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Abstract— Metabolic dynamics such as stability of steady
states, oscillations, lags and growth arrests in stress responses
are important for microbial communities in human health,
ecology, and metabolic engineering. Yet it is hard to model
due to sparse data available on trajectories of metabolic fluxes.
For this reason, a constraint-based approach called flux control
(e.g., flux balance analysis) was invented to split metabolic
systems into known stoichiometry (plant) and unknown fluxes
(controller), so that data can be incorporated as refined con-
straints, and optimization can be used to find behaviors in
scenarios of interest. However, flux control can only capture
steady state fluxes well, limiting its application to scenarios
with days or slower timescales. To overcome this limitation and
capture dynamic fluxes, this work proposes a novel constraint-
based approach, flux exponent control (FEC). FEC uses a
different plant-controller split between the activities of catalytic
enzymes and their regulation through binding reactions. Since
binding reactions effectively regulate fluxes’ exponents (from
previous works), this yields the rule of FEC, that cells regulate
fluxes’ exponents, not the fluxes themselves as in flux control. In
FEC, dynamic regulations of metabolic systems are solutions to
optimal control problems that are computationally solvable via
model predictive control. Glycolysis, which is known to have
minute-timescale oscillations, is used as an example to demon-
strate FEC can capture metabolism dynamics from network
structure. More generally, FEC brings metabolic dynamics to
the realm of control system analysis and design.

I. INTRODUCTION

Metabolism is the core interaction mechanism in biologi-
cal systems across scales, from growth and survival in single
strain microbial populations [1] to microbial communities [2]
in human health [3], ecology [4], and metabolic engineering
[5]. It is therefore important to study how the dynamics of
metabolism is regulated. While the typical approach to study
any dynamics in biological systems is through mechanistic
models with many kinetic parameters identified via experi-
ments (Fig. 1a), this is not feasible for dynamics of nontrivial
metabolic networks. While we can experimentally measure
bulk metabolic fluxes at scale and characterize metabolite
stoichiometry robustly, we lack systematic ways to measure
the kinetic parameters or observe the dynamic fluxes of
intermediates in cells which depend on the concentrations
of regulatory proteins and metabolites [6]. This data sparsity
makes it impractical to identify the values of mechanistic
parameters in nontrivial metabolic networks, let alone gen-
eralizing model predictions to situations different from the
ones in fitted data.
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Fig. 1: Control diagrams for several formulations of metabolic
dynamics. a. The unstructured mechanistic description of metabolite
concentration dynamics, with input as external exchange fluxes w
and output as metabolite concentrations x. b. The flux control for-
mulation, with stoichiometry S explicitly represented, and internal
fluxes considered as control variable u. The state variable x has
trivial plant dynamics that is a direct integration of inputs. c. The
flux exponent control formulation, with exponents of internal fluxes
as control variable u. The state variable x has nontrivial plant
dynamics representing the uncontrolled internal fluxes.

In order to make progress despite sparse data, constraint-
based approaches have been developed to model metabolism.
Instead of trying to identify all the mechanisms and param-
eters in a system, a constraint-based approach takes known
mechanisms as constraints and unknown mechanisms as free
to vary, and looks at the set of all feasible behaviors (Fig. 3).
Flux control is a constraint-based approach that identifies a
natural known-unknown split between the stoichiometry and
the flux of metabolic reactions, since the former is relatively
easier to know while mechanisms of the latter is much harder
to characterize. Therefore, flux control takes stoichiometry
as a constraint on the dynamics of metabolite concentrations.
This structure decomposes metabolism dynamics into a fixed
stoichiometry and the changing fluxes. In other words, flux
control splits the metabolic system into a plant-controller
pair, with the stoichiometry as the plant and the fluxes as
the controller, hence the name flux control (see Fig. 1b and
2). Then, either the set of all feasible fluxes can be ana-
lyzed for general rules, or optimization for certain objective
functions such as growth maximization or ATP regeneration
can be used to find specific points of interest in flux space
(Fig. 3). Flux control, e.g. flux balance analysis (FBA) that
focuses on steady state fluxes, has dominated recent progress
on computational models of large metabolic networks and
achieved significant advancement in both academic research
and industrial applications [7], [8].

