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Abstract— Due to omnipresent uncertainties and environmen-
tal disturbances, natural and engineered biological organisms
face the challenging control problem of achieving robust per-
formance using unreliable parts. The key to overcoming this
challenge rests in identifying structures of biomolecular circuits
that are largely invariant despite uncertainties, and building
control through such structures. In this work, we show that log
derivatives can capture the structural regimes of biocircuits in
regulating the production and degradation rates of molecules.
We show that log derivatives can establish stability of fixed
points based on structure, despite large variations in rates and
functional forms of models. Furthermore, we demonstrate how
control objectives, such as robust perfect adaptation (i.e. step
disturbance rejection), could be implemented through structure.
Due to the method’s simplicity, structural properties for analysis
and design of biomolecular circuits can often be determined by
a glance at the equations.

I. INTRODUCTION

Both natural and engineered cells face the challenge of
achieving robust performance using unreliable parts [1]–[3].
In particular, the regulatory biomolecular circuits used in
a cell are intrinsically stochastic and face large parameter
uncertainties due to environmental disturbances as well as
unknown or unintended interactions with host cell circuits.

Although feedback control has been successfully applied
in electrical and mechanical engineering to achieve robust
performance [4], it faces the new challenge in biological
engineering that the parts are highly unreliable. Therefore
it is essential to identify key structures of the uncertain
behaviors in biomolecular circuits, so that control can be
built on top of them.

Previous studies have identified several important struc-
tures of biomolecular circuits. While reaction rates tend to
vary due to environmental disturbances, the stoichiometry of
reactions are largely invariant. Indeed, stoichiometry could
be robustly identified from experimental data and is often
considered as structural information of a chemical reaction
network [5], [6]. In addition, although rate constants and
reactant concentrations vary due to disturbances, they often
can be reliably determined or controlled up to orders-of-
magnitude [7]. Lastly, the many reactions that happen in
a cell often happen at different time scales, making de-
scriptions of a circuit’s behavior amenable to time-scale
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separation [8]. The most robust separation of time scales is
the one between binding reactions and catalysis reactions, as
exemplified by the Michaelis-Menten approximation, which
has served as the foundation of dynamic modeling of bio-
chemical reactions for over 100 years [9]–[11]. A simple
physical argument is that binding reactions are fast as they
mostly involve low-energy interactions such as hydrogen
bonds, while catalysis modifies high-energy covalent bonds,
therefore slower.

The structures mentioned above need to be synergistically
integrated in a cohesive mathematical framework in order to
analyze or design robustly performing biomolecular circuits
using unreliable parts. In particular, it needs to connect struc-
tures with dynamical properties of the system. This difficult
challenge, yet to be overcome, is the central cause for a major
gap between the mathematical languages theorists use, and
the mental pictures and diagrams that experimentalists use to
guide their circuit designs and implementations [12]–[14].

This work provides initial results that could serve as a
first attempt at filling this gap. In particular, we aim at
building mathematical concepts that are tailored for these
quintessentially biological structures.

In the following, we define a general class of systems,
named birth-death systems, that emphasize the production
and degradation of biomolecules, in Section II-A. In Section
II-B, we use log derivatives to capture the structural regimes
in production and degradation rates’ dependence on reactant
concentrations. In Section III, we show how log derivatives
relate to a strong notion of stability of fixed points. Lastly,
in Section IV, we show how control could be built on top
of structures to achieve control goals such as robust perfect
adaptation, biologists’ term for step disturbance rejection.

A companion work with a focus on studies of examples
that cater to a more biological audience is [15].

II. STRUCTURE IN BIOMOLECULAR SYSTEMS

We begin by introducing the definition of birth death
systems. We do so through chemical reaction networks
(CRNs) [16] with biological growth.

A. Chemical Reaction Networks and Birth Death Systems

A CRN is a collection of reactions of the form

α1jX1 + · · ·+ αnjXn
kj−−−−−−−→ β1jX1 + · · ·+ βnjXn

where Xi, i = 1, . . . , n denote chemical species, j =
1, . . . ,m index reactions, αij , βij ∈ Z≥0 denote the number
of Xi molecules consumed as reactant or produced as
product in reaction j, and kj ∈ R>0 is reaction rate constant
of reaction j. We denote αj =

[
α1j · · · αnj

]ᵀ
as the

reactant vector for reaction j, and similarly define βj for
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product vector. We define γj = βj−αj as the stoichiometry
vector of reaction j, and collect them as columns to form the
stoichiometry matrix Γ =

[
γ1 · · ·γm

]
∈ Zn×m.

