rate N2

N1
as defined above. So we expect

to see better noise suppression with increasing n. The birth
rate satisfies f = k/x1, which is not a linear function of x1,
so we need to use equation (8) instead of the linear bound
(9). In simulation, we need to estimate mean and variance of
f to calculate C, which in turn enables calculation for lower
bound of η11 in equation (8). It is important to note that we
violated none of the assumptions about (7) in Lestas et. al.



Fig. 1. Noise of example (6) in Section III-B compared to Lestas et. al.
bound in equation (8) [2]. The y axis is the variance divided by mean of
x1, or its Fano factor. The x axis is the signaling rate N = N2/N1, taking
integer values from 1 to 10. The Gillespie simulation results of system (6)
are the black dots (coupled-sim), in good agreement with the theoretical
results based on LNA shown as the light grey curve (coupled-theory). The
theoretical bound of equation (8) with estimated capacity is shown as the
light red curve (bound). The same simulation results for the decoupled
version of system (10) are the blue dots (decoupled-sim). Parameters used
for simulation: k = 10000,τ1 = 100,τ2 = 1.

bound (8) except allowing coupling among reactions.
Using LNA, we could analytically solve system (6) to have

η11 = 1
〈x1〉

n+1
4n in the fast controller dynamics limit, where

τ2 � τ1 (see Section III-D). The simulation result comparing
the simulated noise of x1, its LNA analysis, and the Lestas et.
al. bound in equation (8) is shown in Figure 1. We see that
the noise is indeed well below the theoretical bound of Lestas
et. al. for not too large n, which is the more biologically
plausible parameter regime.

We also did simulation for the decoupled version of
system (6), where the following two reactions substituted
the coupled reaction:

x1
x2(nτ2)−−−−−−−→ x1 + 1, x2

x2(nτ2)−−−−−−−→ x2 − n. (10)
The simulation results for this decoupled version are the
blue dots in Figure 1, showing that it is indeed above the
Lestas et. al. bound, as the decoupled case satisfied all of
the assumptions in their work [2].

It should also be noted that although this specific example
(6) could achieve noise below the bound of [2], the scaling of
noise in N in this system is actually worse than quartic root
because it has a lower bound of 1

4 , as is shown by the black
curve’s convergence to 1

4 in Figure 1 as well as the LNA
calculation. We will see in Section III-D that there exists
in general a non-zero lower bound on the part of noise that
can be suppressed through coupling. In other words, once
the architecture of a system is determined, there is a lower
bound on how much noise can be reduced by coupling. For
a direct comparison, in the following section, we establish a
lower bound on noise suppression when coupling reactions
are allowed using information theoretic methods in [2].

C. Bound on noise suppression with coupling

To better understand how coupling changes the fundamen-
tal limit on noise suppression, here we establish a bound

similar to (9) that allows for coupled reactions. For detailed
derivation, see V-C.

Let us first understand how coupled reactions go beyond
bound (9). Bound (9) assumes that the birth events of x2 is
a Poisson channel whose rate is x2’s birth rates. However,
when the birth or death events of x1 and x2 are coupled,
the mutual information between the two increases, since a
change of x2 due to this coupled reaction always comes with
a known change of x1 at exactly the same time. Hence the
key to establish a bound that includes coupling is in bounding
the mutual information through this coupled birth-death.

Consider a coupled reaction in place of the decoupled
x2 → x2 + 1 in equation (7):

{x1, x2}
w(x1)−−−−−−−→ {x1 − 1, x2 + 1}, (11)

which could be regarded a simple conversion reaction where
one x1 is converted into one x2. We could split this channel
into two Poisson channels, where one is x2 → x2 + 1 with
rate w(x1) just like the decoupled case, and one is x1 →
x1− 1 with rate that is a function of x1 and x2, such that it
becomes infinitely fast whenever it sees x2 change so as to
bring x1 to match the change of x2, and once x1 changed it
becomes 0. In other words, the x1 → x1 − 1 reaction is to
track the change of x2 instantaneously.