However, flux control has difficulty capturing dynamic
features of metabolic regulation. Not only do most flux
control methods such as FBA assume metabolic fluxes are
fast and therefore static (at steady state), flux control is also
fundamentally unfit to model dynamics that are intrinsic to
metabolic regulations. This is because the plant-controller
split in flux control yields a plant with trivial dynamics (Fig.
1b and Sec. II-C). This is far away from reality, since it
is known that metabolism in cells have strong plant dy-
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Fig. 2: Control diagram comparison between flux control and FEC,
with known-unknown splits depicted.

namics, or dynamics without active regulation, that imposes
significant limitations on control performance [9]. In other
words, rather than controlling static fluxes in response to
slow varying external environments on the timescale of days,
metabolic control in cells may be dominated by concerns
of a dynamic nature, such as stability, lag, oscillations,
and growth arrest on the timescale of seconds to hours
[10], [11]. From another perspective, since the strength of
a constraint-based method comes from the set of constraints
it could use, flux control is under-constrained and allows too
many un-biological actions because its only constraint is the
stoichiometry (see Fig. 3). As a result, predictions of flux
control methods are often far from reality, unless extensive
experimental data and expert knowledge are incorporated
into the model via manual curation [12].

In this work, to resolve the above difficulties of flux
control, we propose a novel constraint-based method called
flux exponent control (FEC) to model metabolic dynamics as
optimal control problems. FEC captures intrinsic metabolism
dynamics via a novel plant-controller split between enzymes
catalyzing metabolic reactions and the binding reactions
regulating the enzymes’ activity (Sec. II). The resulting
optimal control problems in FEC can be numerically solved
via model predictive control. This is illustrated via the
example of glycolysis, where oscillations that arise due to
an unstable zero in the plant can be captured in FEC but not
in flux control (Sec. III). In general, FEC brings metabolism
dynamics to the realm of control system analysis and design.

II. CONSTRAINT-BASED APPROACHES FROM THE
LAYERED ARCHITECTURE OF METABOLISM

A. Layered architecture of metabolism

Constraint-based modeling splits the mechanisms of a
metabolic system into two parts: a slow-varying known
part of which we have solid knowledge, and a fast-varying
unknown part of which we have little knowledge. Then the
known part is taken as constraints, and the unknown part is
allowed to vary freely. The set of all feasible behaviors of the
system are then behaviors achieved by varying the unknown
parts, with the known parts held fixed. Fundamentally, for
this split to be effective conceptually and mathematically,
the system of concern needs to have a natural layered
architecture so that the lower layer, the layer that already
exists and is to be controlled, is known and fixed, and the
higher layer, the layer controlling the lower layer, is unknown
and varies. This split requires both a time-scale separation of
dynamics in each layer, and a corresponding structural split
in the organization of the system. Such layered architectures

Fig. 3: Illustration of constraint-based methods. The arrow repre-
sents the optimization objective, e.g., growth. The red set describes
the actual set of biologically feasible actions that a cell can take.
The red dot represents the biologically feasible action that optimizes
the objective. The light blue outer-most set is the set of actions
allowed by flux control, which includes flux balance analysis (FBA).
It is only constrained by stoichiometry, therefore includes biological
actions as a strict subset. The blue dot is the optimal action expected
by flux control. The light green set denotes the set of actions
constrained by flux exponent control (FEC), a strict super set of
biological actions and a strict subset of flux control. The green dot
is the optimal control action predicted by FEC.

may be generally viewed as a result of adaptation to achieve
optimal performance at diverse timescales using components
that are limited by severe tradeoffs such as the speed-
accuracy tradeoff [13], [14].

For our purpose of modeling metabolic dynamics, we can
describe the layered architecture of metabolism as roughly
consisting of three layers: the bottom metabolic stoichiome-
try layer, the middle enzyme regulation layer, and the top
gene expression layer (Fig. 4). Metabolites are produced
and degraded according to the reaction stoichiometry of
the bottom layer, but with fluxes regulated by interactions
between enzymes and regulatory metabolites and proteins of
the middle layer, while the enzymes and proteins in turn
are produced and degraded at the top layer. We introduce
them sequentially below in concert with our formulation of
metabolic dynamics.