The deterministic rate equation of the CRN is
ẋ = ΓΛkψ(x), (1)

where xi ∈ R≥0 is the concentration of species Xi, Λk :=
diag {k} is a diagonal matrix with reaction rate constants kj
as entries, and ψ(x) : Rn≥0 → Rm≥0 denote how the rate of
reactions depend on concentrations.

A commonly used specification for ψj(x) is the law
of mass-action, which is applicable to a wide range of
scenarios [17]. It says ψj(x) = xαj , where we denote
xαj =

∏n
i=1 x

αij

i .
Since concentrations of biomolecules change by produc-

tion and degradation reactions, we could re-write the dynam-
ics as follows:

ẋi = fi(x) =: f+i (x)− f−i (x) (2)

:=
∑

j:γij>0

kjγijψj(x)−
∑

j:γij<0

kjγijψj(x) (3)

where we have collected terms from reactions producing
xi into f+i (x) and terms from reactions degrading xi into
f−i (x).

The physical interpretation of the variables xi as con-
centrations dictate that they remain non-negative, therefore
the positive orthant is forward invariant. A necessary and
sufficient condition is fi(x) ≥ 0 whenever xi = 0. It is
also natural to assume that each species has at least one
production reaction and at least one degradation reaction.
This yields the following definition for birth-death systems.

Definition 1: A birth-death system is a dynamical system
of the form (2) where the production and degradation rates
f±i : Rn≥0 → R≥0 are analytic and globally non-negative,
and fi(x) ≥ 0 whenever xi = 0.

Note that although CRNs are used here to introduce the
context, the definition of birth-death systems is independent
of any underlying CRNs.

The definition of a birth-death system emphasizes the
structure that the concentration of each species is regulated
by two processes, production and degradation. Understand-
ing the dynamics of a birth-death system then comes down to
characterizing how production and degradation rates f±i (x)
depend on the concentrations x. In the following section,
we use a simple example to illustrate that the dependence of
f±i (x) on x is highly structured, and this structure could be
formalized through log derivatives.

B. Log derivatives formalize structural regimes of regulation
under time-scale separation

Production and degradation of molecules happen through
enzymatic catalysis [10]. In the following, we consider the
simplest regulation of enzymatic catalysis to illustrate the
structure in f±i (x)’s dependence on x.

E + S
k+−−⇀↽−−
k−

C
kf−→ E + P. (4)

Here E is the enzyme, S is substrate, C is the complex
formed from E and S binding together, and P is the product

Fig. 1: The log-derivative polytope of the complex C with respect to
tE and tS defined by steady state equations in Eq (5). A point in this
space represents the sensitivity of the steady-state C concentration
to changes in the total concentration of E or S. The green triangle
marks the possible sensitivity values the system can admit. The
edges of the triangle represent different assumptions about the
saturation of the species. The edge marked by the red line is the
range of log derivatives covered by the Michaelis-Menten formula.
Red dots mark the vertices. The expressions next to the vertices
correspond to the three regimes.

molecule formed.
To proceed, we use time-scale separation that binding

reactions tend to be much faster than catalysis reactions. This
entails the following equations:

tE = E + C, tS = C + S, C =
ES

K
, (5)

where we slightly abuse notation to use symbol of species
X to also denote its concentration. Here tE is the total
concentration of enzyme E, tS is total concentration of
substrate S, and K is the dissociation constant Kd or its
variants such as KM , based on details of which part of C
dynamics is considered fast [18].

To connect with the notation of birth-death systems, we
denote xP as the concentration of P , xE := tE as the total
concentration of E, and xS := tS as the total concentration
of S. Then xP ’s dynamics is

ẋP = f+P − f
−
P = kfC(xE , xS)− 0, (6)

where C(xE , xS) is the steady state concentration of C in
terms of total concentrations of E and S in Eq (5).

In order to understand how f+P , the production rate of xP ,
depends on xE and xS , we need to solve for C in terms of
tE and tS in Eq (5). A classical way to approach this is the
Michaelis-Menten approximation [18], which assumes the
total concentration of the substrate is much higher than that
of the enzyme, i.e. tS � tE . This implies tS ≈ S, therefore
Eq (5) solves to be

C(tE , tS) ≈ tE
tS

tS +K
. (7)

This expression could be intuitively understood as containing
two regimes. One has tS � K, so that C ≈ tE . This is
constant in tS , therefore “substrate-saturated”. The other one
has tS � K, so that C ≈ tEtS

K . This is linear in tS , therefore
“substrate-sensitive”. We note that these two regimes have
distinct exponents in tE and tS : (1, 0) for the saturated
regime, and (1, 1) for the sensitive regime (see Figure 1).