With this consideration, we could bound the channel ca-
pacity of reaction (11) by 〈w〉 ln(1+1/ 〈w〉)+Var {w} / 〈w〉.
The first term comes from using equation (8) to bound the
channel capacity of the x2 → x2+1 reaction with rate w(x1).
The second term comes from the infinitely fast reaction
x1 → x1 − 1 mimicing the coupling. If we assume first
order reactions w(x1) = βx1, then we can derive a bound
in a form similar to Lestas et. al. bound in equation (9):

η11 ≥
1

〈x1〉
2

1 +Q+
√

(1 +Q)2 + 4N2/N1

(12)

where Q = N2 ln(1+ τ1/N2) ≤ τ1, and N2 = 〈w(x1)〉 τ1 =
β 〈x1〉 τ1 now is the signaling rate of the coupled reaction.
Note that N2

N1
= βτ1 here. Compared to the decoupled bound

(9), equation (12) contains one more term Q ≥ 0 due to
coupling. Note that this bound depends on the absolute value
of N2 in addition to the relative signaling rate N2/N1.

This means the effect of noise suppression depends on
both N1 = 〈x1〉 and τ1. To unravel this dependence, we
first notice that if τ1 is small, then Q ≈ τ1 is small as
well, so the bound (12) approaches the decoupled bound
(9). Furthermore, since N2

N1
∝ τ1, this means signaling

rate is small in general, yielding η11 ≥ 1
〈x1〉 , the Poisson

noise lower bound. In other words, a small τ1 indicates that
noise suppression below Poisson is infeasible. This is also
intuitively clear, as small τ1 means x1 or plant dynamics is
so fast that our controller is simply too slow to be effective.

If τ1 is not too small, then Q is of order N2. So whether
coupling effect is significant depends on how N2 compares
with N2

N1
. If N1 = 〈x1〉 is small, then relative signaling rate

N2

N1
dominates while coupling has little influence, and the

bound (12) approaches the decoupled bound (9) again, with
minimum CV (i.e.,

√
η11) bounded by quartic root of N2

N1
. If



N1 = 〈x1〉 is not too small, then N2 is comparable with N2

N1

and coupling is advantageous. Indeed, in the other extreme
where N2

N1
� N2, we have η11 ≥ 1

〈x1〉
1

1+Q , so the minimum
CV is inversely proportional to the square root of N2, in
contrast to η11 ≥ 1

〈x1〉 implied by the original Lestas et. al.
bound, saying that minimum CV cannot be sub-Poisson. The
above observation is consistent with example (6) in Section
III-B, where small n corresponds to a N2 comparable with
N2

N1
, and large n corresponds to a N2 dominated by N2

N1
.

In summary, from our lower bound (12) on noise sup-
pression for coupled reactions, we see that coupling is most
effective when τ1 is not too small and when absolute signal-
ing rate N2 is at least comparable with relative signaling rate
N2

N1
. This suggests that coupling is most useful for energy

efficient noise suppression, where N2

N1
is not too large, so

utilizing N2 through coupling to reduce noise further could
be rather significant.

D. Coupling in two-component CRN

Here, in order to discover design principles for noise
suppression with coupling, we study the achievable lower
bound for noise in two-node chemical reaction networks
using LNA, explicitly allowing coupling among reactions.

We start from the following formula for noise for stable
two-node chemical reaction networks using LNA (for deriva-
tion see Section V-B):

η11 ≥
1

H11 〈x1〉
min

{〈
s1|1
〉
,

1

1 +K

(〈
s1|1
〉
− 2k

∣∣〈s1|2〉∣∣+ k2
〈
s2|2
〉

N

)}
.

(13)

Here N = N2

N1
=
〈R±2 〉τ1
〈x1〉 , with N1,N2 being the signaling

rates as in the Lestas et. al. bound in equation (9), k =
H12

H22
sgn

{〈
s1|2
〉}

, and K = −H12H21

H11H22
. k is the controller

actuation gain, as H12 is the logarithmic gain of x2’s
influence on x1’s birth and death rates. The sign of

〈
s1|2
〉

enters k so that the sign of k is meaningful as well: k < 0
always implies amplification of noise, while k > 0 may result
in suppression of noise. K is the closed loop gain, with
negative sign in front to again make positive K correspond
to noise suppression and negative K, noise amplification.