Viewed from below the bottom layer, we just have metabo-
lites flowing in and out of the system. Without including any
further structure from the layered architecture, the metabolite
dynamics is a generic nonlinear dynamical system,

ẋ(t) = fcl(x(t),w(t)), (1)
where x(t) ∈ Rn

>0 is the concentration of metabolite in
the cell, w(t) ∈ Rmw

>0 is exchange fluxes with external
environments, and fcl : Rn

>0 × Rnw
>0 → Rn describes the

change in metabolite concentrations. Here fcl is the closed
loop dynamics, with the cell’s control actions on metabolism
from all the layers of metabolic regulation included.

To have a more useful formulation of metabolic dynamics,
we move up the layered architecture to include the bottom
layer (Fig. 4). The bottom layer captures the knowledge that
variations in metabolite concentrations are due to metabolic
reactions, with the stoichiometry of these reactions describ-
ing the number of metabolite molecules consumed and pro-
duced. The reaction fluxes involved are catalyzed by enzymes
with rates at millisecond to second timescales, much faster
than any possible change to the metabolism stoichiometry.
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Therefore the stoichiometry can be considered as the fixed
structure of the bottom layer, with quickly varying fluxes
regulated by higher layers.

Incorporating the structure of the bottom layer therefore
yields the stoichiometry-flux split, so we can write

ẋ(t) = Svcl(x(t)) + Sww(t), (2)
where S ∈ Rn×m is the stoichiometry matrix of the cell’s
internal metabolic reactions, m is the number of internal
reactions, and vcl(x(t)) ∈ Rm

>0 is the (closed loop) fluxes
of these reactions, varying with metabolite concentrations
through regulatory mechanisms such as enzyme allostery and
gene regulation described in higher layers. Sw ∈ Rn×mw is
the stoichiometry for the external exchange fluxes w(t).

B. Flux control from stoichiometry-flux split

The stoichiometry-flux split yields a constraint-based for-
mulation called flux control, with the stoichiometry as con-
straints and the fluxes as control variables (Fig. 1). Indeed,
since vcl represents the flux regulated by all the higher layers,
if we do not have any knowledge about the structure of the
higher layers, then vcl should be left as arbitrary. Therefore,
a generic flux control formulation is the following:

ẋ(t) = Su(t) + Sww(t), u(0 : T ) ∈ U(0:T ). (3)
Here u(t) ∈ Rm

>0 is the control variable, representing
metabolic fluxes that can be controlled by the higher layers.
Since the fluxes can vary with time, u(0 : T ) denotes the
time trajectory of fluxes in the time interval [0, T ] and U(0:T )

denotes the constraint on the flux trajectories, e.g., upper
bounds on flux magnitudes from maximum enzyme catalysis
rates and enzyme amounts in cells.

While constraints on flux trajectories can be hard to come
up with, it is easier to constrain steady state fluxes. One
popular flux control method, flux balance analysis (FBA),
does this by assuming steady states exist and are achieved.
This assumption is applicable whenever the phenomenon of
concern is much slower than cell metabolism, e.g., tens of
hours or longer. Restricted to steady state fluxes, (3) becomes

0 = Su+ Sww, u ∈ Uss. (4)
Here u ∈ Rm

≥0 is the steady state fluxes, w is steady state
exchange fluxes, and the constraint set has become static as
well, Uss ⊂ Rm

≥0. Further constraints on the static fluxes can
come from thermodynamics of the reactions.

C. Flux control ignores intrinsic metabolic dynamics

Flux control has one severe limitation: the lack of inter-
nal dynamics. We can understand this clearly by viewing
the constraint-based formulation that turn stoichiometry-flux
split (2) into flux control (3) as using the layered architecture
of metabolism to formulate a control system. Without the
knowledge of the bottom layer, we have cellular metabolism
as the following generic control system:

ẋ(t) = f(x(t),u(t),w(t)). (5)
If we know the control law u of how metabolic fluxes are
controlled by the cell, e.g., a static function u(x), we can
close the loop to yield fcl(x,w) = f(x,u(x),w) as in (1).