Therefore, although f+P , the production rate of xP , de-
pends on concentrations and rates that tend to vary, the fact
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that there are two regimes with distinct exponents (1, 0)
and (1, 1) is structurally determined. Indeed, the exponents
fundamentally come from the stoichiometry of the binding
reaction in Eq (4). In addition, the condition such that one
regime is valid, such as tS � tE ,K, only depend on the
orders of magnitude of the concentrations and rates, therefore
could be reliably determined or controlled.

Now, we would like to describe these regimes and their
exponents in a formal way. For this purpose, we introduce
log derivatives as differential analogues of exponents. For
example, from Eq (7) we calculate[

∂ logC
∂ log tE

∂ logC
∂ log tS

]
=
[
1 K

tS+K

]
. (8)

When tS � K, we obtain log derivative (1, 0); while when
tS � K, we obtain (1, 1). So log derivatives exactly capture
the exponents of the regimes in a continuous way.

With the tool of log derivatives in mind, we could actually
go back and obtain more general results than the Michaelis-
Menten approximation. Indeed, due to the assumption that
tS � tE , we missed the third “enzyme-saturated” regime:
when tE � tS ,K, we have C ≈ tS . Capturing this regime
is important if the tS � tE assumption does not hold all
the time, such as when S and E are molecules of similar
abundance in protein binding, or when the cellular circuit
has highly dynamic behavior during nutrient shifts or shock
responses [19], [20].

To capture all three regimes, we need to do away with as-
sumptions like Michaelis-Menten. Although the steady state
equations in Eq (5) can be directly solved in this simple case,
this procedure results in a cumbersome expression that fails
to generalize. More importantly, the explicit expression hides
the structures in the exponents of the regimes mentioned
above. In contrast, the differential description through log
derivatives can capture all three regimes while describing
the exponents. Indeed, applying implicit function theorem to
Eq (5) to solve for the expression of E,S,C in terms of
tE , tS ,K yields the following result:[

∂ logC
∂ log tE

∂ logC
∂ log tS

]
=
[

K+E
K+E+S

K+S
K+E+S

]
. (9)

This shows that the log derivatives of C with respect to
tE and tS take values inside a triangle (see Figure 1), and
the exact location in the triangle depends on the particular
values of tE , tS and K. Completely in accordance with
our intuition, the vertices of this triangle correspond to the
three regimes described earlier. In particular, we see that
the Michaelis-Menten approximation is just one edge of this
triangle, a strict subset of the behaviors captured by the log
derivatives.

The fact that the log derivatives form a triangle, i.e. the set
of convex combinations of the three vertices, suggests that
the full behavior of this enzymatic catalysis could be seen
as combinations of the three regimes corresponding to the
three vertices. Indeed, when the corresponding asymptotic
conditions are satisfied, the behavior of the enzyme regula-
tion is essentially the same as the simple monomials at the
vertices. Extending this to all production and degradation
fluxes, we see that a general birth-death system could be seen

as having several regimes, each corresponding to a simple
system with constant exponents. Depending on the location
of the state, the system could be approximated by one or
another simple system corresponding to the closest regime.
Hence the following definition.

Definition 2: A simple birth-death system is a birth-death
system with f±i (x) = k±i x

α±i , where α±i ∈ Rn is a constant
vector, and k±i > 0 is a positive constant.

Simple birth-death systems have the advantage that their
log derivatives can be directly read off from the exponent
vector in the rate functions. In contrast, obtaining the set of
log derivatives that emerges directly from binding networks
is nontrivial in general. Next, we show that log derivatives
do form easily-identified polytopes in most models of bio-
logical circuits, where polynomials and Hill functions from
Michaelis-Menten approximations are used.

C. Basic facts about log derivatives

Here are some basic calculations to facilitate intuition
about log derivatives.

If f+i is a monomial, i.e. f+i (x) = k+j x
α+

j , then H+
i` =

α+
j` for ` = 1, . . . , n. In other words, the log derivative vector
H+
i for the production of Xi is the exponent vector α+

j ,
independent of the rate constant k+j or concentration x. This
case corresponds to simple birth death system. Physically,
this case could happen when Xi has only one production
reaction. Then α+

j is the reactant stoichiometry vector for
that production reaction.

If f+i ∈ R>0[x] is a multivariate polynomial in x with
positive coefficients, i.e. f+i (x) =

∑
j∈Ji kjx

αj for index
set J+

i = {j : γji > 0} of all reactions producing Xi, then

H+
i` (x) =

∑
j∈J+

i

λj(x)αj`, λj(x) =
kjx

αj∑
j∈J+

i
kjxαj

. (10)

Since λj > 0 and sums to one, the log derivative vector
for the production rate of Xi is the convex combination
of the reactant vectors of all Xi-producing reactions. In
other words, H+

i (x) ∈ P (f+i ) := conv
{
αj : j ∈ J+

i

}
,

where P (f+i ) is the Newton polytope of polynomial f+i .
Although the location in the polytope depends on kj and x,
the polytope itself depends on reactant vectors αj alone. We
note that newton polytopes are fruitful tools in analysis and
optimization of polynomial equations, dynamical systems,
and CRNs [21]–[23].