The two terms in the minimization in equation (13) are
achievable (see Section V-A). η11 achieves the first term
if the controller time scale is much larger than the plant
time scale with τ1 � τ2, while the second term is achieved
when the controller time scale is much faster than the plant
time scale with τ1 � τ2. It is reasonable that η11 becomes
η11,nc ≡

〈s1|1〉
H11〈x1〉 when the controller x2’s dynamics is very

slow, as x2 is essentially constant in x1’s time scale, so x1
is doing birth-death by itself with constant x2. Therefore,
we can regard η11,nc, the first term, as a baseline that is
easily achieved when there is no control at all. Note that the
no control case is not the same as open loop, as open loop
could have controller actuation on the plant with no sensing.

The more interesting term is the second one, which could
become less than the first no-control term in certain architec-

tures. For the second term to be small, we need k > 0 and
K > 0. K > 0 corresponds to negative feedback, with either
x1 activating x2 and x2 repressing x1, or x1 repressing x2
and x2 activating x1. k > 0 corresponds to an actuation that
is compatible with the coupling reaction. If we have positive
coupling, i.e.

〈
s1|2
〉
> 0, then k > 0 implies H12 > 0 or that

the controller x2 represses x1, as in example (4) of Section
III-A. If we have negative coupling, i.e.

〈
s1|2
〉
< 0, then

k > 0 implies H12 < 0 or that the controller activates x1, as
in example (6) in Section III-B. More detailed implications
are discussed below.

1) Feedback vs. feedforward: Both incoherent feedfor-
ward and negative feedback architectures are widely found in
natural biological regulatory systems with homeostasis [29].
However, our result shows that feedforward architectures
always have larger noise compared to negative feedback
architectures with the same plant dynamics, controller ac-
tuation, and coupling. Feedforward architectures allow con-
troller actuation but no sensing, so K = 0. If K > 0, which
is the case for negative feedback, then the lower bound for
noise is always lower than the feedforward case by a factor of

1
1+K . Note that noise could be amplified by positive feedback
with K < 0.

This is in strong contrast with the result for deterministic
robust perfect adaptation, relevant for suppression of extrin-
sic noise (i.e. noise of parameters). Robust perfect adaptation
is the property that a deterministic system could reach a
homeostasis at steady state despite constant disturbances
and uncertain dynamics [30], which is biologists’ term
for robust constant disturbance rejection. Both feedforward
and feedback architectures could implement robust perfect
adaptation equally well, with only differences in the physical
controller implementation considerations [31]. Once noise
is considered, we see that negative feedback could achieve
smaller noise than feedforward, even when the underlying
deterministic system dynamics is the same.

2) Coupled vs. decoupled.: The coupled case always have
lower noise than the decoupled case if k > 0. If we assume
our system does not have coupling, then

〈
s1|2
〉

= 0, so the
term −2k

∣∣〈s1|2〉∣∣, which is negative when k > 0, becomes
zero for the decoupled case.

We also see that larger N or higher signaling rate always
corresponds to less noise in the decoupled case, which agrees
with what is implied by the Lestas et. al. bound. The lower

bound for this case is η11 ≥ η11,fb ≡
〈s1|1〉

H11(1+K)〈x1〉 , achieved
in the large signaling (N →∞) and fast controller (τ2 � τ1)
limit. Therefore we can regard η11,fb as the lowest noise
achievable with only feedback regulations and no coupling.
Note that η11,fb = 1

1+K η11,nc, so we decrease noise by a
factor of 1

1+K compared to no control case when we have
negative feedback.

In comparison, the coupled case have a different inter-

pretation of the relative signaling rate N , as N =
〈s2|1〉
〈s1|2〉 if〈

s1|2
〉
6= 0, a consequence of equation (3). In this case, the

relative signaling rate and the coupling strength are strongly
related to each other. In particular, if the coupling reaction is



known, then the optimal signaling rate is no longer infinite.
This is shown explicitly in the following subsection.

3) Limit on noise suppression by coupling: We show that
the relative signaling rate N is not larger the better for
coupled systems and that the suppression of noise through
one coupled reaction is limited to a factor of 1

2 beyond the
feedback lower bound η11,fb.