Since the stoichiometry-flux split (2) does not incorporate
knowledge of how the fluxes are regulated in the higher
layers, we are forced to take the fluxes as control variables,
therefore obtaining the flux control formulation (3) (Fig. 2).
Because the stoichiometry simply multiplies the fluxes to
yield metabolite concentration dynamics, the resulting plant-
controller split has trivial plant dynamics (Fig. 1). If we want
to incorporate nontrivial plant dynamics at the flux level,
we need to specify the full dynamics of fluxes, i.e., the
exact form of the function vcl(x), defeating the purpose we
started with: to model metabolic dynamics without detailed
knowledge of flux dynamics.

Therefore, to capture intrinsic metabolic dynamics, we
need knowledge from the higher layers about how fluxes
are regulated. This brings the middle layer to our atten-
tion, which states that metabolic fluxes are catalyzed by
enzymes, and enzymes’ activities are regulated to change
fluxes (Fig. 4). One implication of this is that while the fluxes
are regulated, they also have un-regulated dynamics since
the enzymes continue to catalyze metabolites and produce
metabolic fluxes without regulations of enzymes’ activities.
So instead of the closed loop flux vcl(x) in (2) that only
depends on x, or v = u in flux control (3) where all of
fluxes are controlled, we write v(x,u) and

ẋ(t) = Sv(x(t),u(t)) + Sww(t). (6)
The control variable u here are regulatory actions on the
fluxes from the middle and higher layers (Fig. 2). To make
(6) useful and formulated into a constraint-based approach,
we need to characterize how v depends on x and u to refine
the functional form of v(x,u). This structure of how fluxes
are regulated is described in the middle layer, which we
analyze in detail next.

D. Flux exponent control (FEC) from binding-catalysis split

Above the bottom layer of metabolic reactions, the mid-
dle layer specifies that metabolic fluxes are catalyzed by
enzymes, which in turn are regulated by the binding with
metabolites, cofactors, and proteins, or transformation of
molecular states by covalent modifications such as phospho-
rylation or methylation (Fig. 4). The binding reactions in
the middle layer regulating enzyme activities are naturally
separated from the bottom and top layers in time scales [15],
[16]. These binding reactions often reach equilibrium on a
millisecond to second timescale, while changes in metabolite
concentrations of the bottom layer take tens of seconds or
longer, and production and degradation of proteins in the top
layer take tens of minutes to hours. This timescale separation
yields a split between catalytic enzymes and their binding
regulations, or a binding-catalysis split.

To formulate the binding-catalysis split mathematically,
we need to parameterize the set of control actions on
catalysis fluxes allowed by binding reactions. As described
in Chapter 2 and 3 of [17] (also [18]), the full regulatory
profile of enzyme activities via binding reactions can be
parameterized as adjusting the reaction orders, or exponents,
of v’s dependence on x, constrained in a polyhedral set.
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Fig. 4: Illustration of how the two constraint-based approaches, flux control and flux exponent control, relate to splits in the layered
architecture of metabolism. For simplicity, the terms for external exchange fluxes w are omitted. The layered architecture of metabolism
is depicted on the right. Metabolism can be roughly viewed as consisting of three layers. The first (bottom) layer is the stoichiometry of
metabolic reactions, capturing how metabolite amounts are regulated by reaction fluxes. The middle layer is the proteins’ regulation of
metabolic enzymes, capturing how reaction fluxes are regulated by protein binding (squares). The top layer is transcription-translation,
capturing how protein concentrations are regulated by production and degradation. This layer has an hourglass shape, connecting diverse
genes with diverse proteins via a thin waist of transcription and translation machinery, with building blocks such as amino acids supplied
by the bottom layer.

This means, the reaction order, mathematically defined as
the log derivative, of the closed-loop flux vcl to metabolite
concentrations x, denoted Hcl with Hcl

ij =
∂ log vcl,i
∂ log xj

, is the
closed loop gain under the regulation of binding reactions.
This reaction order Hcl, or closed-loop gain, is further
constrained in a polyhedral set that is directly specified by the
binding reaction network’s stoichiometry. Just like metabolic
network stoichiometry is the structure of the bottom layer, the
binding network stoichiometry is the structure of the middle
layer. With this characterization, the binding-catalysis split
is mathematically a rule of bioregulation that cells regulate
metabolic fluxes by adjusting their exponents, or reaction
orders. We call this rule flux exponent control (FEC).