If f+i is a rational function with the numerator as one term
of the denominator polynomial, i.e.

f+i (x) =
kj′x

αj′∑
j∈J+

i
kjxαj

, (11)

which typically arises from time-scale separations and
Michaelis-Menten type approximations, then

H+
i` (x) =

∑
j 6=j′

λj(x)(αj′` − αj`), (12)

where λj is the same as before. In this case, the log derivative
vector for production of Xi is the convex combination of all
reactions’ reactant vectors minus the numerator reactant vec-
tor: H+

i (x) ∈ conv
{
αj′ −αj : j ∈ J+

i

}
= αj′ − P (f+i ).
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The above calculations enable writing down log derivatives
immediately after a glance at the equation in many cases,
making log derivatives easy to use.

D. Dilution due to Biological Growth

Many biomolecular circuits in systems and synthetic biol-
ogy do not contain degradation reactions. Instead, the pro-
duction of molecules are balanced by dilution due to increase
in reaction volume from cell growth. For completeness, here
we briefly show that dilution can be captured in birth-death
systems for a homogeneous population of cells, but it has
distinct structures.

For a homogeneous population of cells where each cell
has the same volume and number of molecules, denote each
cell’s volume by v0, and the number of cells by N . Let
Xtot
i = xiv0N denote the total number of Xi molecules in

this population, then

ẋi =
d

dt

Xtot
i

Nv0
=

1

Nv0
Ẋtot
i −

Xtot
i

v0N2
Ṅ . (13)

Let f±i denote the production and degradation rates for
species i in every cell due to chemical reactions. So the rate
of change for the total count of Xi is Ẋtot

i = fi(x)v0N .
Let fg(x) denote the growth rate of the population, assumed
independent of N and v0, then Ṅ = fg(x)N . Hence,

ẋi = f+i (x)− f−i (x)− fg(x)xi. (14)
We see that this is still a birth-death system, with dilution
considered as a term in degradation. However, dilution has
the unique structure that it adds the same term times xi for
each species i.

III. STRUCTURE AND FIXED POINT STABILITY

We have shown that the structures of biomolecular circuits
could be captured via log derivatives. In the following, we
discuss how log derivatives connect with fixed point stability
in birth-death systems. We show that log derivatives could
certify structural stability of a fixed point: stability that is
independent of concentrations and rates.

A. Linearization and logarithmic derivatives

We first assume that the birth-death system has a positive
fixed point x∗ ∈ Rn>0 such that f(x∗) = 0, with positive
production and degradation fluxes: f±(x∗) ∈ Rn>0.

To express the linearization of a birth-death system in
terms of log derivatives, we introduce the log derivative map

H(f±,x) :=
∂ log f±

∂ logx
(x), (15)

where log is applied component-wise. The log derivative map
takes a positive function f± and a point x in its domain to
the function’s log derivative at this point. For simplicity, we
denote H± := H(f±,x), and H := H+ −H−.

Derivatives in terms of log derivatives is
∂f±i (x)

∂xj
=
∂ log f±i (x)

∂ log xj

f±i (x)

xj
= H±ij

f±i (x)

xi

xi
xj
. (16)

In matrix form, this is
∂f(x)

∂x
= Λx

(
Λ−1τ+H

+ −Λ−1τ−H
−)Λ−1x , (17)

where τ±i (x) := xi

f±i (x)
are time-scales of Xi’s production

and degradation [24], [25].
At a fixed point x∗, we have f+(x∗) = f−(x∗), so

we could define τ := τ+(x∗) = τ−(x∗) as the vector of
steady-state time-scales at fixed point x∗. Therefore, we have

A :=
∂f

∂x
(x∗) = Λx∗Λ

−1
τ HΛ−1x∗ , (18)

relating linearized dynamics A to log derivative matrix H .
Define M := Λ−1τ H . Since A and M are similar to each

other, they have the same eigenvalues. So we immediately
see that the fixed point x∗ is stable if and only if M
is Hurwitz. Therefore, the stability of the fixed point x∗

depends only on M , which nicely splits into two parts: the
time-scales in Λ−1τ , and the log derivatives in H . Since the
time-scales come from uncertain rates and concentrations,
while log derivatives capture reliable structural regimes of
the system, this prompts the following definition.