Consider the case where we have only one coupling
reaction of the form {x1, x2} → {x1 + b1σ1, x2 + b2σ2},
where b1, b2 ∈ Z>0 are the molecule counts of x1 and x2
changed by this reaction, and σ1, σ2 ∈ {1,−1} are signs of
the change. We assume this coupled reaction has α1 portion
of the birth or death flux of x1, and α2 portion of the flux of
x2, where α1, α2 ∈ (0, 1]. We also assume that all reactions
other than the coupled one have step size 1. In terms of
these parameters, we have

〈
s1|1
〉

= α1b1+(1−α1)+1
2 =

1 + α1(b1−1)
2 ,

〈
s2|2
〉

= 1 + α2(b2−1)
2 ,

〈
s1|2
〉

= α2b1
2 σ1σ2,〈

s2|1
〉

= α1b2
2 σ1σ2, and N =

〈s2|1〉
〈s1|2〉 = α1b2

α2b1
. Substituting

these into equation (13) yields lower bounds for noise in
terms of αi and bi. Notice that once the coupling reaction is
known or b1, b2 are determined, varying the relative signaling
rate N is the same as varying α1 and α2, the fractions of
fluxes that the coupled reaction take.

The partial derivative of the second term of the lower
bound in equation (13) with respect to b1 is always positive,
so b1 should be as small as possible, while the partial
derivative with respect to b2 is always negative, so b2 should
be as large as possible. This makes sense, as larger b2

b1
means

that x1’s change is amplified in x2’s change, so the signal is
less corruptible by internal noise of x2.

If we take b1 = 1, then the partial derivative with respect
to α1 is always negative, so α1 = 1 is optimal. This is
reasonable, as α1 = 1 means the coupling reaction accounts
for as large a fraction of change as possible of x1, so the
knowledge of x1’s change obtained from x2 through the
coupling reaction is more informative.

The partial derivative with respect to α2, however, is
usually not as simple. The optimal α2 is

α1b2
k −1
b2−1 when

b2 6= 1. This shows that the optimal fraction of flux in x2
of the coupled reaction is related to the controller actuation
gain as well as the stoichiometry of the coupled reaction.
In particular, this shows that the optimal relative signaling
rate N is determined by parameters of the coupled reaction,
such as b1, b2 and k. For example, taking α1 = 1 and large
b2, we have 1

k as the optimal α2, and the optimal effective
signaling rate N is k b1b2 .

It should be noted that the relative signaling rate is not
larger the better when the coupled reaction is fixed does not
contradict that larger relative signaling rate should always
reduce noise as indicated in equation (13). Indeed, larger
effective signaling rate N always corresponds to smaller
lower bound for noise if we do not constrain b1 and b2.
The optimal b2 is infinity, which corresponds to infinite N .
However, once b1 and b2 are fixed, then N is no longer free
to vary by itself. For example, if we fix parameters at their
optimal values so that b1 = 1, α1 = 1 and b2 is large, then

N = 1
α2b2

, which could only become larger by decreasing
α2. However, smaller α2 would also mean that the coupling
reaction accounts for a smaller fraction of x2’s change, so
the signal about x1 becomes more easily obfuscated by noise
of x2’s other reactions not coupled with x1. In other words,
since smaller α2 corresponds to more signal amplification
through x2’s own birth-death reactions that are not coupled
with x1, there is a tradeoff between noisy amplification of
signals through the decoupled reactions and the preservation
of accurate signals through the coupled reactions.

Another implication of the above observation is that with
coupled reactions, a moderate signaling rate could result in
significant noise suppression, as the optimal N could be
small. This suggests that noise suppression with coupling
could be rather cost-effective, therefore preferable for bio-
logical systems.

Now, taking the optimal values of b1 = 1, α1 = 1,
b2 → ∞, and α2 = 1

k results in η11 = 1
2η11,fb in the fast

controller limit (τ2 � τ1), so the optimal lower bound with
one coupling reaction while other reactions have step size
1 is half of the optimal lower bound of negative feedback.
This shows that coupling cannot make noise arbitrarily small
beyond the decoupled case.