To formulate FEC into a constraint-based approach, we
need to turn the closed-loop description of fluxes in (2)
into an open-loop or control system description in (6).
This means, instead of the closed loop flux vcl(x) that
includes all upper layers’ regulations, we have open loop flux
v(x,u), with u the control variable tuned by metabolites
and protein concentrations in layers other than the mid-
dle. The reaction orders, or gains, of the open loop and
closed loop can be defined locally around an operating point
(x0,u0), with δ̃vcl = Hclδ̃x = HAδ̃x + HB δ̃u. Here δ̃
denotes fold-change variations, e.g., δ̃xi :=

δxi

x0,i
=

xi−x0,i

x0,i
,

HA := ∂ log v
∂ logx is the open-loop gain of fluxes to metabolite

concentrations, and HB := ∂ log v
∂ logu is the connectivity of

which fluxes are regulated by which control variables, with
log applied component-wise. If we close the loop with a
static controller map u(x) and define HK := ∂ logu

∂ logx , then
Hcl = HA+HBHK , analogous to the static state feedback
case in linear systems. Therefore, polyhedral constraints on
closed-loop gain Hcl from binding network stoichiometry
propagates to polyhedral constraints on controller gain HK .

Now with a clear understanding of the local description
of FEC, we can integrate to obtain a global description. The

open-loop gain HA, or passive reaction orders of fluxes
to metabolites, describes how the reactions would proceed
without regulations of the catalyzing enzymes by binding
reactions. Therefore, we can often consider HA as the
mass-action reaction orders, so that HA is constant. HB

is also constant since it simply captures the connectivity
of fluxes’ regulation. With constant HA and HB , we can
integrate from an operating point (x0,u0) to obtain log v =
HA logx+HB logu+ c for some constant vector c. This
c can be considered as log v at some standard values of
x and u, denoted x◦ and u◦. So we define the standard
reference flux log v◦ := c = log v(x◦,u◦). Note that the
standard reference flux v◦ simply defines the “units”, with
no relation to the flux at an operating point v0 = v(x0,u0),
which can be arbitrarily chosen. Now we can write,

v(x,u) = Λv◦ exp
{
HA logx+HB logu

}
= v◦ ◦ xHA

◦ uHB

.
(7)

Here exponential is applied component-wise to a vector.
The operation ◦ denotes Hadamard or element-wise product.
xHA

denotes the vector with xHA
i as the ith element, where

we use the notation xHA
i := x

HA
i1

1 x
HA

i2
2 . . . x

HA
in

n . uHB

is
similarly defined.

With the FEC structure of the middle layer on how the
fluxes are regulated in (7), we can incorporate it into the
stoichiometry-flux structure of the bottom layer (6) to have
the FEC formulation of metabolism as a control system:

ẋ = SΛv◦ exp
{
HA logx+HB logu

}
+ Sww,

= Sv◦ ◦ xHA

◦ uHB

+ Sww.
(8)

III. SOLVING FEC USING MODEL PREDICTIVE CONTROL

As a constraint-based approach, FEC parameterizes the
space of all feasible behaviors in a metabolic system by
formulating dynamic regulations as controller designs. This
way, FEC can use control theory tools to derive hard limits
on performance for all possible controllers from metabolic
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system structures, as in [9]. Beyond general laws, we are
also interested in solving for metabolic dynamics in specific
scenarios. Since constraint-based approaches already define
the set of feasible control actions, we can solve for a
specific scenario by formulating an optimization problem
that search for relevant actions in this set. We just need to
specify the scenario via an optimization objective and some
additional constraints. For FBA (4), this is often a linear or
quadratic program that yields a vector of steady state fluxes
[7]. For the FEC formulation of metabolism (8), this is an
optimal control problem that yields a dynamic trajectory of
metabolite concentrations x, control of flux exponents u, and
fluxes v. This nonlinear optimal control problem with state
and controller constraints can then be solved using model
predictive control (MPC) methods [19], [20]. The generic
optimal control problem of FEC is the following:

min
u(0 : +∞)

∫ +∞

0

ℓ(x(t),u(t), u̇(t))dt

s.t. x(t) satisfy (8), t > 0,

x(t) ∈ X ⊂ Rn
>0, t > 0,

u(t) ∈ U ⊂ Rnu
>0, t > 0.