Definition 3: A fixed point x∗ of a birth-death system is
structurally stable if it is stable for all positive analytic rate
functions f± that leave the log derivative matrix H at x∗

invariant.
In terms of M , since H is assumed constant while τ can

vary, the definition of structural stability exactly corresponds
to that the H is (multiplicative) D-stable in matrix analysis.
In other words, left multiplication of H by arbitrary positive
diagonal matrices results in a Hurwitz matrix (see extensive
review by [26]). D-stability has been extensively studied
since the very beginning of control theory, yet a clean neces-
sary and sufficient characterization has not been found. This
is in part due to the topological pathology of this property,
that the set of D-stable matrices is neither closed nor open.
One sufficient condition of D-stability that characterizes a
topologically nice (open) set of matrices is diagonal stability.

Definition 4: A matrix H is diagonally stable if there
exists a positive diagonal matrix P such that

PH +HᵀP < 0, (19)
where < 0 for matrices denote negative definiteness.

Since Eq (19) is a linear matrix inequality, scalable nu-
merical solution algorithms are available off-the-shelf.

A theorem summarizes above discussions.
Theorem 5: H is diagonally stable implies the fixed point

x∗ is structurally stable. H is diagonally stable if and only
if A is diagonally stable.

Proof: We calculate that
PH +HᵀP = PΛτΛ

−1
τ H + (Λ−1τ H)ᵀΛτP

= P̃M +MᵀP̃ ,

where P̃ = ΛτP . Therefore, H is diagonally stable is
equivalent to M is diagonally stable, which is equivalent
to A is diagonally stable as they are similar through positive
diagonal matrix multiplications.

There are a few special cases of the above theorem that
is worth mentioning due to their simplicity.

Corollary 6: Any of the following conditions imply x∗ is
structurally stable.

1) H is triangular with negative diagonal entries.

479

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 09,2021 at 21:46:58 UTC from IEEE Xplore.  Restrictions apply. 



2) H is symmetric and negative definite.
3) The symmetrization of H , ReH := 1

2 (H +Hᵀ), is
negative definite.

Structural methods could be easily extended to certify
fixed points’ structural instability as well. This is because
whenH has no purely imaginary eigenvalues, any symmetric
matrix P that satisfies Eq (19) has inertia (i.e. signs of
eigenvalues’ real parts) that are opposite to the inertia of
H , as stated in the Ostroski-Schneider theorem in matrix
analysis [26], [27]. Therefore, if there exists a diagonal
matrix P with at least one negative entry satisfying Eq (19),
then H is not Hurwitz, and Λ−1τ H is not Hurwitz for all
positive vectors τ . We summarize this into the following
theorem.

Theorem 7: Given a birth-death system as in (2) with log
derivative matrix H at a positive fixed point x∗, if H has
no purely imaginary eigenvalues and there exists a diagonal
matrix P with at least one negative entry such that Eq (19)
holds, then x∗ is structurally unstable, i.e. it is unstable for
all positive analytic functions f± that keeps H invariant.

IV. CONTROL THROUGH STRUCTURE

We have shown that fixed point structural stability could be
quickly determined from log derivatives. In the following, we
show that robust perfect adaptation (RPA), biologists’ term
for step disturbance rejection, can be implemented through
log derivatives.

A. Birth-death control systems

We start by extending closed birth-death dynamical sys-
tems to open birth-death control systems.

Definition 8: A birth-death control system is
ẋ = f(x,w) = f+(x,w)− f−(x,w),

y = h(x,w),
(20)

where x ∈ Rn≥0 is state, w ∈ Rn≥0 is disturbance input, and
y ∈ Rp is output. The analytic functions f± : Rn≥0×Rd≥0 →
Rn
≥0 are production and degradation rates, and h : Rn≥0 ×

Rd≥0 → Rp≥0 is output function.
Note that to keep the biological plausibility that distur-

bances and outputs come from rates and concentrations, the
variables w and y are also assumed to be non-negative.

In the following, we restrict our attention to the single-
intput-single-output (SISO) case, so w and y are scalars.

B. Linearized dynamics in terms of log derivatives

We assume the birth-death control system admits a positive
reference point (x∗, w∗) ∈ Rn>0×R>0 such that f(x∗, w∗) =
0 with positive outputs and rates: f±(x∗, w∗) > 0, y∗ :=
h(x∗, w∗) > 0. Linearizing the system at this reference point
then yields the following system.

ε̇ = Aε+ bδ,

z = cε+ dδ,
(21)

where εi ≈ xi − x∗i , δ ≈ w − w∗, z ≈ y − y∗ are
linearized variables of xi, w and y. The matrices are A =
∂xf(x∗, w∗) ∈ Rn×n, b = ∂wf(x∗, w∗) ∈ Rn×1, c =
∂xh(x∗, w∗) ∈ Rn×1, and d = ∂wh(x∗, w∗).