IV. DISCUSSION

In this work we investigated the coupling mechanisms
that is ubiquitous in biology for noise suppression. We
constructed examples that can suppress noise below the
Lestas et. al. bound [2] and, by systematically analyzing all
two-node chemical reaction networks, showed that coupling
has implications on effective network architectures and that
coupling has its own limitations in noise suppression.

Our example constructed in Section III-B suppresses noise
below the Lestas et. al. bound, but broke one of their
assumptions that require the plant and the controller to have
separate birth-death reactions. It may therefore seem natural
that we could go below their bound. However, it should be
noted that not only is the Lestas et. al. bound hypothesized to
be true in much more general situations [2], previous efforts
in going beyond this bound either employed complex non-
biological controllers [32] or could only show a theoretically
better lower bound with unknown achievability [33]. Hence,
finding an example or a class of systems that suppresses noise
beyond the Lestas et. al. bound is highly nontrivial with
significant implications. In particular, the example in Section
III-B shows that biologically plausible reaction systems
could indeed suppress noise below the Lestas et. al. bound,
and situations beyond the bound should be seriously explored
and considered for regulation and information processing in
biological systems.

With that said, the results in this work does not try to
contradict the results in [2], but rather follows its pioneering
efforts in exploring fundamental limits of noise suppression
in biological systems. We showed that noise suppression with
coupling could further suppress noise, but still has its own
fundamental limitations. This is also connected with the work
of [3], which does not assume LNA and derives tight exact



lower bounds for noise, but the lower bounds are harder to
analyze for different cases. It is therefore of high interest to
derive exact lower bounds in the spirit of [3] that includes
coupling. Furthermore, theoretical investigations that relate
LNA analysis with the methods of [3] would be highly
beneficial, as the LNA method is scalable and analytically
tractable, hence useful for controller design and architecture
exploration.

This work focused on intrinsic noise, while noise in
biology could be intrinsic as well as extrinsic. Intrinsic
noise arises from stochastic nature of the system itself,
while extrinsic noise comes from fluctuations in system
parameters [34]. Extrinsic noise could be treated rather well
by ignoring intrinsic noise [34], so perfect extrinsic noise
suppression could be considered as perfect adaptation in
the deterministic system. Robust perfect adaptation and its
constraints on system architecture for biomolecular systems
is studied in [31]. It is therefore desirable to connect intrinsic
noise suppression together with robust perfect adaptation
concerns. After all, noise suppression is not meaningful if
the fixed point is not desirable.

While coupling considered in this work is of a binary
kind, where two components are either coupled or decoupled,
several biological phenomena observed in nature also have
a “soft” coupling interpretation. For example, genes that are
spatially close to each other due to their position on the
genome or its 3D structure are more likely to be transcribed
together in a short period of time [8]. Indeed, the positioning
of genes are evolutionarily selected and the 3D structure of
the genome is highly regulated [12]. This urges the study of
a generalization of the coupling notion here to include these
cases. It is also worth investigating how these general “soft”
coupling notions relate to the cases investigated in Section
III-D where coupling is only a fraction of the birth-death
fluxes.

Lastly, coupling is a phenomenon rather specific to
biomolecular control. Although covariance is considered in
canonical stochastic control theory, coupling is a structu-
ally and physically different way of influencing variables’
covariance than regulations through birth and death rates.
This echoes the results in [31], where physical constraints
specific to biomolecular reaction systems is shown to make
integral feedback implementation a nontrivial design problem
in biology. With these observations, it is highly desirable to
develop theoretical tools custom-fit for biological systems so
as to gain insight for biomolecular control problems.
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V. APPENDIX

A. Two component CRN noise analysis

Here we derive equation (13) using LNA.
Equation (2) for the two dimensional (n = 2) case gives

rise to the following system of equations:2(H11
τ1
η11 +

H12
τ1
η12
) (

H11
τ1

+ H22
τ2

)
η12 +

H12
τ1
η22 +

H21
τ2
η11

2
(
H21
τ2
η12 +

H22
τ2
η22
) 