(9)

Here the time horizon is considered infinite, and the objective
function is the integral of a per-time loss ℓ(·) over this
infinite time horizon. Loss ℓ can contain the linear-quadratic
cost relative to reference values to encode the objective
of maintaining a steady state. It can contain the negation
of a sum of metabolite concentrations x to promote yield
maximization of biomass or certain metabolites. It can also
contain quadratic cost on u̇ to penalize regulation of fluxes
by changing concentrations of molecules. The variable to be
minimized over is the control action trajectory u(0 : +∞).
The first constraint is the dynamic equation from FEC (8).
The second constraint requires that states, or metabolite con-
centrations x, are contained in the set X ⊂ Rn

>0 for all time.
This can include lower bounds on ATP concentration for
example. The third constraint requires that control variables
u are in U ⊂ Rnu

>0 for all time. This can include actuator
saturation from bounds on flux magnitudes or reaction orders
(Sec. II-D), for example.

To solve (9) computationally, we use the MPC formulation
to consider a local problem at a given time t with state
(x(t),u(t),w(t)) [19], [20]. We linearize the system around
this point, and consider a local optimal control problem of
this linearized system with T time horizon with discrete time
step ∆t. The solved optimal controller is then implemented
for one step in u(t′) for t′ = t to t+∆t. Then we consider
a local problem at time t+∆t and solve again.

A. Example: glycolytic oscillation
We illustrate the capability for FEC to capture metabolic

dynamics via the example of oscillations in glycolysis.
Glycolytic oscillations are well studied biologically [21]
and from a control theory perspective [9]. It is known to
happen on the timescale of 30 seconds, much shorter than
the timescale for metabolism to reach steady state [21]. It
is understood that the system oscillates due to aggressive

control actions, implemented by allosteric regulation of en-
zymes, that adapts to changing supplies and demands. This
attenuation of steady state error causes oscillation when hit
by large disturbances, made more severe by the autocatalytic
stoichiometry that is intrinsically unstable. FEC promises
that just based on the stoichiometry of this system, we have a
parameterization of all possible regulations the cell can take
on glycolysis. Then by simply asking for controllers that
aggressively attenuate steady state error, we should be able
to uncover oscillatory response, with no information other
than the stoichiometry. We demonstrate this below.

Following [9], instead of considering the detailed steps of
reactions in glycolysis, we consider two lumped reactions
that capture the structure of autocatalysis. This yields the
following dynamics for the concentrations of metabolites:

d

dt

[
x1

x2

]
=

[
1 −1
−q 1 + q

] [
v1
v2

]
+

[
0
−1

]
w. (10)

Here x2 is ATP, or energy charge, and x1 is a lumped
intermediate of the glycolysis pathway, such as fructose 1,6-
bisphosphate. The first reaction with flux v1 consumes q units
of ATP and produce one unit of intermediate. The second
reaction with flux v2 consumes one unit of intermediate and
produces 1 + q units of ATP. Together, looping through the
two reactions once results in a net production of one unit
of ATP. We also include an external disturbance with flux
w that consumes one unit of ATP. This corresponds to the
maintenance energy cost of the cell, which can increase under
environmental disturbances such as heat shocks.