To express the linearized dynamics in log derivatives, we
change variables into multiplicative deviations instead of
additive difference:

˙̃ε = Λ−1τ

(
HAε̃+Hbδ̃

)
,

z̃ = Hcε̃+Hdδ̃,
(22)

where ε̃i = εi
x∗i

, δ̃ = δ
w∗ , z̃ = z

y∗ are fold-change linearized
variables of xi, w and y. The log derivative matrices are[

HA Hb

Hc Hd

]
=

[
∂ log f+−log f−

∂ logx
∂ log f+−log f−

∂ logw
∂ log h
∂ logx

∂ log h
∂ logw

]
(23)

with the right hand side functions evaluated at (x∗, w∗).
τi :=

x∗i
f±i (x∗,w∗)

is the reference time-scale as before. The
following relates the two versions of linearized dynamics:[

A b
c d

]
=

[
Λ−1τ ΛxH

AΛ−1x
1
w∗Λ

−1
τ ΛxH

b

y∗HcΛ−1x
y∗

w∗H
d

]
. (24)

From this, we see that the transfer function for the fold-
change linearized system is

G̃(s) = Hd +Hc
(
sΛτ −HA

)−1
Hb. (25)

In fact, the fold-change transfer function is proportional to
the transfer function of the additive variables: G(s) := d +
c(sI −A)−1b = y∗

w∗ G̃(s).
These calculations prepare us to discuss robust perfect

adaptation based on structure.

C. Structural robust perfect adaptation

Maintaining homeostasis despite uncertainties and distur-
bances is an essential function for biological organisms.
Because of this, biomolecular circuits that achieve robust
perfect adaptation (RPA) have been actively studied in sys-
tems biology [28]–[31] and synthetic biology [32], [33]. In
particular, one implementation of RPA through molecular se-
questration has been proposed and implemented successfully
in bacterial cells [34], [35], signifying important progress in
principled design of biomolecular circuits.

On the other hand, our theoretical understanding of RPA in
biomolecular systems is far from complete. From established
tools of control theory, RPA as step disturbance rejection
is thoroughly understood for linear dynamical systems, and
the internal model principle could be used as a guideline
for nonlinear systems [36]. However, biological constraints
on implementable dynamics, such as variables need to
be positive, make the design and implementation of RPA
biomolecular circuits a challenging problem in general [33],
[35]. Although significant progress has been made in RPA
design by nonlinear analysis of biomolecular circuits, such
approaches sensitively rely on the functional form of the
production and degradation rates assumed in the model. More
fundamentally, most biomolecular circuits are known to have
desired properties like RPA only under certain parameter and
state conditions, yet existing analysis and design methods
often require RPA to hold globally. In comparison, RPA for
linearized dynamics is local in nature, and it is described
in a way that is independent of the rates’ functional forms.
Below, we show how RPA in linearized dynamics could be
robustified by implementing it through structure.
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RPA, i.e. step disturbance rejection, in a linear system
corresponds to the transfer function evaluating to zero at zero
frequency. This means G(0) = d− cA−1b = 0. Since G(0)
could be written as the determinant of a matrix, therefore the
following definition and proposition.

Definition 9: A birth-death control system has RPA at
reference point (x∗, w∗) if its linearized dynamics at this
reference point in Eq (21) satisfies z(t) → 0 as t → ∞ for
all constant disturbances δ ∈ R.

Proposition 10 ( [18], [31], [33]): A birth death control
system has RPA at reference point (x∗, w∗) if and only if

det

[
A b
c d

]
= 0. (26)

From Eq (22), we again see time-scales τ and log deriva-
tives are separated, prompting the following definition of
structural RPA.

Definition 11: A birth-death control system has structural
RPA at reference point (x∗, w∗) if it is RPA at this point for
all non-negative analytic rate functions f± and h that keep
the log derivatives (HA,Hb,Hc, Hd) invariant at (x∗, w∗).

Practically, the variations and uncertainties described in
the above definition come down to the time scales τ taking
all positive values.

Theorem 12: A birth-death control system has structurral
RPA at reference point (x∗, w∗) if and only if

det

[
HA Hb

Hc Hd

]
= 0. (27)

Proof: It is necessary that the fold-change transfer
function satisfies G̃(0) = Hd − Hc(HA)−1Hb = 0,
which is equivalent to Eq (27). Then since this condition
is independent of τ and only depends on the log derivative
matrices, we see it is also sufficient for structural RPA.