=

 2〈s1|1〉
τ1〈x1〉

〈s1|2〉
τ2〈x1〉

+
〈s2|1〉
τ1〈x2〉

2〈s2|2〉
τ2〈x2〉

 .
We make the following assumptions: the deterministic

linearized system is stable, and H11, H22 6= 0. The first
assumption is needed for the LNA to have finite variance.
Since the deterministic system is stable if and only if −M is
Hurwitz, for n = 2 case we have the following conditions for
stable linearized system: H11

τ1
+ H22

τ2
> 0 while H11H22 −

H12H21 > 0. The second assumption is more biological.
H11 = 0 implies ∂x1R

− = ∂x1R
+, so stability of x1 relies

on sensing and actuation of other system components. This
is highly undesirable biologically, as constantly mutations
could occur in the system that results in loss of function,
breaking the sensing reactions such that other components
become fixed and do not respond to changes of x1, or
breaking the actuation reactions such that other components’
actions on x1 become zero. In either case, x1 dynamics could
become unstable, implying disastrous consequences for the
biological organism. In addition, the H11 = 0 or H22 = 0
cases are not biologically informative but simple to analyze,
and can be easily shown that they satisfy the bound (13) as
well.

With the above assumptions, we could then write the
equation above into more informative parameters and rewrite
it into the following linear system of equations: 1 k1|2α 0
k2|1 1 k1|2
0 k2|1α 1

 H11η11
(T21H11 +H22)η12

T21H22η22

 =


〈
s1|1
〉

2
〈
s1|2
〉

〈s2|2〉
N

 1

〈x1〉
,

where Tij = τi
τj

is a ratio of time scales, ki|j =
Hij
Hjj

is the
logarithmic sensitivity of xi to changes in xj normalized by
the sensitivity of xj to its own changes, N = 〈R2〉τ1

〈x1〉 is the
relative signaling rate as defined in [2], and α = H11τ2

H11τ2+H22τ1
with α = 1 − α. Solving the system for η11 yields the
following:

η11 =
1

H11 〈x1〉

(
α
〈
s1|1
〉

+ α

〈
s1|1
〉
− 2k1|2

〈
s1|2
〉
+ k21|2

〈s2|2〉
N

1− k1|2k2|1

)
.

So we see that η11 can be expressed as a convex combination
of two terms since α + α = 1 and α ∈ [0, 1]. Taking the
min of the two terms then yield the lower bound shown in
equation (13), with the first term achieved when α = 1 or
τ2 � τ1, and the second term achieved when α = 0 or
τ2 � τ1.

B. Birth-death interpretation of LNA

LNA was considered an interpretable but inaccurate ap-
proximation because of its derivation assuming large mean
and Gaussian noise, which violates the non-negativity and
discreteness of the variables [26], [22]. Here, through one
simple example, we show that the Gaussian interpretation is
not necessary, and the non-negativity and discreteness could
be preserved. A systematic investigation is ongoing work to
be published on another occasion.

Consider the following non-linear birth death process:

x
a3−−−−−−−→ x+ 1 x

x3

−−−−−−−→ x− 1.

Equation (2) gives η = 1
H〈x〉 = 1

3〈x〉 . The only fixed point
is x∗ = a. Then consider the following linear-propensity
birth-death process:

x
r1(x)−−−−−−−→ x+ 1, x

r2(x)−−−−−−−→ x− 1,

where r2(x) = a3

a−d 23ae

(
x− d 23ae

)
and r1(x) = r2(x) −

3a2(x − a), for a > 3. Therefore R− − R+ for this
system is the same as that for the original nonlinear birth-
death process, and equation (2) would yield the same result
η = 1

3〈x〉 with the same fixed point x∗. On the other hand, the
system does not evolve below d 23ae as the death rate is zero
on that number, so the variable x is always non-negative.

This implies that LNA could be a good approximation
even when the mean molecular count is small (in fact as
small as 3 in this case), and the distribution could preserve
the discreteness as well as non-negativity, so it is not neces-
sarily Gaussian. The only situations that LNA breaks down
then are the same as the situations where the deterministic
linearization of a nonlinear dynamical system breaks down:
sharp non-lineariarities away from the fixed point.