To formulate into FEC, we write v1 = v◦1x2u1, and v2 =
v◦2x1u2, as described in (7) in Sec. II-B. Here v1 has un-
regulated dependence on x2 because of mass action and that
x2, ATP, is a reactant of v1. Similarly, v2 has un-regulated
dependence on x1 because x1, the intermediate, is a reactant
for the second reaction. For the loss function ℓ(·), we use
the following linear quadratic cost in fold-change variables:

ℓ(x,u) = logx⊺Q logx+ u̇
⊺
Ru̇, (11)

where xi = xi

x0
is the fold-change difference between the

current state and the desired state, u̇i =
u̇i

ui
= d log ui

dt is the
fold-change time derivative of u, and we add a lower bound
on the ATP level as a state constraint, x2(t) ≥ 0.6. Time
derivative of u, not u, is penalized since without changing
molecular concentrations in binding regulations, the fluxes
stay constant rather than going back to a reference value.

From the simulation result in Fig. 5, we see FBA (orange
line) cannot capture the oscillations, while FEC can, directly
from the autocatalytic stoichiometry of glycolysis. FEC also
captures the speed-robustness tradeoff, the central feature of
this system [9], that more aggressive feedback regulation
causes better steady state adaptation but larger oscillations.

IV. DISCUSSION

In this work, we reveal a general link between constraint-
based modelling methods and plant-controller splits in the
layered architecture of metabolism. This clarifies the funda-
mental limitation of flux control, including FBA, in captur-
ing metabolism dynamics. Overcoming this limitation, we
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Fig. 5: Simulations for glycolytic oscillation via the mechanistic
model in [9] (left) or via FEC solved by MPC (right). The steady
state fluxes predicted by FBA is the orange line. xATP, or x2

in the text, is concentration of ATP. vPK, or v2 in the text, is
the reaction flux consuming intermediate and producing ATP. The
parameter values of the mechanistic model, in notations of [9],
are a = 1, q = 1, k = 1.1, and g = 0.3. h = 2.5, 2.8, or
3.1, for the trajectories from dark to light blue, with increasing
oscillation magnitude. The disturbance w is 1 from t = −10 to
0, and jumps to 1.1 for t > 0. Parameters in the formulation
of FEC are chosen to match with steady state values of the
mechanistic model: v◦1 = 2, v◦2 = 2.2, x1(0) = 1

1.1
, x2(0) = 1,

u1(0) = u2(0) = −0.695, and x0 = x(0) when w = 1, then
(0.93, 0.98) when w = 1.1. The cost and optimization parameters
of FEC are ∆t = 0.03, T = 0.6, Q = diag(0.3, 0.08) and R (in
the local problem in discrete time) is diag(3, 3), diag(4.25, 4.25)
or diag(5.5, 5.5), for the three trajectories from dark to light
blue with increasing oscillation magnitudes. Code is available at
https://github.com/chemaoxfz/FEC-ACC-202303

develop FEC based on a structural split between intrinsic
dynamics of metabolic fluxes and their regulations. As a
constraint-based approach, FEC formulates metabolism as a
control system, with metabolic dynamics solvable as optimal
controllers via MPC. FEC can capture metabolic dynamics
at seconds to hours timescale, such as glycolytic oscillations.
Therefore, FEC has great potential in applications from
metabolic engineering of microbial communities to under-
standing cell growth and survival in dynamic environments.

To apply FEC to compute metabolic dynamics for large-
scale problems such as whole-genome models in application,
we need to solve the optimal control problem in (9) at scale.
This can be achieved by combining FEC with system level
synthesis [22] so that distributed and localized MPC methods
[23] can utilize the network sparsity and controller locality
in metabolism to speed up computation.

More generally, FEC opens the door to analysis and design
that map metabolic system architecture to dynamic functions.
This may have far-reaching implications on drug targets and
engineering of synthetic organisms. For example, if instead
of an antibiotic targeting a protein, we design treatments
targeting hard limits, e.g., speed-robustness tradeoffs, due to
regulatory architectures of microbes. Then since it is hard to
change the architecture via evolution that accumulates greedy
small steps, such architecture-targeted treatments would be
hard to escape through mutation. As another example, in-
stead of inserting a gene to make a microbe fit in a static
environment, we can engineer a regulatory architecture in
the microbe to adapt to a dynamic environment with large

shifts. Then this microbe could gain a dynamic niche in
the time domain, and persistently survive in an environment
without requiring an overall growth advantage. This may be
a promising path to establish an engineered microbial species
in an environment of deployment in applications [4].
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