V. EXAMPLES

Below we demonstrate the power of the log derivative
approach to analyze stability and RPA properties of circuits
and obtain further biological insights by considering two
examples commonly found in biocontrol literature. Impor-
tantly, although Theorems 5 and 12 are simple applications
of results from matrix analysis and linear control, the log
derivative formalism is powerful in finding a direct and
natural biological context to apply such results. Indeed, we
show that many properties can often be determined at a
glance, without calculations such as linearization. On the
scalability side, although the examples selected here are
simple for illustration purposes, the procedures used readily
scales to large systems as the computations in Theorems 5
and 12 are scalable and the relationship between models and
log derivatives are easily obtained as in Section II-C.

1) Incoherent feedforward circuit: Incoherent feedfor-
ward (IFF) circuits are both widely found in natural circuits
[28], [30] and commonly used in synthetic circuit designs
[29], [32], [33] to achieve RPA. We consider a simple IFF
circuit below called the sniffer model [30]:

ẋ1 = w − αx1x2,
ẋ2 = βw − γx2

(28)

where x2 catalyzes degradation of x1, and w is a disturbance
to the production rates of X1 and X2. Output is y = x1,
which states that we desire x1’s steady state concentration
to be independent of disturbance w. We immediately write
down the log derivative matrices using the basic calculation
rules established in Section II-C:[

HA Hb

Hc Hd

]
=

−1 −1 1
0 −1 1
1 0 0

 , (29)

where horizontal and vertical rules are added for clarity.
We calculate the determinant to be zero, concluding that
the circuit is structurally RPA. From Corollary 6, as HA is
triangular, we conclude that any positive fixed point of this
circuit is structurally stable. Since this system is simple with
constant log derivatives, this system has RPA and its positive
fixed point is stable for all positive values of α, β, γ, w. Note
that we could calculate fixed points (x∗1 = γ

αβ , x∗2 = βw∗

γ )
and time scales (τ1 = γ

αβw∗ , τ2 = 1
γ ) and linearize the

system, but structural properties are directly obtained without
such calculations.

The structural stability of this system is not surprising, as
triangular systems are known to have such properties from
other methods. However, relating stability and RPA to log
derivative matrices yields further biological insights.

For example, log derivative’s robustness to changes in
model’s functional forms could be used to find alternative
experimental implementations of the same structure. A vari-
ant of the IFF motif is the following circuit (adapted from
[32] for plasmid copy number invariance):

ẋ1 =
w

x2
− αx1,

ẋ2 = βw − γx2,
(30)

where x2 inhibits the production of x1 instead of degrading
it. This system also has structural RPA and stability as its
log derivative matrices are the same as Eq (28).

As another example, the structural mindset can help us
understand how properties like RPA are valid under one
regime while invalid in other regimes. Consider a variant
of Eq (30) where f+1 = w

k+x2
instead, capturing saturation

through a Hill function. Then HA
12 = − x∗2

k+x∗2
instead of −1.

When x∗2 � k, HA
12 ≈ −1, so Eq (29) hold asymptotically.

Hence the regime with condition x∗2 � k could be considered
the structural RPA regime. For any variations in parameters
and functional forms of the system, as long as the system
is still inside this regime, the structural RPA property holds.
For example, if we start with HA

12 = −0.999 in the structural
RPA regime, then a 10-fold change in parameters (x∗2 and
k) to drive the system away from this regime results in
HA

12 = −0.99, still safely inside the structural RPA regime.
This shows that structural regimes captured by log derivatives
are powerfully robust to large parameter variations.

Above discussion suggests the view that a general birth-
death system consists of several regimes, each with proper-
ties such as RPA implemented in its structure. This view
is further explored in a biological context in [15], with
discussions on multistability and oscillations.
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2) Sequestration negative feedback circuit: [34] proposed
a circuit design based on molecular sequestration that could
serve as a control module achieving RPA for general classes
of plants connected to it. This architecture and its tradeoffs
are analyzed in [37]–[40]. We consider the following simple
example with dilution from growth.

ẋ1 = w − (ηx1x2 + γx1),

ẋ2 = θx3 − (ηx1x2 + γx2),

ẋ3 = α
x1

x1 + k
− γx3,

(31)

where x1, x2 together form the sequestration controller,
and x3 is the plant to be controlled. x1 and x2 sequester
each other into a complex to be degraded. x2 senses x3’s
concentration as x3 catalyzes the production of x2, while x1
actuates x3 to track reference w by catalyzing the production
of x3. γ captures dilution from exponential growth.