C. Channel capacity of coupled reactions

The key step to derive the lower bound of noise sup-
pression with or without coupling is the find the lower and
upper bounds of the mutual information between x1 and
x2. Here we first introduce the mathematical definition of
mutual information between two random processes (rather
than variables), and compute the channel capacity of a
coupled reaction.

Consider a complete probability space (Ω,F ,P) with
nondecreasing right continuous family of sub-σ algebras
(Ft), t ∈ [0, T ]. Let (nt,Ft) be a Poisson process with
its intensity λt being a function of of the input signal
θ = {θs, s 6 t} and also n = {ns, s 6 t} in an non-
anticipatory manner:

nt
λt(t,θ,n)−−−−−−−−→ nt + 1 , (14)

where the non-anticipatory constraint requires that λt(t, θ, n)
is Ft-measurable. If a certain coding λt(t, θ, n), 0 6 t 6 T
is given, then a natural question is how much information
is contained in the received signal n about the transmitted
signal θ. By definition, the mutual information is:

IT (n, θ) = E ln
dµTn,θ

d[µTn × µTθ ]
(n, θ) (15)

where µTn , µ
T
θ , and µTn,θ are measures corresponding to

processes nt, θt, and (nt, θt), 0 6 t 6 T .
The Liptser-Shiryaev formula shows that [35]:

IT (n, θ) = E
∫ T

0

(
λt lnλt−λ̂t ln λ̂t

)
dt, λ̂t = E[λt|Fn

t ],

(16)
immediately we can see if λt is F θ

t -measurable, then
IT (n, θ) = 0 since λt = λ̂t.

By the causality nature of such channel, the Liptser-
Shiryaev formula is actually the formula for directed infor-
mation: IT (θ → n) (see [36] for a complete introduction
of directed information). Here we show that if we have one
another parallel channel:

nt
βt(t,θ,n)−−−−−−−→ nt ± 1 , (17)

where βt(t, θ, n) is again Ft-measurable, then the mutual
information (or more precisely, the directed information)
from θt to nt is the sum of mutual (directed) information
of each channel:

IT (θ → n) = E
∫ T

0

(
λt ln

λt

λ̂t
+ βt ln

βt

β̂t

)
dt (18)

Equation (18) can be bounded by using Lagrangian multi-
plier methods, assuming the first and second moments of the
propensities are finite, therefore we obtain an upper bound
of the mutual information of two parallel Poisson channels
(equation (14) and (17)) [2]:

1

T
IT (θ, n) ≤ 〈λ〉 ln

(
1 +

Var {λ}
〈λ〉2

)
+〈β〉 ln

(
1 +

Var {β}
〈β〉2

)
(19)

Now let’s turn to the coupled reaction, using equation (11)
as an example. Equation (11) is equivalent to two Poisson

channels:

x1
λt[It(x1,x2)]−−−−−−−→ x1 − 1, x2

w(x1)−−−−−−−→ x2 + 1 (20)

where λ switches between 0 and a large constants K. It
switches from 0 to K when x2 increases by 1, then switches
back to 0 when x1 also increases by 1. Hence the overall
effect of the first reaction to tracking the dynamics of the
second reaction, when the second reaction occurs, the first
immediately occurs, when setting K →∞. Then the channel
capacity of this coupled reaction can be calculated by sum-
ming up the channel capacity of the two channels (equation
(20)). The second one, as the same as a usual Poisson
channel, has a channel capacity C2 = Var {w(x1} / 〈w(x1)〉.
For the first reaction, since λ basically tracks the number of
occurrence of the second one, we instead can use a classic
conclusion from large deviation theory, which claims that
Var {λ} is equal to its mean [37]. On the other hand, in the
limit of long time, the empirical mean of number of events
is equal to 〈w(x1)〉, then from ergodic theorem we conclude
that 〈λ〉 = 〈w(x1)〉. Therefore the channel capacity of the
coupled reaction is then:

C =
Var {w(x1)}
〈w(x1)〉

+ 〈w(x1)〉 ln(1 +
1

〈w(x1)〉
) (21)

Furthermore, coupling does not alter the lower bound on
mutual information, which is derived from Pinsker’s non-
anticipatory ε-entropy [33], [38]. So the lower bound on
noise suppression is only due to an increase of channel
capacity.