Since the goal of this circuit is to make the concentration
of x3 asymptotically track w, the output is y = x3

w . So the
log derivatives are[

HA Hb

Hc Hd

]
=


−1 −1 + a1 0 1

−1 + a2 −1 1 0
1− a3 0 −1 0

0 0 1 −1

 , (32)

where ai ∈ (0, 1) for i = 1, 2, 3. The particular values of
ai depend on the rates, e.g. a1 =

γ1x
∗
1

ηx∗1x
∗
2+γ1x

∗
1

. As argued
in [34], making a1 = a2 = 0 achieves RPA. Indeed, the
determinant of the above matrix is a2 − a1(a2 + a3). When
a1 = a2 = 0, this is zero and structural RPA is achieved.

Structural stability conditions on log derivatives could
provide guidelines for circuit design and implementation. For
example, although RPA is guaranteed when a1 = a2 = 0,
which corresponds to no dilution of the controller molecules
X1 and X2, HA is not diagonally stable for any values of
a3. In contrast, if a1, a2 > 0, such as 0.01, then ReHA is
negative definite for a wide range of a3. This simple compu-
tation demonstrates that dilution of the controller molecules,
albeit damaging to the disturbance rejection property of the
controller, significantly improves stability of the closed loop
system. This enhances the observations in [37], [38].

VI. DISCUSSION

In this work, we argued that structural regimes of
biomolecular circuits could be captured through log deriva-
tives. We also demonstrated that fixed point stability and step
disturbance rejection can be analyzed and designed through
structure, independent of large variations in parameters and
functional forms of circuit models.

This work builds on a train of thought that can be traced
back to the very beginning of systems biology. Michaelis-
Menten showed that time-scale separation and large con-
centration differences reveal distinct operating regimes of
enzymatic regulations [8], [9]. In his pioneering work at
the early days of systems biology [41], Savageau argued
for the use of log dervatives as sensitivities of steady state
concentrations to parameters, in order to study robustness.
Furthermore, Savageau championed the view that a complex

biomolecular circuit consists of several operating regimes.
In particular, the concept of power systems is proposed that
directly motivated the definition of birth-death systems and
simple birth-death systems in this work. These pioneering
ideas were later continued in gene regulation networks by
Alon [29], and in stochasticity by Paulsson [24]. Works on
these fronts became the foundational concepts and tools for
systems biology.

This work, as well as several ongoing works, are attempts
at formalizing many of the inspiring ideas from this train of
thought, borrowing and creating tools from control theory,
chemical reactions networks, and mathematics. This process
reveals further implications and connections. Section II-B
argues that log derivatives, rather than just steady state
sensitivities, have their meaning rooted in the structures of
biomolecular circuits, which can be formalized through time-
scale separation with the application of implicit function
theorem. This not only reveals the fascinating observation
that log derivatives might form polytopes in general, but also
provide a formal connection between powers, vertices of log
derivative polytopes, and operating regimes of biomolecular
circuits. Section III and IV relate log derivatives to stability
and adaptation, and formally described the robustness to
uncertainties in rates and functional forms in models that
log derivatives could capture, extending the structural view
for analysis and design of biomolecular circuits.

Another train of thought that this work borrowed much
from is the theory of chemical reaction networks (CRNs)
[16]. With strong mathematical rigor, many fascinating
developments recently appeared from this community on
robustness and stability based on graphical structures of
CRNs [21], [42]–[44]. One challenge of CRN theory is to
identify a class of biological CRNs to avoid pathologies
from extreme-case CRNs [43]. Indeed, without biological
restrictions, it has been shown that CRNs can perform Turing
complete computations and produce arbitrary steady state
distributions [45], [46]. This work suggests that a candidate
for a biological subset of CRNs could be the set of binding
and catalysis reactions. From the analysis in Section II-
B, a time-scale separation argument connects the biological
structures underlying systems biology models to the graphi-
cal structures of CRN theories, extending Michaelis-Menten
approximations in an interpretable way.

Similar to the literature described above, the field of
Metabolic Control Analysis (MCA) (see Chapter 13 of [47]
for an introduction) uses log derivatives. In the context of
metabolism, MCA considers log derivatives as elasticities
and control coefficients that describe steady state sensitivities
of metabolic fluxes to enzyme concentrations. In contrast,
this work focuses on production-degradation structure of
biomolecules in the context of synthetic biology, using log
derivatives to capture dynamical regimes that biomolecular
circuits could operate in. As a mathematical analogy, this
work focuses on the vertices and shape of log derivative
polytopes, rather than any particular point inside.

Lastly, there are many exciting questions left to be
answered. One implication is that nonlinear biomolecular
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systems may be more naturally viewed through the “basis”
of simple birth-death systems instead of linear systems.
This could be further developed using the framework of
dissipative control [48] where each simple birth-death system
defines a storage function that is valid in a region for the
full system. Also, a foundational question is what classes of
chemical reaction networks admit polytopic log derivatives.
These questions are worth investigating, and we hope to
answer them in another occasion in the near future.
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